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Abstract: In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under
a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts
owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey
atom interferometer with a two-photon Raman transition under the second-order Zeeman potential,
and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to
the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer
was discussed.

Keywords: Ramsey atom interferometer; scalar Aharonov–Bohm phase; frequency standard

1. Introduction

The Ramsey resonance excited by two separated electromagnetic fields—originally described
by Ramsey [1] and now understood as a kind of atom interferometer [2,3]—is used as a powerful
tool for high-resolution laser spectroscopy [4] and high-precision measurement in fundamental
physics [5]. In particular, this method has contributed to realizing the present primary time and
frequency standards [6], where an atom in a superposition of two states exists in a zone during the
interrogation time between two pulses, which is used to improve the spectral resolution to an ultimate
value. However, during the interrogation time, atoms are also subjected to various time-varying scalar
potentials from the surrounding environment.

In 1959, Aharonov and Bohm predicted that the phase of an atomic wave function in quantum
mechanics shifts under a time-dependent homogeneous scalar potential [7]. This effect—now called
the scalar Aharonov–Bohm effect—was originally proposed for electrons in a time-varying electric
field, but is practically verified using neutral particles with a magnetic moment in a time-varying
magnetic field (for example, neutrons [8] and hydrogen atoms [9]). In a Ramsey atom interferometer
under a time-varying scalar potential, the phase of the Ramsey fringe shifts, since atoms with different
magnetic quantum numbers are subjected to different scalar Aharonov–Bohm effects. We demonstrated
the nondispersivity of this effect using a Ramsey atom interferometer with a two-photon Raman
transition [10,11], and succeeded in measuring the phase shift due to the weak second-order Zeeman
effect using the scalar Aharonov–Bohm phase [12]. In these experiments, the strength of the magnetic
field was the same at the first and second interaction times when atoms were excited by the
electromagnetic field, and it was changed by a fixed amount during the interrogation time. However,
in the case of an actual time-varying potential, the resonance frequencies at two interaction times will
be different, and the most probable frequency of the Ramsey fringes will be affected by the phase shift
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due to the scalar Aharonov–Bohm effect during the interrogation time. To the best of our knowledge,
there have been no reports describing such a resonance condition of Ramsey fringes.

As reported in this paper, we investigate the frequency and phase shifts of a Ramsey atom
interferometer under a time-varying potential and derive an empirical formula. Finally, we present
a method of evaluating the uncertainty of the present primary atomic clock due to the scalar
Aharonov–Bohm effect.

2. Principle

Consider a typical Ramsey atom interferometer, as shown in Figure 1. In Ramsey interferometry,
atoms in the ground state undergo a transition to a long-lived excited state by applying two separated
oscillatory fields with the resonance frequency between the two states. Ideally, the atoms in the ground
state are irradiated by two π/2 pulses with duration τ, which are separated by time T. After the second
pulse, the transition probability of atoms to the excited state is generally given by [13]
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where Ωeff is the effective angular Rabi frequency, Ω3 = 2π(νL � ν0) is the detuning angular frequency

between the field frequency νL and resonance frequency ν0, and Ω =
b

Ω2
eff �Ω2

3. ϕ1 and ϕ2 are the
optical phases of the two pulses. When Ωeff << Ω3 and ϕ1 = ϕ2, Equation (1) is approximated to

P � 1
2 Ω2

e f f τ2sinc2 pπpνL � ν0qτq r1� cos t2πpνL � ν0qpτ � Tqus
� f pνL � ν0q r1� cos t2πpνL � ν0qpτ � Tqus

(2)

where f is the envelope curve of the transition probability as a function of the detuning frequency, and
the last term represents Ramsey fringes whose cycle is 1/(τ + T). When the field frequency νL is tuned
to the resonance frequency ν0, the peak of the Ramsey fringes coincides with the center frequency of
the envelope.
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Figure 1. Ramsey atom interferometer under time-varying potential V(t).

We consider the case where the atom interferometer is under a time-varying scalar potential V(t).
Then, Equation (2) is given by
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where Ω, Ωeff and Ω3 are for the first pulse and Ω1, Ω1
eff and Ω1

3 are for the second pulse. This equation
is approximated to

P � g pνL � ν0, Vp0q{h, Vpτ � Tq{hq

�
1� cos

#
2πpνL � ν0qpτ � Tq �

1
}

» τ�T

0
Vptqdt

+�
(3’)

where V(0)/h and V(τ + T)/h are the frequency shifts due to the dynamical potential at t = 0 and
t = τ + T, respectively, and h is Planck’s constant. The function g is

gpνL � ν0, Vp0q{h, Vpτ � Tq{hq �
b

f pνL � ν0 �Vp0q{hq f pνL � ν0 �Vpτ � Tq{hq (4)

Here, we assume that |V(0)/h�V(τ + T)/h| is sufficiently smaller than the width of the envelope,
and that the π/2 pulse with duration τ is sufficiently short. Therefore, the width of envelope g is
a slightly greater than that of f. The potential is assumed to be constant during the pulse width τ.
During time T, the atoms are in a superposition state of the ground and excited states, and are subjected
to a time-varying scalar potential. The integral term in the cosine function is the scalar Aharonov–Bohm
phase, which is accumulated during time T. At the center frequency of the envelope curve—namely,
νL � ν0 � pVp0q �Vpτ � Tqq{p2hq—the phase of the Ramsey fringe is given by

ϕ �
Vp0q �Vpτ � Tq

2} pτ � Tq �
1
}

» τ�T

0
Vptqdt (5)

3. Experimental

In the present experiment, we used a Ramsey atom interferometer with two-photon Raman
pulses, instead of rf pulses [14]. The experimental apparatus and setup were almost the same as those
described in detail in our previous papers [12,15]. The time-domain Ramsey atom interferometer was
composed of two ground hyperfine spin states of a cold sodium atom ensemble. A partial energy
diagram of the sodium atom is shown in Figure 2a. The F = 1 and F = 2 states in the ground hyperfine
structure of 3S1/2 were coupled with circularly-polarized copropagating two-photon stimulated
Raman pulses. The laser beam for the Raman pulse with a wavelength of 589 nm oscillating from
a frequency-stabilized dye laser was detuned by about 500 MHz below the resonance frequency
between the F = 2 state and the upper P3/2, F’ = 2 state to suppress the Rayleigh scattering. It was
phase-modulated by an electro-optical modulator (EOM) driven by a radio-frequency (rf) field with
a frequency of about νHFS = 1.771626 GHz, which corresponds to the ground hyperfine energy splitting
of sodium. The two-photon Raman pulse was composed of a carrier frequency and a 1st-order sideband
frequency generated by the EOM. In the present experiment, the rf frequency of the synthesizer
was stabilized within a few Hertz to a commercial rubidium atomic clock as a reference signal.
The frequency difference between two Raman pulses was swept around the resonance frequency ν0 for
each measurement. The alternating current (AC) Stark frequency shift due to the two-photon Raman
laser beam was cancelled out by adjusting the intensity ratio between the two frequencies [12].

The experimental setup is shown in Figure 2b. The sodium atoms that effused from an oven were
decelerated by a Zeeman slower and trapped in a vacuum chamber (10�9 Pa) by a dual magneto–optical
trap (MOT) [16]. To remove the stray magnetic field at the center area, we used three mutually
orthogonal Helmholtz coils. Additionally, an anti-Helmholtz coil was used to compensate the weak
inhomogeneous magnetic field parallel to the direction of the atomic beams (x-axis). Then they were
cooled to about 120 µK by polarization gradient cooling (PGC). At a few milliseconds after the release
of atoms from the trap, a quantization magnetic field was applied in the direction parallel to the z-axis,
to resolve a degeneracy of an ensemble of cold atoms. The cold atoms were initialized to the F = 1
state by an initializing beam. After that, atoms were irradiated by two rectangular Raman pulses
with a pulse area of π/2 separated by the interference time T to construct the Ramsey interferometer.
Raman pulses with circular σ+ polarization were propagated parallel to the direction of the quantization
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magnetic field. At the quantization magnetic field of 10 µT, the three spectra of the σ+ – σ+ transitions
were resolved with adjacent separation frequencies of 140 kHz. In this paper, we investigate the
Ramsey fringes of the magnetic field insensitive 0 Ñ 0 clock transition. The transition probability to
the F = 2 was measured using the probe beam described in our previous paper [15].
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4. Results and Discussion

4.1. Ramsey Atom Interferometer

To precisely measure the phase shift, we first checked how well Equation (2) can describe
Ramsey fringes. Typical Ramsey fringes obtained at τ = 100 µs and T = 900 µs are shown in Figure 3a,
where 16 fringes are observed in a frequency range of 16 kHz. These fringes were well-fitted by the
function f pνL � ν0q r1� cos t2πpνL � ν0qTeffus, where Teff is an effective interrogation time, as shown in
a solid curve. The Teff was obtained to be 1011� 2 µs, which was nearly equal to τ + T. This relationship
was examined for several different τ and T, as shown in Figure 3b. It was found that, if τ < (τ + T)/10,
the Ramsey cycle is equal to 1/(τ + T) within an uncertainty of 2%. For a longer T, Teff is closer to τ + T.
Therefore, Equation (2) holds. Furthermore, we also changed the duration of the two pulses τ1 and τ2,
and we found the relationship Teff = τ1/2 + T + τ2/2. We conclude that Teff (which determines the
Ramsey cycle) is determined by the time from the center of the first pulse to the center of the second
pulse if τ1 and τ2 are shorter than T/10. Hereafter, in the present paper, the origin of the time was set
at the center of the first pulse.

Figure 3. (a) Ramsey fringes. τ = 100 µs, T = 900 µs; (b) Teff versus τ + T for different τ.
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4.2. Scalar Aharonov–Bohm Phase

The resonance frequency of the clock transition between the mF = 0 and mF1 = 0 hyperfine states is
perturbed by the second-order Zeeman effect and shifts by

V
h
� ∆ν �

pgJ � gIq
2µ2

B
2h2∆h f s

B2 � 0.22183� pB{µTq2 (6)

where B is the strength of the quantization magnetic field, gJ and gI are the fine structure and nuclear
Landé g factors, respectively, µB is the Bohr magneton, and ∆hfs is the hyperfine splitting frequency [12].
It was confirmed that the frequency of the resonance curve shifts in accordance with Equation (6)
within an uncertainty of 20 Hz by using a single Raman pulse with a duration of 5 ms. We varied the
strength of the quantization magnetic field from 10 µT to 100 µT, where the latter corresponds to the
scalar potential of 1.47 � 10�30 J. The shift of the resonance frequency was 2.20 kHz. On the other
hand, the phase of the Ramsey fringes at the resonance frequency of ν0 � pV1 �V2q{p2hq is shifted by
the time-varying potential during time T owing to the scalar Aharonov–Bohm effect, which is given as
Equation (3’), where V1 is the potential at the center of the first pulse, V2 is the potential at the center
of the second pulse, and τ is pulse width, which is sufficiently short. Then, the phase shift is given by
Equation (5).

Figure 4a shows enlargements of the central three fringes appearing in Figure 3a for two different
potentials V(t) and V1(t). Both curves were fitted by sine functions, and the phase difference between the
two sine functions was measured. First, a time-independent constant potential was applied to the atom
interferometer during the whole time, and the phase difference was measured for different magnitudes
of the potential. The phase observed at each resonance frequency is shown in (i) of Figure 4b, and it
should be noted that the phase shift is always zero, although the resonance frequency shifts. Next,
the potential V1 and V2 was fixed at B = 10 µT, but the magnitudes of the potential V(t) was changed
to V during the interrogation time between two pulses (T = 900 µs). Then, the phase at the resonance
frequency at 10 µT decreased in proportion to the magnitude of the potential V, as shown by (ii) of
Figure 4b. The phase shift is �(V � V1)T/h̄. These results show that the integral term in Equation (5)
should be

�
1
}

» τ�T

0
Vptqdt � �

V1

} τ �
V
} T (7)

Figure 4. (a) Three Ramsey fringes in the center of the envelope for two different potentials; (b) Phase
shift for two potentials (i) and (ii).

Finally, we consider a simple time-varying potential. We assume asymmetrical potentials V1 at the
center of the first pulse and V2 at the center of the second pulse. For case (i) in Figure 5a, the potential
abruptly varies from V1 to V2 at t = τ/2 (T1 = T). For (ii), it varies from V1 to V2 at t = τ/2 + T/2
(T1 = T/2). For (iii), it varies from V1 to V2 at t = τ/2 + T (T1 = 0). At the resonance frequency of
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ν0 � pV1 �V2q{p2hq, the phase shifts were obtained to be –(V2 � V1)T/(2h̄), 0, and (V2 � V1)T/(2h̄) for
(i) to (iii), respectively, as shown in Figure 5b. Thus, the integral term in Equation (5) should be

�
1
}

» τ�T

0
Vptqdt � �

V1

2}τ �
V1

} pT � T1q �
V2

} T1 �
V2

2}τ

Then, the phase of the Ramsey fringe at the resonance frequency is

ϕ �
V1 �V2

2} pτ � Tq �
1
}

�
V1

2
τ �V1pT � T1q �V2T1 �

V2

2
τ



�

�
V2 �V1

2}



pT � 2T1q (8)

Finally, we conclude the following experimental formula for the time-varying potential during
the interrogation zone.

P � g
�

νL � ν0 �
V1 �V2

2h


�
1� cos

#
2πpνL � ν0qpτ � Tq �

1
}

�
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2
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» τ{2�T

τ{2
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(9)

Figure 5. (a) Three time-varying potentials; (b) Phase shift on resonance for three potentials.

4.3. Ramsey-Type Frequency Standard

We apply the present formula to evaluate the Ramsey atomic frequency standard, where atoms
are irradiated by two radio-frequency pulses separated by time T in a homogeneous weak magnetic
field. During time T, the atoms are affected by the magnetic field and also by the blackbody radiation
from the surrounding environment or stray rf fields. These cause a phase shift and fluctuation due to
the scalar Aharonov–Bohm phase, in addition to a frequency shift at the interaction. In the Ramsey
frequency standard, the frequency of the applied rf field is stabilized to the frequency at which
the transition probability becomes maximum. The frequency is searched for by use of a derivative
technique of the transition probability. Under a time-varying potential V(t), the phase at the resonance
frequency of the interaction shifts from zero to

ϕ �
V1 �V2

2} T �
1
}

» τ{2�T

τ{2
Vptqdt (10)

Here, we assumed |ϕ| ¤ 2π. As a result, the frequency with the maximum transition probability is

νL � ν0 � pV1 �V2q{p2hq � ϕ{ t2πpτ � 1qu � ν0 �
pV1 �V2qτ

2hpτ � Tq
�

1
hpτ � Tq

» τ{2�T

τ{2
Vptqdt (11)
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This means that the frequency of the Ramsey frequency standard shifts from the resonance
frequency under the zero potential by the integral of the potential with respect to t during the
interrogation time divided by h. Therefore, during the interrogation time, all potentials must be
measured as a function of time to compensate them. In particular, the strength of the quantization
magnetic field must be measured during the interrogation time, because the compensation of the
second-order Zeeman effect is relatively larger than those of other potentials.

In a Ramsey atom interferometer—except during the interaction between the two rf pulses—there
is no rf field during the interrogation zone. If the AC Stark frequency shift under rf pulses is νac,
the phase shift at the frequency of ν0 + νac is 2πνacT, according to the first term on the right side of
Equation (10). Therefore, the stabilized frequency reverts to the resonance frequency when there is
no rf field. In a Ramsey atom interferometer using two-photon Raman pulses, this shift is commonly
observed without cancellation of the AC Stark shift [12]. However, in a Cs atomic fountain clock [6],
the shift will be negligibly small because the AC Stark shift is too small to detect [17].

5. Conclusions

Using a Ramsey atom interferometer with the two-photon Raman pulses having a duration of τ,
which are separated by time T, under a time-varying magnetic field B, the scalar Aharonov–Bohm effect
due to the second-order Zeeman potential V(t) was examined experimentally. The effective separation
time Teff that determines the Ramsey fringe cycle is τ + T—namely, the time from the center of the
first pulse to that of the second pulse, provided that τ is smaller than T/10. The resonance frequency,
which corresponds to the center frequency of the envelope curve of the transition probability, is given
by the mean of V1/h and V2/h, where V1 and V2 are the potentials at the centers of the first and the
second pulses, respectively. It was deduced that the phase of the Ramsey fringes at the resonance
frequency shifts by

ϕ �
V1 �V2

2} T �
1
}

» τ{2�T

τ{2
Vptqdt

The Ramsey resonance is a superior method of realizing not only the present Cs primary frequency
standard but also a future frequency standard with ultimate accuracy, such as a single-ion trap or
optical lattice clock. Then, using the formulas derived in this paper, we will be able to accurately
evaluate the frequency shift or phase shift due to the scalar Aharonov–Bohm effect for time-varying
potentials during a longer interrogation time.
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