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Abstract: This work reports measurements of calcified gallstone elemental compositions using
laser-induced optical emission spectroscopy. The experimental results support the importance of the
magnesium concentration in gallstone growth. Granular stones reveal an increased magnesium
concentration at the periphery of the granules, suggesting the inhibition of further growth.
Non-granular gallstones reveal lower overall magnesium concentrations, but with higher values near
the center.
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1. Introduction

Cholelithiasis affects the morbidity of adults and increases mortality, but it depends on specific
population characteristics. For instance, the gallstone disease cases are higher in the north than in the
south of India [1]. This work evaluates magnesium concentrations and elemental compositions by
collecting spectra during laser ablation of extracted gallstones. Magnesium has many essential roles
in fundamental biological functions, and in turn, deficiency provokes several biochemical changes.
Sufficient intake is important in maintaining magnesium homeostasis, but the average amount of
magnesium in today’s menu has diminished over the years. Magnesium is an important mineral
constituent of various unprocessed foods such as green leafy vegetables, fish and whole grains.
Deficiency of magnesium may cause insulin hyper-secretion and dyslipidemia, which may facilitate
gallstone formation [2–6]. Of interest are calcified non-granular, as well as granular gallstones in order
to contribute to the understanding of human gallstone progression. However, complimentary in situ
diagnoses may further elucidate the role of magnesium in gallstone growth.
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2. Results

Figure 1 illustrates typical gallstone appearances and cross-sections. The cross-sectional view of
the granular stone (Figure 1b) indicates different granules of different diameters. In this work, it is of
particular interest to analyze and quantify granules with different diameters.

Figure 1. Calcified gallstones: (a) granular gallstone and cross-section of (b) granular and
(c) non-granular gallstones.

In the experiments, the samples were mounted on a translation stage and were moved during
the measurements. The spectra were collected from different points along the gallstone diameter.
The identified spectral lines were due to calcium (Ca), magnesium (Mg), phosphorous (P), iron (Fe),
sodium (Na) and potassium (K). The neutral spectral lines of the lighter elements like carbon (C)
at 247.8 nm and 229.6 nm, hydrogen (H) at 656.3 nm and oxygen (O) at 777.4 nm have also been
identified in the recorded spectra. The simultaneous detection of the lighter elements C, H and O was
advantageous in the gallstone experiments. Generating laser-induced breakdown allowed recording
and quantifying the occurrence of lighter elements, which in turn confirmed that optical emission
spectroscopy was preferred over other conventional analytical techniques such as inductively-coupled
plasma-optical emission spectroscopy (ICP-OES).

Figure 2 illustrates typical recorded spectra from granular gallstone in the wavelength range of
200–500 nm. The spectral line positions of the indicated elements have been identified and compared
with the National Institute of Standards and Technology (NIST) database [7]. Clearly, the magnesium
concentration is higher at the periphery than at the center.

The spectral line intensity was proportional to the concentration of the species. For a particular
species transition in the samples, the intensity would directly reflect the concentration if other
parameters such as temperature were not to vary significantly. In the experimental runs, the average
plasma temperature was within ± 10% as measured using standard Boltzmann plot methods.
The recorded spectra of non-granular gallstone (not shown) indicated the presence of the same
spectral lines. However, the spectral features showed differences in the intensities of the Mg I 280.2-nm
line and the Ca I 393.0-nm line when comparing center and periphery data. Calcified, non-granular
gallstones showed concentrations of Mg, Ca, Na, P and K that were higher in the center than in the
periphery. The relative intensities of the spectral line of Mg I at 280.2 nm were recorded by focusing
the laser beam at five equidistant points across the gallstone to evaluate the variation of the Mg
concentration. Figure 3 illustrates results for non-granular gallstones in agreement with reported
data [8,9], and Figure 3 shows the measured variations for typical 2-mm–3-mm granules investigated
in this work.
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Figure 2. Typical recorded spectral signatures from granules of granular gallstone in the range of
270–450 nm. (a) Center; (b) periphery.

Figure 3. Trends of the measured signals of Mg I 280.2 nm along cross-sections: (a) 20-mm non-granular
gallstone; (b) 2-mm; and (c) 3-mm granules of granular gallstone.

A gallstone continues to grow for Mg concentrations with a decreasing trend starting from the
center or nucleation point. In turn, for Mg concentrations with an increasing trend starting from
the nucleation point, one may infer that gallstone growth is inhibited and causes the formation
of small granules. Our experimental observations agree with work reported in the literature [10].
A higher consumption of magnesium is associated with a reduced risk of gallstone disease with
a dose-response relationship that is not accounted for by other potential risk factors including other
measured dietary variables. The inverse association was also consistently present in the subgroups of
potentially confounding variables, which suggest the protective effects of magnesium consumption
against cholelithiasis.

3. Conclusions

The spatial variations of magnesium concentrations in different granules have been investigated
by measuring the Mg I 280.2-nm line at various points in calcified gallstones. The formation mechanism
of granular gallstone appears different from non-granular gallstone samples obtained from the same
geographical region. The presented experimental results indicate that Mg may inhibit or allow further
growth of gallstone. Future work is recommended to elaborate and confirm the Mg dependency on its
concentration change from the point of gallstone nucleation.
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4. Materials and Methods

The experimental arrangement included a Nd:YAG laser device and a spectrometer equipped
with an intensified charge-coupled device. Previous work [11,12] described further details of the
experimental setup. Laser pulses of 20 mJ at a repetition rate were used to record data with acceptable
signal-to-background and signal-to-noise ratios. Laser-induced breakdown spectra of the gallstone
samples showed a spectral resolution of 0.1 nm and 0.75 nm in the spectral range of 200–500 nm and
200–900 nm, respectively. The gallstone samples are from Assam Medical College, Dibrugarh, Assam,
in the northeast region of India and were shipped to the laboratory in Allahabad, Uttar Pradesh,
in sealed pots for the spectroscopy studies.
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