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Abstract: Lienard-Wiechert or retarded electric and magnetic fields are produced by moving electric
charges with respect to a rest frame. In hot plasmas, such fields may be created by high velocity free
electrons. The resulting electric field has a relativistic expression that depends on the ratio of the free
electron velocity to the speed of light in vacuum c. In this work, we consider the semi-classical dipole
interaction between the emitter ions and the Lienard-Wiechert electric field of the free electrons and
compute its contribution to the broadening of the spectral line shape in hot and dense plasmas.
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1. Introduction

Line profiles and shifts are used to determine plasma parameters, especially in astrophysics where
alternative methods (such as interferometry or Thomson scattering) are not possible. Doppler and
pressure broadening (Stark broadening) are typically the two dominant mechanisms and we focus
on the latter. In a number of hot astrophysical plasmas, electrons may be energetic enough that their
thermal energy KBT (KB is the Boltzmann constant and T the temperature) can be comparable to the
rest mass. For the extreme densities encountered in some astrophysical objects, pressure broadening
could dominate; however, for such objects the electrons may become relativistic due to the extreme
temperatures and hence it makes sense to check the modifications to the pressure broadening by
relativistic effects. Similarly, the laser-produced plasmas may be achieved in both very high densities
and very high temperatures: the first leads to the dominance of Stark over Doppler broadening
whereas the second leads to relativistic electron velocities. More specifically, plasma spectroscopy is
used in a wide range of electron density from 10 particles per cm3 (interstellar space) to 1025 particles
per cm3 (star interiors, inertial confinement fusion) and for temperatures between 107 K and 1010 K.
More precisely, as the Doppler effect is constant for a fixed temperature (about 108 K in our case),
we can neglect it for densities higher than 1020 cm−3. In the present work, we investigate the region
corresponding to the particular conditions of plasma: high density and high temperature. Under these
conditions, (electron-ion) collisions will be, throughout this work, assumed binary and the dynamics
of the electrons will be treated relativistically. Furthermore, in this work we shall use the statistical
classical mechanics (not the quantum statistical mechanics as in the Fermi-Dirac distribution) because
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the condition λth = h/
√

2πmeKBT < N−1/3
e (me is the electron mass, λth is the De Broglie thermal

length and Ne is the electrons density) is fulfilled in the stated density and temperatures ranges.
For example, if Ne = 1024 cm−3 and T > 107 K, it is easy to verify that this inequality is correct.
This condition means that the wave function extent (λth) associated with the electron is smaller than
the mean distance (∼ N−1/3

e ) between two free electrons. In the present work, we focus on electron
broadening in the impact approximation [1,2]. We thus, reformulate the standard semiclassical collision
operator by taking into account the relativistic effects of the Lienard-Wiechert retarded electric field [3]
due to the free electron movement. In addition, we assume that the plasma is optically thin (the opacity
phenomenon is neglected), for this raison the spectral line shape is not influenced by the absorption
process. Furthermore, by neglecting the electrons recombinaison, we assume that the decoupling of
the free electrons from the radiation field is satisfied. The units system used here (unless specified) is
the CGS system. In many cases in line broadening, fast particles (typically electrons) are described by
a collisional approach, while particles of which field have a weak variation during the inverse half
width half maximum (HWHM) time scale are considered static and treated via a quasistatic microfield.
For many applications, isolated lines have great importance. So, the calculations of the broadening of
such a line in a plasma are normally made by using the impact approximation for electrons [1] in the
semi-classical version [4], as the ionic contribution is typically negligible.

2. Theoretical Basis of the Electron Broadening

The Stark effect is important in plasmas of high degree of ionization and high temperatures. In all
cases presented in the remainder of our work, the Stark effect is dominant. The two most popular
approximations in the computations of the electronic collision operator Φ are the dipole approximation
and the approximation of the classical path which considers the perturbing electrons in the impact
approximation. Our departure point is the expression of the intensity of the spectral line shape [2,5]:

I (ω) = − 1
π

Re

dαβ〈〈αβ

∣∣∣∣∣∣
(

iω−
i
(

Hg − He
)

h̄
+ Φ

)−1
∣∣∣∣∣∣ α′β′〉〉d∗α′β′

 (1)

where Φ is the relativistic collision operator (in Hz) which is independent from time and electric
micro-field and has matrix elements given by

〈〈αβ |Φ| α′β′〉〉 = ∑
α′′

rαα′′rα′′α′Φd (ωαα′′ , ωα′′α′)

+∑
β′′

rββ′′rβ′′β′Φd

(
ωββ′′ , ωβ′′β′

)
− rαα′ rβ′βΦint

(
ω

αα
′ , ωβ′β

)
(2)

where α, β are the upper and lower levels respectively and rab (dab is dipole operator) is the matrix
element of position operator of the bounded electron. We now aim to calculate the direct relativistic
term Φd (in Hz/cm2) and the relativistic term of interference Φint = 2Φd [5]. Before starting this task,
let us remind that the criterion of validity of the impact theory, according to Voslamber [6], is not
applicable for any pair (ω1, ω2). However, for the isolated lines (ω1 = −ω2), this theoretical problem
does not arise, and impact theory is valid. Specifically, the study of Φd is performed in the case of
isolated lines for an ionic emitter and hyperbolic paths for free electrons. This treatment is based on
the results obtained under the same conditions in the non-relativistic case. The relativistic collision
operator is then given by

Φd (ω1, ω2) = − 2πNe e2

3h̄2

∫ c
0 v f (β) dβ

∫ ρmax
ρmin

ρ0dρ0
∫ +∞
−∞ dt1

∫ t1
−∞ dt2 e(iω1t1+iω2t2) [ELW(t1) · ELW(t2)] (3)

where c is the speed of light in vacuum, v is the initial velocity of the colliding electron and f (β) dβ is
the distribution of the velocities of Juttner-Maxwell (generalized Maxwell distribution of the velocities
when the movement of particles is relativistic) given by
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f (β) dβ =
γ5β2dβ

θK2 (1/θ)
exp (−γ/θ) (4)

where
θ =

KBT
mec2 , γ = 1/

√
(1− β2), β = v/c (5)

and K2 (1/θ) is a Bessel function, T is the temperature, me is the electron mass and ρ0 is the impact
parameter, whereas ρmin and ρmax are the limits of the last integral (Formula (3)) that will be chosen
later. The electric field of Lienard-Wiechert is given by [3]

ELW (R, α, t) = −e
(η− α)

(
1− α2 )

k3R2(t′)
− e

c2
η

k3R(t′)
×
{
(η− α)× dv(t′)

dt′

}
(6)

then

α =
v (t′)

c
, η =

R(t′)
R(t′)

, t′ = t− R(t′)/c (7)

where the retarded time is given by: t′ = t− R(t′)
c , e is the charge of the electron, R (t′) is the electron

position vector, and η = R(t′)
R(t′) is a unit vector directed from the position of the moving charge (electron)

towards the observation point (where the emitter is located), and k is given by

k =
dt
dt′

= 1 +
1
c

dR (t′)
dt′

= 1 + ηα (8)

The first term of the field (6), the velocity field, goes to the known Coulomb field when v → 0
whereas the second term of the field, is the acceleration field or the radiation field. As the ratio of
second term (the radiation field) of the field ELW on the first term is less than v2/c2, we can therefore
neglect the second and use only the first part of the field in the subsequent development

ELW(R, t) ' e

[
(η− α)

(
1− α2 )

k3R2

]
(9)

By using the approximation 1− α2 ' 1, which is justified in our subsequent studies (T = 8× 108 K,
the probable α is about 0.22), therefore the electric field becomes

ELW(R, t ) = e
[
(η− α)

k3R2

]
(10)

If we neglect the fine structure (ω1 = ω2 = 0), we can write the collision operator as

Φd(0, 0) = −πNee2

3h̄2

∫ c

0
v f (β)dβ

∫ ρmax

ρmin

ρ0dρ0

∫ +∞

−∞
ELW (t1)dt1

∫ +∞

−∞
ELW (t2) dt2 (11)

or equivalently

Φd(0, 0) = −πNee2

3h̄2

∫ c

0
v f (β)dβ

∫ ρmax

ρmin

ρ0dρ0G2 (12)

such as

G = −e
∫ +∞

−∞

(R(t′)
R(t′) −

v(t′)
c )

( dt
dt′ )k

2R2(t′)
dt (13)

or, by integrating over t′

G = −e
∫ +∞

−∞

(
R(t′)
R(t′) −

dR(t′)
cdt′

)
(

1 + 1
c

dR(t′)
dt′

)2
R2 (t′)

dt′ (14)
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G = −e
∫ +∞

−∞

 R (t′)(
1 + 1

c
dR(t′)

dt′

)2
R3 (t′)

− dR (t′)(
1 + 1

c
dR(t′)

dt′

)2
cdt′ R2 (t′)

 dt′ (15)

In the following, we use the notations and the variable change

ε = (1 +
m2v4ρ2

0
Z2

eme4 )1/2

t′ =
ρ0
v

(ε sinh (x)− x)

dt′ =
ρ0
v

(ε cosh (x)− 1) dx

R
(
t′
)
= ρ0 (ε cosh (x)− 1)

X = ρ0 (ε− cosh (x))

dX
dt′

=
dX
dx
dt′
dx

= −v
sinh(x)

(ε cosh (x)− 1)

Y = ρ0

√
ε2 − 1 sinh (x)

dY
dt′

=
dY
dx
dt′
dx

= v

√
ε2 − 1 cosh(x)

(ε cosh (x)− 1)

R
(
t′
)
= Xi + Yj

v
(
t′
)
=

dX
dt′

i +
dY
dt′

j

where Zem is the charge of the ionic emitter and (i, j) are the basis of the cartesian coordinates. Then the
function G is given by

G = − e
ρ 2

0

∫ +∞

−∞

X(t′)i + Y(t′)j[(
ε cosh (x)− 1 + v

c ε sinh(x)
)]2 R (t′)

dt′

− e
cρ 2

0

∫ +∞

−∞

dX
dt′ i +

dY
dt′ j[ (

ε cosh (x)− 1 + v
c ε sinh(x)

)]2 dt′ (16)

Using (17), we jump to integrate over x:

G = − e
vρ 2

0

∫ +∞

−∞

ρ0 (ε− cosh (x)) i + ρ0

√
ε2 − 1 sinh (x) j[

ε cosh (x)− 1 + v
c ε sinh(x)

]2 dx

− e
cρ 2

0

∫ +∞

−∞

−v sinh(x)
(ε cosh(x)−1) i + v

√
ε2−1 cosh(x)

(ε cosh(x)−1) j[
ε cosh (x)− 1 + v

c ε sinh(x)
]2 ρ0

v
(ε cosh (x)− 1) dx

= − e
vρ0

∫ +∞

−∞

(ε− cosh (x)) i +
√

ε2 − 1 sinh (x) j[
ε cosh (x)− 1 + v

c ε sinh(x)
]2 dx

− e
cρ0

∫ +∞

−∞

− sinh(x)i +
√

ε2 − 1 cosh(x)j[
ε cosh (x)− 1 + v

c ε sinh(x)
]2 dx (17)

or in a more simplified form

Φd(0, 0) = − Nee4

3πh̄2

∫ c

0

γ5βdβ

θcK2 (1/θ)
exp (−γ/θ)

∫ ρmax

ρmin

dρ0

ρ0

[
A2

+ (ε2 − 1)B2
]

(18)
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where

A =
∫ +∞

−∞

− (ε− cosh (x)) + β sinh(x)

[ε cosh (x)− 1 + βε sinh(x)]2
dx

= 2
(ε2 − 1)

√
1− ε2 + β2ε2 − β2ε2 tanh−1(

√
1− ε2 + β2ε2)

ε(1− ε2 + β2ε2)3/2 (19)

B = −
∫ +∞

−∞

sinh(x) + β cosh (x)

[ε cosh (x)− 1 + βε sinh(x)]2
dx = 0 (20)

Then the relativistic collision operator caused by the Lienard-Wiechert electric field Φd,LW is given by

Φd(0, 0)(Hz/cm2) = Φd,LW =

− 4Nee4

3πh̄2θcK2(1/θ)

∫ 1
0

exp(− 1

θ
√

1−β2
)

(1−β2)5/2 βdβ
∫ ρmax

ρmin

[(ε2−1)δ−β2ε2 tanh−1(δ)]2

ε2ρ0δ6 dρ0

(21)

where we have put

δ ∼ δ(β, ε) =
√

1− ε2 + β2ε2 (22)

By taking the maximum of the impact parameter ρmax = 0.68λD (λD is the Debye length) [5] and
the minimum of the impact parameter equal to Bohr radius (the Wiesskopf radius is much smaller
than Bohr radius in our application), and after numerical integration of (31) we find the following
result in Table 1.

We note that we have considered the lower limit of the integration over the impact parameter
equal to the Bohr radius, because in our study we only intented to compare the two collision operators
corresponding to Coulomb and Lienard-Wiechert interactions. In reality, as Formula (31) shows,
by decreasing the lower limit of the impact parameter, the value of the collision operator increases
and by increasing the lower limit, the value of the collision operator decreases. Another reason to
mention is: by regarding Formula (3) of Ref. [5], we see that the minimum of the impact parameter
(Wiesskopf radius rW), in our conditions of the high temperature, high charge number Z = 70 and the
upper and lower levels of the transition na = 3 (1s3d),nb = 2 (1s2p)(in triplet case), is much smaller than
the Bohr radius a0 that is to say rW << a0. For example, for a density 1018 cm−3, for the lower limit
rW , the value of the collision operator Φd,LW is 0.35× 10−2 eV (that is overestimated in our opinion)
whereas it is 0.21× 10−2 eV for the lower limit equal to the Bohr radius a0. In fact, in the region
r < a0, the quantum effects must be taken into account. For these reasons, we have only considered,
in our calculation, the minimum of the impact parameter equal to the Bohr radius a0. In addition,
we remark from the Table 1 that the effect of the Lienard-Wiechert field is to reduce the amplitude of
the collision operator. This reduction is more pronouced for the weak electron densities. We must also
note that the criteria of the isolated lines becomes not valid for densities great than 1021 cm−3 because
the FWHM = 2 × HWHM of two neighboring spectral lines becomes of the same order of magnitude
of the separation (about 3eV) between the line arising from 1s3d to 1s2p (triplet case that we study)
transition and the neighboring line arising from 1s3p to 1s2s (singlet case) transition. Following the
Table 1, and for densities less than 1021 cm−3, the HWHM is small enough to be can considered that
the studied line is isolated.
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Table 1. Comparison between collision operators for Coulomb interaction Φd,C and for Lienard
Wiechert interaction Φd,LW (multiplied by h̄ in eV*s and by a2

0 in cm2 where a0 is Bohr radius) at a
temperature T = 8× 108 K and different densities and for Helium-like Ytterbium Zem = 68, for the
radiative transition 1s3d to 1s2p for triplet case. After this muliplication, the following results are in eV.

Ne in cm−3 Φd,C in eV Φd,LW in eV HWHMC in eV HWHMLW in eV Percent

1016 0.32× 10−4 0.24× 10−4 0.25× 10−4 0.17× 10−4 25
1018 0.27× 10−2 0.21× 10−2 0.20× 10−2 0.15× 10−2 22
1020 0.24 0.22 0.18 0.17 8
1022 26 25 20 19 4

Note: We have defined the percent to be equal
(

Φd,C−Φd,LW
Φd,C

·100
)

.

3. Conclusions

In this work, we have investigated Lienard-Wiechert or retarded electric fields produced by
moving electric charges with respect to a rest frame. Specifically, we have studied its contribution
to the broadening of the spectral line shape of the Helium-like Ytterbium in hot and dense plasmas
radiative (transition from 1s3d to 1s2p). The principal result, as the table shows is: the retarded
Lienard-Wiechert interaction, narrows the line shape comparatively to the pure Coulomb interaction.
The narrowing is more pronouced for the low densities.
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