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Abstract: The Large Helical Device (LHD) is one of the world’s largest superconducting helical system
fusion-experiment devices. Since the start of experiments in 1998, it has expanded its parameter
regime. It has also demonstrated world-leading steady-state operation. Based on this progress, the
LHD has moved on to the advanced research phase, that is, deuterium experiment, which started in
March 2017. During the first deuterium experiment campaign, an ion temperature of 10 keV was
achieved. This was a milestone in helical systems research: demonstrating one of the conditions
for fusion. All of this progress and increased understanding have provided the basis for designing
an LHD-type steady-state helical fusion reactor. Moreover, LHD plasmas have been utilized not
only for fusion research, but also for diagnostics development and applications in wide-ranging
plasma research. A few examples of such contributions of LHD plasmas (spectroscopic study and the
development of a new type of interferometer) are introduced in this paper.

Keywords: Large Helical Device (LHD); deuterium experiment; ion temperature of 10 keV;
plasma research; spectroscopic study; dispersion interferometer

1. Introduction

The Large Helical Device (LHD) [1] is one of the world’s largest magnetically-confined
fusion-experiment devices and is categorized as a helical system. Experiments started in March 1998,
and the LHD has taken part in pioneering research in the worldwide fusion research community
since then. The LHD has the critical advantage and engineering capability of steady-state operation.
It has played a complementary and alternative role to the tokamak approach. The main goals of the
LHD are to establish a scientific basis for a steady-state helical fusion reactor and to promote academic
study for a comprehensive physics-based understanding of toroidal plasmas.

It is worth noting that helical fusion research has been performed worldwide, as shown in
Figure 1 [2]. Another large-scale superconducting device, Wendelstein 7-X, started operation in 2015 [3].
Costa Rica [4] and China have also commenced helical fusion research. In July 2017, the National
Institute for Fusion Science (NIFS) agreed with Southwest Jiaotong University to collaboratively
construct, and then conduct fusion research using, the Chinese First Quasi-Axisymmetric Stellarator
(CFQS) [5]. The start of its experiments is envisaged for 2021.

This paper is organized as follows. In Section 2, one significant achievement (i.e., an ion
temperature record) and a few other wide-ranging physics results obtained in the LHD’s first
deuterium campaign are briefly described. Note that most of these results are before publication,
and details will be given in future individual publications. Section 3 is devoted to introducing the
design activity of a steady-state helical fusion reactor—the so-called FFHR. Section 4 emphasizes LHD
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as a platform for wide-ranging plasma research by describing two examples of its use within such
research. These examples are the LHD’s use in spectroscopic study, and the development of a new
type of interferometer that is applicable to atmospheric pressure plasmas.Atoms 2019, 7 FOR PEER REVIEW  2 of 8 
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of Ref. [6] include the reliable operation of the LHD’s large-scale superconducting magnetic system, 
progress in heating systems, the closed helical diverter, and the successful development and 
installation of a tritium removal system (installed for use in deuterium experiments). Conversely, in 
Ref. [7], plasma parameters (e.g., density, temperature, beta values, and long-pulse operation) and 
their extension in the hydrogen experiment phase were reviewed along with associated physics 
findings and understandings. 

One of the highlights of the hydrogen experiment phase has been the demonstration of a 47 min 
39 s-long discharge, with a few-keV range, achieving the world record in total injected energy (3.36 
GJ) [8]. The LHD has explored a world-leading long-pulse operation regime, although its fusion triple 
product is much lower than those of break-even tokamaks. Complementary research involving 
helical systems and tokamaks has been envisaged to work towards a steady-state and high-
performance fusion reactor regime. Plasma parameters such as temperature, density, and beta value 
have also steadily developed during the hydrogen experiment phase, as a result of the reliable large-
scale superconducting magnet system and physics findings as well as a steady increase in heating 
power. 

Based on this progress, the LHD has entered its deuterium experiment phase (i.e., a more fusion-
relevant phase), with the first deuterium plasma on 7 March 2017. The most notable result from the 
first deuterium campaign was the achievement of an ion temperature of 10 keV [9], as shown in 
Figure 2. This was a milestone in helical fusion research, in the sense that helical plasma has now 
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2. LHD Project Entering Deuterium Experiment Phase

Progress in both the physics and engineering aspects of hydrogen experiment phase of LHD
has been summarized in recent reviews [6,7]. More specifically, engineering aspects which were the
focus of Ref. [6] include the reliable operation of the LHD’s large-scale superconducting magnetic
system, progress in heating systems, the closed helical diverter, and the successful development and
installation of a tritium removal system (installed for use in deuterium experiments). Conversely,
in Ref. [7], plasma parameters (e.g., density, temperature, beta values, and long-pulse operation)
and their extension in the hydrogen experiment phase were reviewed along with associated physics
findings and understandings.

One of the highlights of the hydrogen experiment phase has been the demonstration of a 47 min
39 s-long discharge, with a few-keV range, achieving the world record in total injected energy
(3.36 GJ) [8]. The LHD has explored a world-leading long-pulse operation regime, although its fusion
triple product is much lower than those of break-even tokamaks. Complementary research involving
helical systems and tokamaks has been envisaged to work towards a steady-state and high-performance
fusion reactor regime. Plasma parameters such as temperature, density, and beta value have also
steadily developed during the hydrogen experiment phase, as a result of the reliable large-scale
superconducting magnet system and physics findings as well as a steady increase in heating power.

Based on this progress, the LHD has entered its deuterium experiment phase (i.e., a more
fusion-relevant phase), with the first deuterium plasma on 7 March 2017. The most notable result from
the first deuterium campaign was the achievement of an ion temperature of 10 keV [9], as shown in
Figure 2. This was a milestone in helical fusion research, in the sense that helical plasma has now
reached one of the conditions for fusion. This achievement was made possible by the confinement
improvement in deuterium plasmas compared to hydrogen plasmas [9], in addition to an increase in ion
heating power via upgraded neutral beam injection (NBI) [10], careful choice of magnetic configuration
to retain the heating efficiency of NBI, and the extensive wall conditioning [9]. Experimental
observations of the so-called “isotope effect” have taken place not only in high-ion-temperature
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plasmas but also in pure electron cyclotron heated (ECH) plasmas during LHD deuterium experiments.
However, these findings need to be investigated further [11–14] to clarify the mechanism of the isotope
effect. A simultaneous increase in ion and electron temperatures should be pursued in subsequent
deuterium campaigns.
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FFHR-d1 [25]. Its expected fusion power is 3 GW. It has the following principal device parameters: 
major radius of 15.6 m (four times larger than that of LHD), magnetic field strength of 4.7 T (at the 
helical coil center), plasma volume of 1900 m3, and stored magnetic energy of 170 GJ. The envisaged 
plasma parameters are as follows [25]: the central density is ~1.5 × 1019 m−3, the central electron 
temperature ~16.5 keV, and the energy confinement time ~1.5 s. The operation point is explored using 
a systems code (HELIOSCOPE [26]). An operational point with Q > 10 has been found with a sub-
ignition based on LHD data from hydrogen experiments, where Q is the fusion energy gain factor. 
Confinement improvement that has been identified in LHD deuterium experiments should widen 
the scope of the operation. Quantitative assessment for start-up scenarios reaching such an identified 

Figure 2. The achievement of an ion temperature of 10 keV in the first deuterium campaign of the
Large Helical Device (LHD). The ion temperature profile of 10 keV, along with the electron temperature
and density profiles, is depicted. The reff denotes the effective plasma minor radius (negative values
correspond to the inner side of a torus), which is defined as the radius of the equivalent simple
torus which encloses the same volume as the flux surface of interest. (This figure is modified from
Figure 5g in [9]).

Neutrons produced in deuterium plasmas in conjunction with a well-prepared set of neutron
diagnostics [15] (e.g., neutron emission rate and triton burn-up ratio) have provided the capacity for the
quantitative assessment of the energetic particles’ confinement property [16,17] and their interaction
with MHD modes [18,19] in LHD plasmas.

The first deuterium campaign has already provided interesting physics findings such as those
on impurity behavior [20,21] and the penetration threshold of resonant magnetic perturbation
(RMP) [22]. It has also made progress in engineering aspects, including negative-ion-based (NB)
injectors [23] and neutron flux distribution in LHD torus hall [24]. All these findings will be presented
in other opportunities.

3. Conceptual Design of the LHD-Type Helical Fusion Reactor FFHR-d1

Based on progress in both the physics and engineering aspects of the LHD project, conceptual
design activity has been extensively conducted for an LHD-type helical fusion reactor—the so-called
FFHR-d1 [25]. Its expected fusion power is 3 GW. It has the following principal device parameters:
major radius of 15.6 m (four times larger than that of LHD), magnetic field strength of 4.7 T (at the helical
coil center), plasma volume of 1900 m3, and stored magnetic energy of 170 GJ. The envisaged plasma
parameters are as follows [25]: the central density is ~1.5 × 1019 m−3, the central electron temperature
~16.5 keV, and the energy confinement time ~1.5 s. The operation point is explored using a systems
code (HELIOSCOPE [26]). An operational point with Q > 10 has been found with a sub-ignition based
on LHD data from hydrogen experiments, where Q is the fusion energy gain factor. Confinement
improvement that has been identified in LHD deuterium experiments should widen the scope of
the operation. Quantitative assessment for start-up scenarios reaching such an identified operation
point has also largely been achieved, as reported in Ref. [27]. Scenario developments have been
conducted based on the time evolution of plasma radial profiles by solving 1D transport equations.
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Since this 1D transport code merely employs a simple empirical transport model deduced from LHD
experimental results, consistency with detailed physics criteria such as MHD stability and neoclassical
transport should be checked by integrating numerical modules for physics analyses [28] that are being
or were already validated by LHD experiments. Using these models, control algorithms of auxiliary
heating power and fueling amounts have been examined to reach the identified operation point. In this
example, smooth control of fusion power was successfully confirmed. In this way, conceptual design
of the LHD-type helical fusion reactor FFHR-d1 has progressed, incorporating the time evolution of
plasma profiles. A derivation of FFHR-d1, the so-called FFHR-c1, has also been designed with targeting
year-long electric power generation by allowing for auxiliary heating along with innovative ideas for
its engineering system [29].

4. LHD as a Platform for Wide-Ranging Plasma Research

LHD plasmas have been utilized not only for fusion research, but also for wide-ranging plasma
research by making use of its steady-state and well diagnosed plasma parameters (e.g., temperature).
In this section, two examples of such contributions made by the LHD are introduced.

The first example is the LHD’s use in spectroscopic study. Spectroscopic studies have been
systematically conducted using LHD on a variety of heavy elements relevant to fusion, as well as in
other fields, from basic atomic physics to plasma applications. In the periodic table shown in Figure 3,
elements which have been injected into LHD plasmas by means of gas puff or tracer encapsulated
solid pellet (TESPEL) [30] are labelled by year. The most frequently studied element is tungsten, which
will be used as a material for the ITER diverter. Iron has been investigated for its application in solar
astrophysics. Tin, xenon, and lanthanide elements are candidate materials for a light source in EUV
lithography. Very heavy elements such as platinum and gold may be used for a water-window light
source in biological microscopy.
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With the development of an experimental database for several elements, new spectral lines have
been identified for the first time via LHD. By controlling the heating (and thus the electron temperature),
the temperature dependence of the EUV spectrum can be systematically obtained. This is the unique
advantage of the LHD having excellent spatial and temporal resolutions for electron temperature
measurement using a Thomson scattering system. In the case of terbium ions, as described in [30],
the spectrum is discrete at electron temperatures above 1 keV and is composed of higher charge states
around a Cu-like ion, which has been found for the first time in LHD. As the electron temperature
drops below 0.5 keV, the spectrum becomes quasi-continuous because the dominant charge states
become lower, eventually producing Ag-like ions. Similarly, several isolated spectral lines have been
found experimentally for the first time in the LHD, as has been reported in Refs. [31,32]. Z-dependence
of the lanthanide spectra has also been studied, and has been recently discussed in Ref. [33].

A second example of the LHD’s use in plasma research is the development of a new type of
interferometer for electron density measurement. Interferometers are one of the main types of electron
density diagnostic systems. However, interferometers suffer from large measurement errors caused by
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mechanical vibrations and changes in air conditions. The installation of vibration isolation systems
and the control of air are thus required.

A new type of interferometer called a “dispersion interferometer” is insensitive to mechanical
vibrations. It is essentially an interferometer, but it can cancel vibration components automatically by
using the second harmonic component 2ω and a special interferometer configuration, as shown in
Figure 4 (all details can be found in Ref. [34]). The second harmonic components are generated twice
from the laser fundamental component ω with nonlinear crystals (i.e., once before and once after the
plasma passage) and the interference signal between two second harmonics IDC + IAC cos (1.5ϕp) is
detected, where IDC, IAC, and ϕp denote DC and AC values determined by the laser intensity, and the
phase shift caused by a plasma, respectively. Since these two wavelength components have almost
identical optical paths, the phase shifts caused by vibrations and by the air are the same. By contrast,
phase shifts caused by the plasma differ between two wavelength components due to the dispersion
of a plasma. Since the phase of the interference signal from which the electron density is calculated is
the subtraction of the phases of the two second harmonic components, the phases due to vibrations
and air are cancelled and only that due to ϕp remains. This is the reason for the invulnerability of the
dispersion interferometer to vibrations and air. We have been developing the dispersion interferometer
and have implemented phase modulation for further enhancement of resolutions. The interferometer
has also been installed in the LHD to demonstrate its feasibility as an electron density diagnostic
system for fusion plasmas. Following its successful demonstration within the LHD, it has been decided
that it will be installed as a density measurement system for the first plasma of ITER. It is currently
being designed and tested for ITER [35].
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Figure 4. Schematic arrangement of the dispersion interferometer. The dispersion interferometer uses
a mixture of the fundamental ω and second harmonic 2ω light as a probe beam. The second harmonic
light is generated from the incident fundamental light with a nonlinear crystal. After passing through
a plasma, the fundamental light is converted to the second harmonic light, and an interference signal
between two second harmonic lights is detected. The light path of the second harmonic light generated
by a nonlinear crystal is almost the same as that of the fundamental one. Hence, the variations of
the light path length caused by mechanical vibrations are the same between the two lights. On the
other hand, the phase shifts caused by the plasma are different due to the dispersion of plasma.
As a result, phase shifts caused by vibrations are cancelled and only that belonging to the plasma
1.5ϕp remains in the interference signal, because the phase of the interference signal is a subtraction of
the phases of the two second harmonic lights. In this way, the dispersion interferometer is free from
mechanical vibrations.
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Moreover, the dispersion interferometer has been proven to be effective for atmospheric pressure
plasmas, not merely for fusion plasmas. Conventional interferometry for atmospheric pressure
plasma is not straightforward, because changes in air pressure due to heating by plasma cause
a 10–100 times larger phase shift than that caused by a plasma. However, the dispersion interferometer
can significantly suppress the effect of air, similarly to how mechanical vibrations do. Proof-of-principle
experiments for atmospheric pressure plasmas have been conducted with a dispersion interferometer
that was developed for the LHD [36]. As shown in Figure 5, the phase shift quickly increases and
decreases when the discharge current turns on and off, respectively. These are the phase shifts caused
by the plasma, which corresponds to 1.4 × 1020 m−3. Air also has dispersion, although it is minor.
The gradual decrease in the phase shift immediately following the plasma ignition is caused by the
dispersion of air. Even though effects due to air remain, the dispersion interferometer enables us to
distinguish the plasma phase shift and to evaluate the electron density. In this way, new diagnostics
developed within the LHD have been able to contribute not only to fusion plasmas but also to
atmospheric pressure plasmas.
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5. Conclusions

The LHD has progressed as a large-scale superconducting device since 1998, having demonstrated
its advantageous capacity for steady-state operation. It has now entered its advanced deuterium
experiment phase. A fusion-relevant ion temperature of 10 keV was successfully achieved during the
first deuterium campaign. This was a milestone achievement in helical systems research. The LHD will
continue to provide research opportunities for reactor-relevant regimes (including high-performance
and steady-state plasmas). Ongoing research in the LHD should provide a firm basis for high-precision
predictability towards a steady-state helical fusion reactor. The LHD also acts as a platform for
diagnostics development and shows promise for applications in wide-ranging plasma research.
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