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Abstract: In previous papers (Bhatia A.K. 2007, 2012) a hybrid theory for the scattering of electrons
from a hydrogenic system was developed and applied to calculate scattering phase shifts, Feshbach
resonances, and photoabsorption processes. This approach is now being applied to the scattering
of positrons from hydrogen atoms. Very accurate phase shifts, using the Feshbach projection
operator formalism, were calculated previously (Bhatia A.K. et al. 1971 and Bhatia et al. 1974a).
The present results, obtained using shorter expansions in the correlation function, along with
long-range correlations in the Schrödinger equation, agree very well with the results obtained
earlier. The scattering length is also calculated and the present results are compared with the previous
results. Annihilation cross-sections, and positronium formation cross-sections, calculated in the
distorted-wave approximation, are also presented.
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1. Introduction

Scattering by hydrogenic systems has been carried out using various approximations. Among
them is the method of polarized orbitals of Temkin (1959) [1], which takes into account the distortion
produced in the target by the incident particle in the ansatz for the wave function for the scattering
process. However, this method is not variational and does not provide any bounds on the calculated
phase shifts. An alternate approach is to introduce separate correlation functions and amalgamate
them into the scattering problem via an optical potential in the scattering equation. The most rigorous
approach uses the projection operator formalism of Feshbach [2] (1962). This approach was applied
to calculate accurate S and P phase shifts for electron-hydrogen and electron-helium ion scattering
by Bhatia and Temkin (2001) [3] and Bhatia (2002, 2004, and 2006) [4–6]. The phase shifts obtained
have a rigorous lower bound to the exact phase shifts. The close-coupling approach also provides
rigorous lower bounds, while the Kohn-variational principle, and other methods related to it, do not.
As indicated in the formalism of the hybrid theory by Bhatia (2007, 2008) [7,8] it is not necessary to
use Feshbach projection operators to calculate the optical potential which replaces the many-particle
Schrödinger equation with a single-particle equation. The phase shifts calculated by Bhatia (2007,
2008) [7,8] have rigorous lower bounds. We now apply this approach to the scattering of positrons
from hydrogen atoms. There are no nonlocal potentials in the scattering equation for the scattering
function, as in the electron scattering, because of the absence of exchange between positrons and
electrons. Previously, Feshbach projection operators were used to carry out the positron-hydrogen
scattering calculations of Bhatia et al (1971, 1974) [9,10] and the correction due to the effect of the
target polarization was applied to the extrapolated variational results. In spite of the fact that this
ad hoc correction destroyed the variational bound, the final results obtained by Bhatia et al. (1971,
1974a) [9,10] have been considered accurate and have stood the test of time. We now apply the
hybrid theory to positron scattering and the present calculation includes short-range and long-range
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correlations at the same time, as mentioned above. The details of this formalism have been given
in previous publications of Bhatia (2007, 2008) [7,8] and therefore, we briefly describe the method.
The wave function is given by:

ΨL(
→
r 1,
→
r 2) =

uL(r1)

r1
YL0(

_
r 1)Φpol(r1, r2) +

N

∑
λ=1

Cλ Φλ
L(
→
r 1,
→
r 2). (1)

where the positron coordinate is given by
→
r 1, the electron coordinate by

⇀
r 2, and the summation

over λ is from 1 to N, the number of terms in the expansion; Cλ are unknown coefficients, and Φλ
L is

the correlation function. The correlation functions are short-range in nature in
→
r 1 and

→
r 2, and are

normalized to unity. Their expectation values of these correlation functions are given by Equation (8).
In order to include polarization of the target, the effective target function can be written as:

Φpol(
→
r 1,
→
r 2) = ϕ0(

→
r 2) +

χST(r1)

r2
1

u1s→p(r2)

r2

cos(θ12)√
Zπ

, (2)

where Z is the nuclear charge. The function u1s→p is given by:

u1s→p(r2) = e−Zr2(
Z
2

r3
2 + r2

2) (3)

The target function is given by:

ϕ0(r2) =

√
Z3

π
e−Zr2 . (4)

We find that there is a problem in using the projection operators when polarization of the target is
included in the target function. According to Feshbach (1962) [2], the projection operators should be
idempotent, i.e.,:

P2 = P, Q2 = Q, and PQ = 0 (5)

In order to satisfy the above conditions, the perturbed wave function given in Equation (2) must
be normalized to unity for all

⇀
r 1 and

→
r 2. This is not possible, as indicated by Bransden (1970) [11].

Therefore, we have not used the projection operators in the present calculation as it becomes too
difficult to write the optical potential and to satisfy the above conditions in the presence of the
polarization of the target.

Another variational approach, also based on perturbation, has been proposed by Drachman
(1968) [12]. He writes the wave function in the form:

Ψ(
⇀
r 1,
→
r 2) = χk(

→
r 1)ϕ0(

→
r 2) + Φ(

→
r 1,
→
r 2) (6a)

where:
Φ(
→
r 1,
→
r 2) = F(

→
r 1)G(

→
r 1,
→
r 2)ϕ0(

→
r 2) (6b)

The correlation function can be written in the above form, where G (r1,
→
r 2) is the exact adiabatic

perturbation including all multipoles. The functions χ(
→
r 1) and F(

→
r 1) are determined variationally

using G(
→
r 1,
→
r 2), numerically, obtained from the exact analytic form of G, given in elliptical coordinates

by Dalgarno and Lynn (1957) [13]. However, retaining the short-range monopole part is unjustified and
by suitably suppressing it, the scattering length and the phase shifts comparable to those of Schwartz
(1961) [14] have been obtained.

The variation with respect to Cλ, as indicated by Bhatia (2007) [7], in the function:

I =< ΨL(
→
r 1,
→
r 2)|H − E|ΨL(

→
r 1,
→
r 2) > (7)
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Gives:

Cλ =
< Vλ(r1)u(r1) >

k2 − Z2 − ε(λ)
(8)

where Vλ is given by:
Vλ(r1) =< Φλ

L(
→
r 1,
→
r 2)|H − E|Φpol(

→
r 1,
→
r 2) > . (9)

and ε(λ) is the expectation value of H:

< Φλ
L|H|Φλ

L >= ε(λ) (10)

In Equation (2), χST(r1) is the smooth cutoff function introduced by Shertzer and Temkin
(2006) [15]. This term guarantees that χST(r1)/r2

1 → 0 for r1 → 0. This function is given by:

χST(r1) = 1− e−2Zr1(
1
3
(Zr1)

4 +
4
3
(Zr1)

3 + 2(Zr1)
2 + 2Zr1 + 1) (11)

This function is unlike the step function, ε(r1, r2), introduced by Temkin (1959) [1], which equals
1 when r1 > r2, and equals zero otherwise. This step function ensures that the polarization takes
place only when the incident particle is outside the target. Now we want the polarization function in
Equation (2) to be valid throughout the range, rather than only for r1 > r2. The angle θ12 is the angle
between

→
r 1 and

⇀
r 2. It should be pointed out that in Equation (2), there is a plus sign after the target

function and not the negative sign, as in the case of the electron scattering. This is due to the fact that
the perturbing potential is of the opposite sign to that in the case of the electron:

V(r1, r2) = ±(
2
r1
− 2

r12
) (12)

The positive sign is for positron scattering and the negative sign for electron scattering.
The correctness of the sign in Equation (2) can be ascertained from the paper of Temkin and Lamkin
(1961) [16]. In Equation (1), L is the angular momentum, uL is the scattering function, and the function
ΦL is the correlation function which can be written in terms of generalized “radial” functions, which
depend on the radial coordinates and the Euler angles introduced by Bhatia and Temkin (1964) [17]:

ΦL = ∑
κ

[ f κ,+1
L (r1, r2, r12)Dκ,+1

L (θ, ϕ, ψ) + f κ,−1
L (r2, r1, r12)Dκ,−1

L (θ, ϕ, ψ)]. (13)

For S-wave (i.e., L = 0) DL = constant in Equation (13) and Φ0 is taken of Hylleraas form:

ΦL=0(
→
r 1,
→
r 0) =

1√
8π2

e−γ r1−δ r2
Nω

∑
lmn

Clmnrl
1rm

2 rn
12 (14)

where the sum includes all triplets such that l + m + n = ω and ω = 0, 1, 2, 3, 4, and 5. Bhatia et al.
(1971) [9] included a term e−α r12 in the above function to take into account virtual positronium
formation. This term has not been included here, and we have not used the Feshbach projection
operators either, in the present calculations. The scattering equation with the optical potential becomes
simpler without the use of the projection operators. The wave function of the scattered positron is
determined from: ∫

[YL0(Ω1)Φpol(
→
r 1,
→
r 2)(H − E)ΨL]d

→
r 2dΩ1 = 0 (15)

In Equation (15), H is the Hamiltonian and E is the total energy of the system. We have used
Rydberg units throughout [e2 = 2 ,} = 1, and me = 1/2]. We have H in these units:

H = −∇2
1 −∇2

2 +
2Z
r1
− 2Z

r2
− 2

r12
, (16)
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E = k2 − Z2, (17)

where k2 is the kinetic energy of the incident positron and Z is the nuclear charge.
For L = 0, we can write the equation (15) for the scattering function u in the form:

J1 + J2 + J3 + J4 + J5 = 0. (18)

where:

J1 =
∫

Y00(Ω1)ϕ0(
→
r 2)(H − E)ϕ0(

→
r 2)

u(r1)

r1
Y00(Ω1)d

→
r 2dΩ1. (19a)

J1 = − 1
r1
[

d2

dr2 + k2 + Vd(r1)]u(r1). (19b)

J2 =
∫

Y00(Ω1}ϕ0(
→
r 2)(H − E)

χST(r1)

r2
1

u1s→p(
→
r 2)

u(r1)

r1
Y00(Ω1)d

→
r 2dΩ1. (20a)

J2 = −χST(r1)
α(r1)

(Zr1)
4

u(r1)

r1
. (20b)

J3 =
∫

Y00(Ω1)
χST(r1)

r2
1

u1s→p(
→
r 2)(H − E)ϕ0(

⇀
r 2)

u(r1)

r1
Y00(Ω1)d

→
r 2dΩ1. = J2. (21)

J4 =
∫

Y00(Ω1)
χST(r1)

r4
1

u1s→p(
→
r 2)(H − E)

χST(r1)

r2
1

u1s→p(
→
r 2)

u(r1)

r1
Y00(Ω1)d

→
r 2dΩ1. (22a)

J4 = [
9
2
(

χST(r1)

(Zr1)
2 )

2

− 8
3Z

d(r1)(
χST(r1)

r2
1

)
2

]
u(r1)

r1
+

43
8Z6 Yp(r1)

χST(r1)

r2
1

(22b)

where:

Yp(r1) = −
1
r1
[
χST(r1)

r2
1

d2u
dr2

1
+ 2B1(r1)

du
dr1

+ B2(r1)u(r1) + (−2Z
r1
− 2

r2
1
+ k2)

χST(r1)

r2
1

u(r1) (23)

J5 =
∫

Y00(Ω1)Φpol(
⇀
r 1,
→
r 2)|H − E|∑ CsΦs

0(
→
r 1,
→
r 2)d

→
r 1d
→
r 2 (24a)

which can be written as:

J5 = ∑
JS
5

E− ε(s)
(24b)

where:
Js
5 =

∫
Y00(Ω1)Φpol(

→
r 1,

⇀
r 2)|H − E|Φs

0(
→
r 1,

⇀
r 2)d

→
r 2dΩ1

∫
Vs(r1)u(r1)dr1 (24c)

In Equations (24a) and (24b) the summation over s is understood. Substituting Equations (19)–(24)
in Equation (18), we get the equation for the scattering function u(r):

[D(r)
d2

dr2 + k2 + Vd + Vpol −Vpol
opt ]u(r) = 0 (25)

We give the various quantities:

D(r) = 1 +
43

8Z6 (
χST(r)

r2 )
2

(26)

The direct potentials are given by:

Vd = −2(Z− 1)
r

− 2e−2Zr(Z +
1
r
) (27)
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and
Vpol = (x1 + x3) + x2

d
dr

(28)

The various quantities in the above equation are:

x1 =
43

8Z6 (−
2Z
r
− 2

r2 + k2)(
χST(r)

r2 )
2

, (29)

x2 = B1(r)
43

8Z6 (
χST(r)

r2 ), (30)

x3 = B2(r)
43

8Z6 (
χST(r)

r2 ) +
2α(r)

(Zr)4 χST(r)−
9
2

χST(r)
2

(Zr)4 +
8

3Z
d(r)(

χST(r)
r2 )

2

, (31)

B1(r) =
1
r2 [−2ZχST(r) + 2Z− 2

r
+ e−2Zr(−2

3
Z4r3 − 4

3
Z3r2 + 2Z +

2
r
). (32)

B2(r) = −2ZB1(r)−
4Z
r3 +

6
r4 + e−2Zr(

4
3

Z5r + 2Z4 − 4Z2

r2 −
8Z
r3 −

6
r4 ). (33)

The polarizability of the target is obtained from the following expression for r = infinity:

α(r)/Z4, (34)

where:
α(r) =

9
2
− e−2Zr((Zr)4 + 5(Zr)3 + 9(Zr)2 + 9(Zr) +

9
2
). (35)

d(r) =
129

32Z5
1
r
+

18
Z7

1
r3 − e−2Zr(

3
16

r4 +
27
16

r3 +
54

8Z2 r2 +
135
8Z3 r +

975
32Z4 +

1281
32Z5

1
r
+

36
Z6

1
r2 +

18
Z7

1
r3 ). (36)

For r -> infinity, x3 has a term:
9

2(Zr)4 , (37)

where 9/(2Z4) is the dipole polarizability of the target with nuclear charge Z.

Vpol
op u(r) = r1

Nω

∑
s

〈
Y00(Ω1)Φpol(

→
r 1,
→
r 2)|H − E|Φs

0

〉 〈
Φs

0|H − E|Ψ′0
〉

E− ε(s)
. (38)

Here, Ψ′0 is the wave function given in Equation (1) without the correlation term. The phase shifts
are inferred from the scattering function uL=0 ≡ u for r tending to infinity:

u(r) =
sin(kr + η)

kr
(39)

In Table 1, we show the convergence of phase shifts η (radians) for k = 0.4 with the number of
terms in the correlation function given in Equation (1). By N = 35, the phase shift has converged to
at least four significant figures. In Table 2, results, which have not been extrapolated, are given for
k = 0.1 to 0.7. The phase shifts obtained for shorter expansions are in good agreement with the previous
calculations of Bhatia et al. (1971) [9]. However, the results of Bhatia et al. (1971) have been obtained
by extrapolation and by adding the contribution of the long-range potential due to the polarization of
the target to the extrapolated results. Their final results do not have any variational bounds anymore.
The present and previous results are shown in Figure 1. We also compare the present phase shifts with
those obtained by Schwartz (1961) [14] obtained by using the Kohn variational principle, Houston and
Drachman (1971) [18], by using the Harris method, Kohn variational calculation of Humberston and
Wallace (1972) [19], and Gien (1997) [20], by using the Harris-Nesbet method in Table 2. The 21-state
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close-coupling approximation phase shifts obtained by Mitroy and Ratnavelu (1995) [21–23] are lower
than the present results. Mitroy (1995) [21–23] has reported a large basis close-coupling calculation
of scattering at low energies. The phase shifts of these calculations are lower than the present results
given in Table 2. In the most recent publication of Kadyrov and Bray (2016) [24] on the recent progress
has given the elastic cross-sections at low positron energies in Figure 6. However, extracting phase
shifts from this figure will not be accurate enough for comparison with the present calculations. Phase
shifts obtained by Higgins (1990) [25], using intermediate R-matrix theory, are also given in Table 2.
The agreement of the results of these calculations is good. However, they are lower than the present
results. The phase shifts of Schwartz (1961) [14] are wrong at two incident positron momenta.

Table 1. Convergence of phase shifts η (radians) for e+-H scattering with respect to the number of
correlation terms N for k = 0.4.

N γ δ η

10 0.56 0.90 0.09649
20 0.56 0.90 0.11619
35 0.60 0.91 0.11976
56 0.72 0.83 0.12083

Table 2. Phase shifts η( radians) e+-H scattering for various k and comparison with
previous calculations.

K N Present A B C D E F G

0.1 35 0.14918 0.1483 0.151 0.149 0.148 0.1482 0.142 0.1404
0.2 35 0.18803 0.1877 0.188 0.189 0.187 0.1875 0.182 0.1767
0.3 35 0.16831 0.1677 0.168 0.169 0.167 0.1671 0.159 0.1558
0.4 56 0.12083 0.1201 0.120 0.123 0.119 0.1196 0.111 0.1105
0.5 20 0.06278 0.0624 0.062 0.065 0.062 0.0621 0.055 0.0536
0.6 20 0.00903 0.0039 0.007 0.008 0.003 0.0033 −0.002 −0.004
0.7 20 −0.04253 −0.0512 −0.054 −0.049 . . . −0.0520 −0.0588

A: Bhatia et al. (1971) [9], B: Schwartz (1961) [14], C: Houston and Drachman (1971) [18], D: Humberston and
Wallace (1972) [19], E: Gien (1997) [20]. F: Higgins et al. (1990) [25]; G: Mitroy and Ratnavelu (1995) [21–23].
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The scattering length is given by:

lim kcot(η) = −1
a

k→0

(40)

In Table 3 we show the convergence of the scattering length with the number of terms in the
correlation function given in Equation (1). Temkin (1961) [26] showed that there is a correction due to
the long-range correlations:

a = a(R)− α(
1
R
− a

R2 +
a2

R3 ). (41)

Table 3. Convergence of the scattering length for e+-H scattering with respect to the number of
correlation terms N.

N γ δ A

10 0.56 0.90 −1.86341
20 0.56 0.82 −2.05266
35 0.56 0.84 −2.10074
56 0.52 0.84 −2.10158

The scattering length given in Table 3 for N = 56 has been calculated at R = 1856.470. Only the term
α/R contributes significantly in Equation (41). The final result for the scattering length = −2.10158 −
0.002424 = −2.104004 a0. This agrees with the scattering length −2.1036 ± 0.0004 obtained by Houston
and Drachman (1971) [18], and with −2.103 ± 0.001 by Humberston and Wallace (1972) [19], using the
Kohn variational principle. Another formula obtained by Drachman (2016) [27] using the Calogero
method (1967) [28] for a correction due to the long-range correlation is:

a =
(a(R)− α/R)
(1− α/R2)

. (42)

This give a = −2.104007a0, which is essentially the result obtained using Equation (41). This result
is consistent with the convergence of Schwartz’s calculation (1961) [14] that −2.10 > a > −2.11.

Using the presently calculated scattering length, the cross-section at zero energy is given by
σ = 4π a2 = 15.57× 10−16cm2. If the experimental results of Zhou et al. (1997) [29] are extrapolated
towards zero energy, then their result is found to be too low. The present result for the cross-section
should be correct because the scattering length is well established by now, having being previously
calculated by Schwartz (1961) [14], Houston and Drachman (1971) [18], and Humberston and Wallace
(1972) [19]. Since only S-wave phase shifts have been calculated here, a comparison with the
experimental results at higher energies cannot be made.

Over the years, reviews on this subject have been published. Among them are by Drachman
(1971) [30], Bhatia (2014) [31], and Kadyrov and Bray (2016) [24].

2. Zeff

In addition to the scattering, there is a possibility of positronium formation and positron
annihilation. The cross-section for annihilation of an incoming positron and an atomic electron
with the emission of two gamma rays is given by Ferrell (1956) [32]:

σa(πa2
0) = Ze f f α3/k (43)
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where α = e2/}c is the fine-structure constant and a0 is the Bohr radius. As the quantity Ze f f , which
measures the overlap of the target electron with the positron, as indicated by DiRienzi and Drachman
(2003) [33], approaches Z, the number of electrons for a free positron. For hydrogen:

Ze f f =
x

d
→
r 1d
→
r 2|ΨL(

→
r 1,
→
r 2)|2δ(

→
r 1 −

→
r 2), (44)

The normalization of Ψ(
→
r 1,
→
r 2) in Equation (1) requires that for r1 → ∞:

uL(r1) = [4π(2L + 1)]1/2k−1sin(kr1 −
1
2

Lπ + η) (45)

In Table 4 we present values for Zeff for L = 0 as a function of k below the positronium formation
threshold. The present results are compared with the previous results by Bhatia et al. (1974b) [34] and
with those obtained by Humberston and Wallace (1972) [19]. The agreement is fairly good. Green and
Gribakin (2013) [35], using the diagrammatic many-body theory have calculated phase shifts and Zeff,
given in their Figure 7. Their results for Zeff, given in Table 4, could not be read accurately from the
figure. Nevertheless, their results appear to be close to those obtained in other calculations. It is found
empirically that the value of Zeff at very low energies is proportional to the dipole polarizability α of
the hydrogen atom (Osmon, 1965) [36] and can be represented by α1.25. The annihilation of positrons
with electrons results in two photons at a rate λ, Fraser (1968) [37]:

λ = 4.51× 109ρZe f f /MA sec−1 (46)

Table 4. Zeff (0) as a function of the incident positron momentum k, obtained in this calculation and
compared with previous calculations.

k A B C D

0.1 8.092 7.363 7.5 7.5
0.2 5.357 5.538 5.7 5.5
0.3 4.264 4.184 4.3 4.1
0.4 3.370 3.327 3.3 3.5
0.5 2.424 2.730 2.7 3.0
0.6 2.249 2.279 2.3 2.8
0.7 2.069 1.950 . . . 2.2

A: present calculatons, B: Bhatia (1974b) [34], C: Humberston and Wallace (1972) [19], D: Green and Gribakin
(2013) [35]. In the above equation ρ is the density in grams per cubic centimeter and MA is the atomic mass.

3. Positronium Formation

Positronium, the bound state of an electron and a positron, was predicted by Mohorovicic
(1934) [38] in connection with the spectra of nebulae. Positronium formation takes place when the
incident positron captures an electron of the hydrogen atom before the positron and electron annihilate
each other:

e+ + H(1s)→ Ps + P (47)

where Ps is the positronium atom and P is the proton. Experimental determination of the cross-section
of positronium formation in various gases have been carried out by Charlton (1985) [39] and Stein et al.
(1992) [40]. Experiments on hydrogen atoms have been carried out by Zhou et al. (1997) [29]. R-matrix
calculations have been carried out by Chan and Fraser (1973) [41], while coupled-channel calculations
have been carried out by Humberston (1982) [42]. Using the distorted-wave approximation, Khan and
Ghosh (1983) [43] have carried their calculations using the method of polarized orbitals of Temkin
(1959) [1]. The present calculations are similar to those of Khan and Ghosh. However, the scattering
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functions have been calculated variationally by Bhatia (2007, 2008) [7,8]. The differential cross-section
for this rearrangement collision from the ground state is given by:

∂σ

∂Ω
=

vPS
vi
|T(ki, kPS)|2 =

µi
µ f

kps

ki
|T(ki, kPs)|2 (48)

In the above equation, vi and vPS are the velocities of the incident positron and of positronium in
the final state, ki and kPs are the momenta of the incident positron and positronium atom in the final
state, and µi and µ f are the initial and final reduced masses equal to 1/2 and 1, respectively, in Rydberg
units. T is the transition matrix which is given by Khan and Ghosh (1983) [43] and Bransden (1965) [44].

T(ki, kPs) = −
µ f

4π
< Φ∗PS(

→
r 1,
→
r 2)|Vf |ΨL(

→
r 1,
→
r 2) >, (49)

where
Φ∗Ps(

→
r 1,
→
r 2) = η(r12)exp[− i

2

→
k Ps · (

→
r 1 +

→
r 2)] (50)

The ground state wave function of the positronium atom is given by:

η (r12) =
e−0.5r12
√

8π
(51)

The interaction potential in the final state is given by:

Vf = (
Z e2

r1
− Z e2

r2
) = 2(

Z
r1
− Z

r2
) (52)

In Rydberg units, being used throughout, e2 is equal to 2 and } is equal to 1.
We can write:

T′(ki, kPS) = gR(ki, kPS) + gRP(ki, kPS) (53)

The first term above involves the target function only and the second terms involve the
polarization of the target, as indicated in Equation (2). The integration of these terms can be carried out
by using Fourier transforms, given in Khan and Ghosh (1983) [43] and Cheshire (1964) [45], of various
terms in the integrand, as indicated in the appendix. We consider L = 0 and the wave function for
the initial state is given in Equation (1) without the correlation terms. The differential cross-section is
given by:

dσ

dΩ
(a2

0) = µiµ f
kPS
ki

1
8π
|T′(ki, kPS)|2, (54)

where T’ is given in the Appendix A. The total cross section is given by:

σ(a2
0) =

∫
∂σ

∂Ω
dΩ =

1
4

kPs
ki
|T′(ki, kPs)|2 (55)

In πa2
0 units, the cross-section is given by:

σ(πa2
0) =

∫
∂σ

∂Ω
dΩ =

1
4π

kPs
ki
|T′(ki, kPs)|2 (56)

We have used µiµ f = 1/2 in Rydberg units. Cross-sections obtained using only gR(ki, kPS), and
using gR(ki, kPS) +gRP(ki, kPS) for positronium formation at various energies are given in Table 5 and
compared with those obtained by Khan and Ghosh (1983) [43]. The first column gives cross-sections
without the polarization of the target and their maximum value occurs at k2

i = 0.75 while, with
polarization, the maximum is at k2

i = 0.80. The cross-sections increase considerably when the
polarization of the target is taken into account. It is seen that the present results agree with results of
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Khan and Ghosh (1983) [43] and are also in reasonable agreement with those of Humberston (1982) [42].
The present results are also in reasonable agreement with those of Chan and Fraser (1973) [41] when
the second term in Equation (53) is not included. This is rather surprising since polarization is
very important in the positron-hydrogen scattering. The present results are also compared with
those of Kvitsinsky et al. (1995) [46] who used the Fadeev equations for their calculations. Again,
the presently-calculated cross-sections are only at S-wave, and they cannot be compared with the
experimental results of Zhou et al. (1997) [29]. Similarly, higher partial waves are required to calculate
differential cross-sections.

Table 5. Comparison of the present results for the positronium formation cross-section (π a2
0) with

those obtained in other calculations.

k2
i A B C D E

0.5041 0.0010053 0.0066228 0.009037 0.0041 0.0038
0.5476 0.0025753 0.018783 ... . . . ...
0.5625 0.0026829 0.020249 0.024795 0.0044 0.0041

0.64 0.0025604 0.022566 0.0248 0.0049 0.0047
0.6724 0.002412 0.022350 ... . . . ...
0.7225 0.0021366 0.021456 0.021164 0.0058 ...

0.75 0.0020034 0.020835 0.019707 ... ...
0.81 0.0017211 0.019256 ... ... ...

0.9025 0.0013698 0.016760 ... ... ...
1.00 0.0010916 0.014327 ... ... ...

A: Present results, without polarization; B: present result with polarization; C: Khan and Ghosh (1983) [43],
D: Humberston (1982) [42], E: Kvitsinsky et al. (1995) [46].

4. Conclusions

Using the hybrid theory of scattering of Bhatia (2007) [47], we have calculated phase shifts
which have lower bounds to exact phase shifts. This calculation, which includes the contribution
of the long-range interaction −1/r4 variationally, requires fewer correlation functions compared to
the previous calculation of Bhatia et al. (1971) [9]. The scattering length also agrees with previous
calculations of Schwartz (1961) [14] and Houston and Drachman (1971) [18]. The scattering functions
have been further used to calculate Ze f f and positronium formation cross-sections in the distorted-wave
approximation. The scattering functions obtained using the hybrid theory have been used previously
to calculate phase shifts and photoabsorption cross-sections by Bhatia (2004, 2006, and 2008) [5,6,8],
giving results agreeing with those obtained using different methods. Equation (25) can be used to
calculate bound state energies as well, as indicated by Bhatia and Madan (1973) [48]. It is expected that
the present results should be accurate, as well, up to the fourth decimal place.
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transforms, for bringing to my attention his publication of 1968 on this topic, and for critical reading of the
manuscript. I would like to thank Hasi Ray for pointing out the publication of Cheshire (1964) [45] on Fourier
transforms during her stay at Goddard in 2015. Calculations were carried out in quadruple precision using the
Discover computer of the NASA Center for Computation Science.
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Appendix A

The integrals occurring in the calculation are of the form:

I1(r1) =
∫

d
→
r 2η(r12)e

−i
→
k f .
→
r 2

ϕ0(
→
r 2)

r2
(A1)

and

I2(r1) =
∫

d
→
r 2η(r12)e

−i
→
k f .
→
r 2/2 ϕ0(

→
r 2) (A2)
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where

n(r12) = η(|→r 1 −
→
r 2|) =

√
α3

π
e−α(r12) (A3)

and

ϕ0(r2) =

√
λ3

π
e−λr2 (A4)

The integration of these two integrals can be carried out using the Fourier transforms:

e−az =
a

π2

∫
d
→
p

ei
→
p .
→
z

(p2 + a2)2 (A5)

and
e−az

z
=

1
2π2

∫
d
→
q

ei
⇀
q .
→
z

(q2 + a2)
(A6)

It is stated in Khan and Ghosh (1983) [43] and shown in Cheshire (1964) [45] that:

I1(r1) = −2
√

α5λ3
∫

xe−i(1−x)
→
k .
→
r 1/2Z(x, r1)e−µr1 dx (A7)

and
I2(r1) = 2

√
α5λ3

∫
x(1− x)e−i(1−x)

→
k .
→
r 1/2F(x, r1)e−µr1 dx (A8)

The limits of integration are from x = 0 to x = 1 in Equations (A7) and (A8) are:

µ2 = α2x + λ2(1− x) + x(1− x)k2
f (A9)

Z(x, r1) = −(1/µ3 + r1/µ2) (A10)

F(x, r1) = (3/µ5 + 3r1/µ4 + r2
1/µ3) (A11)

The other required integrations in gRP(ki, kPS) involving powers of r2 and r12 can be obtained by
differentiating e−λr2 and e−αr12 with respect to λ and α, respectively, in the Fourier transforms shown
in Equations (A6) and (A7).

DiRienzi and Drachman (2003) [33] also used Fourier transforms and contour integration for
evaluating integrals occurring in their positronium-helium scattering.
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