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Abstract: In this paper we give a new description, in terms of optomechanics, of previous work
on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a
laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet
in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of
the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth
at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the
optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical
backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on
the sign of the pump-cavity detuning, atoms are transported either with or against the bias
force accompanied by an up- or down-conversion of the frequency of the pump laser light.
We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous
measurements of forces by reading out the Bloch frequency. In this context, we establish the
significant result that the optical spring effect is absent and the Bloch frequency is not modified
by the backaction.

Keywords: cavity optomechanics; cold atoms; Bloch oscillations

1. Introduction

In an optomechanical system, light couples to mechanical degrees of freedom via radiation
pressure. The classic setup consists of an optical cavity made of two mirrors, one of which has a
very low mass and is suspended from a spring or pendulum [1,2]; see Figure 1. When pumped
by an external laser, which is quasi-resonant with one of its modes, a large amplitude optical
field builds up in the cavity, and the mobile mirror can be displaced as a result. This radiation
pressure-induced lengthening of a cavity was observed by Dorsel et al. in 1983 [3] and can
become important in high precision optical interferometers, like those built to detect gravitational
waves [4–7]. Furthermore, because a displacement of the mirror shifts the mode frequency, and
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therefore its detuning from the pump laser, and therefore the amplitude of the cavity field, there
is a natural feedback loop acting on the radiation pressure. This backaction can cool the mirror if
there is a phase delay between the oscillations of the mirror and the light [4], as occurs in good
cavities where the relaxation time due to light leaking out of the cavity becomes long enough to be
comparable to the period of the mirror motion. The tantalizing possibility of cooling a macroscopic
object, such as a mirror, to its quantum mechanical ground state has spurred remarkable experimental
progress on a variety of optomechanical systems over the last ten years [8–24]. These include
mirrors attached to cantilevers [8,12], mechanical oscillators in microwave and optical cavities [24],
“membrane-in-the-middle” cavities [14,15,21], ultra-high-Q microtoroids (i.e. toroids made of silica
fused to cylindrical pillars made of silicon) [11], microspheres [18] and optomechanical crystals [16].
In the latter three experiments, the mechanical oscillator modes were elastic shape deformations of
the device itself.
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F 

(a) (b)

Figure 1. (a) An optical lattice is created by pumping a Fabry–Perot cavity. The bias force F
tilts the lattice potential and causes a trapped Bose–Einstein condensate (green) to undergo Bloch
oscillations. Atomic backaction leads to a time-modulation of the lattice amplitude, which in turn
induces coherent directed transport of the condensate, provided the total detuning from resonance
is not zero. The transport corresponds to atoms climbing or descending the ladder of Wannier–Stark
states, where each state is separated by the energy h̄ωB. (b) The archetype of cavity optomechanics is a
cavity with one end mirror suspended on a spring. The motional states of the mirror correspond to the
excitations of a harmonic oscillator. Cavity amplification or cooling of the mirror moves it up or down
the ladder of oscillator states. Bloch oscillation dynamics in a cavity can be mapped onto standard
cavity optomechanics, but with the harmonic oscillator ladder replaced by the Wannier–Stark ladder.

Another system in which optomechanics plays a central role consists of a gas of cold atoms
trapped inside an optical cavity [25–28]. In contrast to the experiments listed above, which all
involved material oscillators (albeit, some of them weighing only nanograms [8]) starting off well
above their motional ground states, in the atomic gas experiments, the atoms are pre-cooled by
a combination of laser cooling and forced evaporation, so that they start off at essentially zero
temperature. This allows quantum effects to take centre stage. In the experiment by Murch et al.,
the role of the mechanical oscillator was played by the centre-of-mass oscillations of atom clouds
trapped in the wells of an intracavity optical lattice (standing wave of laser light in the cavity) [26].
The experiment by Brennecke et al. was based on a Bose–Einstein condensate (BEC), which formed
an effective two-state system: a lower state associated with the unperturbed BEC and an excited
state given by a collective density wave excitation (phonon) created by the interaction of the BEC
with the intracavity optical lattice [27]. When comparing the Hamiltonian of this system to that of
the standard “cavity-mirror-on-a-spring” optomechanical system, one finds that it is the phonon that
plays the role of the mechanical oscillator. Another interesting development in optomechanics is
given by hybrid atom-membrane optomechanics [29,30], where trapped atom clouds are coupled to
a membrane using an optical lattice.
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In this paper, we likewise consider a gaseous BEC trapped inside an optical cavity, which is
pumped by a laser through one of the end mirrors. However, what distinguishes our system from the
preceding ones is the inclusion of an extra force F that acts on the atoms; this could be due to gravity
or some other force, which is assumed to be constant over the length of the atom cloud. Rather
than uniformly accelerating under the influence of F, in the presence of an optical lattice, the atoms
undergo Bloch oscillations [31–33]. As shown by us in previous work [34], this setup allows for a
non-destructive measurement of F if the backaction of the Bloch oscillating atoms on the cavity field is
strong enough to imprint a periodic signal, which can be detected in the light leaking out of the cavity
(a related scheme has been independently proposed by Peden et al. [35]). A number of experiments
have already demonstrated how the light transmitted by a cavity can be used to track the motion
of atoms trapped inside [36–38], and in particular, a theoretical analysis of the information stored in
the frequency spectrum has been given in [39], showing that atomic motion introduces sidebands on
either side of the pump frequency. In our case, Bloch oscillations at angular frequency ωB generate
sidebands separated from the pump frequency by±ωB (and harmonics thereof in the strong coupling
regime). Because the Bloch frequency is proportional to the applied force ωB = Fd/h̄, where d = λ/2
is the lattice period, a detection of the spectrum of the transmitted light gives F directly.

Experiments using Bloch oscillating atoms to measure gravity are already well developed in
optical lattices in free space (no cavity), where there is negligible backaction on the light by the
atoms [40–44]. In these experiments, the momentum of the atoms is deduced from a destructive
time-of-flight measurement requiring the lattice to be switched off after a variable hold time and
the atom cloud imaged following ballistic expansion, which separates atoms with different momenta.
However, to obtain ωB using this method requires that the experiment be repeated for multiple hold
times in order to map out the oscillations of the atomic momentum. The local acceleration due
to gravity has been measured using this technique to a precision of around 10−7 in a experiment
lasting about one hour [43]. The advantage of looking at the light leaking out of a cavity rather
than measuring the momentum of the atoms directly is that a single continuous measurement can be
performed. In contrast to a free-space optical lattice, inside a cavity, the light is strongly modified by
the atoms, provided the conditions for large cooperativity C are met, namely C = Ω2

0/(2κγ) � 1,
where 2γ is the atomic spontaneous emission rate in free space, 2κ is the cavity energy damping
rate and Ω0 = da

√
ωc

h̄ε0Vc
is the single photon Rabi frequency. In this latter expression, ωc and

Vc are the cavity mode frequency and volume, respectively, and da is the atomic dipole moment.
We have previously predicted that this cavity-based technique should permit a measurement of the
local acceleration due to gravity with a precision of around 10−6 in an experiment lasting only one
second [34]. The disadvantage of working in a cavity is that quantum measurement backaction, in
the form of random fluctuations in the cavity field due to photons spontaneously leaking out of
the cavity, heats up the cold atoms and limits the coherence time of the measurement [45–52]. The
coherence time is particularly hard to calculate in the Bloch oscillating case [53] due to the time
dependence introduced by the Bloch oscillations, especially in the presence of many particles, but
it can be roughly estimated to be τ = τsp/(1+C) [34] at cavity resonance, where τ−1

sp = 2γ|α|2Ω2
0/∆2

a
is the spontaneous emission rate at an antinode. The factors |α|2 and ∆a are the mean number of
cavity photons and the detuning of the laser from atomic resonance, respectively, and will be properly
defined in the next section. The numerical value of τ for the parameters considered in this paper will
be given in Section 6. Of course, Bose–Einstein condensates can be continuously measured and used
for sensing without a cavity, e.g., [54–58], but the cavity case is particularly interesting, because it
allows for a strong atom-light interaction even in the quantum regime.

The optomechanical cooling of a cavity mirror by dynamical backaction becomes most efficient
in the resolved sideband regime ωm > κ, where ωm is the angular frequency of the mechanical
oscillator [13]. In this regime, the motion of the oscillator imprints sidebands on the cavity field
at ωc ± ωm, and if the cavity is pumped on the red sideband, the incident photons are resonantly
up-converted to the cavity frequency at the expense of oscillator phonons. When the photons
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subsequently leak out of the cavity, they take this extra energy with them, thereby giving a cooling
effect. If, on the other hand, the cavity is pumped on the blue sideband, then dynamical backaction
leads instead to a parametric instability, where the amplitude of the mirror motion increases [4].
Optical sideband cooling has also been successfully used to cool the collective motion of atoms in
cavities [59,60]. An intriguing question, therefore, is what happens to atomic Bloch oscillations in a
cavity in the resolved sideband regime ωB > κ? In a recent paper, we addressed this problem and
found that the backaction-induced modulation of the cavity field in a ring cavity at ωB causes Bloch
oscillating atoms to be transported up or down the optical lattice, depending on the detuning [61].
When the cavity is pumped on the red sideband, energy is extracted from the atoms, and they are
coherently transported downhill (with the force), whereas when the cavity is pumped on the blue
sideband, energy is deposited in the atomic motion, and they are coherently transported uphill.
In our previous work, we explained this effect by analogy to the transport effects that can be
generated in atom clouds under externally-imposed amplitude/phase modulation of a free-space
optical lattice [42,44,62,63], highlighting that in the Bloch-oscillating-atoms-in-a-cavity case, this was
a self-induced effect. In the present paper, we develop an alternative explanation in terms of
cavity optomechanics.

While the presence of two degenerate travelling wave modes in a ring cavity leads to rich
possibilities for the Bloch oscillation dynamics, as we examined earlier in [61] (see [64] also), many
of the key aspects, such as transport, are possible even in a standing wave cavity. In fact, as we
noted in the supplement of [61], many aspects of the Bloch oscillation dynamics in a ring cavity
with equal driving power of the clockwise and anti-clockwise running wave modes can be captured
by treating just one of the standing wave modes (the symmetric cosine) as dynamic and ignoring
the other (antisymmetric sine mode) completely. Moreover, since we find that the analogy to an
optomechanical system, which is a central goal of this work, is easier and clearer to present with a
single standing wave cavity mode, we choose a Fabry–Perot cavity as the setting in this paper.

The plan for the paper is as follows. In Section 2, we introduce the Hamiltonian and the
mean field equations of motion describing the dynamics of a BEC confined inside a Fabry–Perot
cavity. Following this, we present results from the numerical simulation of the mean-field equations
of motion illustrating the typical dynamics in the regime ωB ∼ κ. We find that the dynamics
is particularly sensitive to the initial density distribution of the condensate with centre-of-mass
oscillations and transport dynamics for an initial wave function spread out over many lattice
sites and breathing dynamics when the initial state is localised. Moreover, we observe that the
appearance of transport is correlated with an imbalanced strength in the sidebands at ±ωB of the
cavity field’s power spectral density. We also provide numerical results exemplifying the possibilities
to control the transport velocity by changing the pump-cavity resonance detuning. Following the
insights gained from the numerical analysis of the dynamics, in Section 3, we develop a mapping
between the Bloch-oscillating-BEC-in-a-cavity system to the standard “cavity-mirror-on-a-spring”
optomechanical system; in Section 4, we compare and contrast the two systems, focusing on
the difference between the Wannier–Stark ladder, which provides the single-particle spectrum for
the “Bloch oscillator”, and the harmonic oscillator spectrum, which occurs in the standard case.
In Section 5, we use the optomechanical mapping to explain the coherent transport observed from the
numerics in analogy with sideband cooling and amplification in cavity optomechanics [2]. Apart from
providing a novel way to view the transport in the backaction modulated intracavity optical lattice,
the mapping also provides quantitative analytical expressions that compare well to the numerical
results presented in Section 2. After providing some additional comments and discussion regarding
the robustness of the Bloch frequency as the modulation frequency in the problem and its suitability
for metrology in Section 6, we conclude the paper in Section 7.
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2. Bloch Oscillation and Transport in a Cavity

Our system of interest is a Bose–Einstein condensate trapped inside a standing wave optical
cavity, as shown schematically in Figure 1. We neglect dynamics along the transverse degrees of
freedom (which is justified assuming strong external confinement), effectively reducing the dynamics
to a single spatial dimension z. The cavity mode of resonance frequency ωc is pumped through a
lossless input-output coupling mirror by a laser with frequency ωL = ckr, where c is the speed of
light in vacuum and h̄kr is the recoil momentum. For the purposes of this paper, we consider the
wavenumber of the cavity mode k = ω/c and the laser kr to be identical; this approximation will be
examined in Section 6. The light is detuned far enough from the atomic resonance that the excited
state of the atoms can be adiabatically eliminated. For simplicity, we also ignore atomic collisions,
which may be negligible in an experiment, either because the scattering cross-section is naturally
small [65] or has been made small through the use of a tunable Feshbach resonance [62]. In a frame
rotating at ωL and in the dipole and rotating wave approximations, the Hamiltonian with the excited
state adiabatically eliminated is given by:

Ĥ = −h̄
[
∆c â† â + i(η∗ â− η â†)

]
+
∫

dzψ̂†

(
− h̄2

2m
∂2

z + h̄U0 â† â cos2(krz)− Fz

)
ψ̂ (1)

where the annihilation operator â corresponding to the cavity mode and ψ̂(z) acting on the atomic
field obey bosonic commutation relations. Here, ∆c = ωL − ωc is the detuning of the driving laser
from the bare cavity resonance frequency, and η =

√
Jκ represents the driving strength of the light

mode for an incident flux of J photons per unit time. In the far-detuned dispersive regime, the cavity
light field provides a conservative lattice potential for the atoms with a spatial profile given by the
standing wave mode cos2(krz) and depth proportional to U0 = Ω2

0/∆a, which is a function of the
pump’s detuning from atomic resonance ∆a = ωL −ωa. F < 0 is the uniform and constant bias force
that drives the Bloch oscillations. In Equation (1), the term representing the intracavity optical lattice
is also the dispersive interaction term between the atoms and the light field, i.e.,

Ĥdisp = h̄U0n̂ C (2)

where n̂ = â† â is the total number of photons and C[ψ̂] = 〈cos2(krz)〉 is the overlap between the
atomic density and the optical mode that characterizes the degree of spatial ordering of the atoms.
When combined with the free evolution term for the cavity −h̄∆cn̂, the interaction term may be
viewed as a dynamical shift to the effective cavity resonance frequency proportional to C[ψ̂]. In
addition, Equation (2) gives us a glimpse of what to expect from the dynamics: the Bloch oscillation
dynamics of the atomic state causes C[ψ̂] to oscillate, whose coupling to the intracavity photon
number in turn leads to a modulation of the intracavity lattice depth [34,35].

To solve the full nonlinear dynamics in the mean-field limit, we write the Heisenberg–Langevin
equations, ih̄∂t â = [â, Ĥ]− ih̄κ â and ih̄∂tψ̂ = [ψ̂, Ĥ], ignoring all input noise operators, whose means
are zero. We also neglect atom losses over the time scales of interest, so that N = 〈

∫
dzΨ̂†(z)Ψ̂(z)〉

is constant. Letting α = 〈â〉 and ψ = 〈ψ̂〉/
√

N and factoring the expectation values of operator
products, we obtain the equations of motion in the mean-field approximation,

∂t α = −(κ − i∆ f ) α + η (3)

ih̄ ∂t ψ =

(
− h̄2

2m
∂2

z + h̄U0 â† â cos2(krz)− Fz

)
ψ (4)

The quantity ∆ f = ∆c − NU0C is the total effective detuning and includes both the drive-cavity
detuning and the Stark shift due to the atom-light coupling. Again, we see that the lattice modulation
is driven by changes in C during Bloch oscillations via the effective detuning ∆ f .
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We now consider the results of a numerical solution of the coupled Equations (3) and (4).
Throughout, we choose 88Sr atoms accelerating under gravity in a 689 nm intracavity lattice
(i.e., lattice spacing d = π/kr = 344.5 nm). In this case, we have ωB = 2π × 745 Hz, and the recoil
frequency ωr ≡ h̄k2

r /(2m) = 2π × 4.78 kHz. As discussed in detail in [61], transport dynamics is
observed only in the limit ωB ∼ κ, as this allows for a finite phase lag between the atomic dynamics
and the cavity field response that gives rise to the modulation of the intracavity lattice [62,63]. We
therefore stick to this regime throughout this paper and set κ = 2π× 1 kHz, which is close to the value
achieved in the experiment by Wolke et al. [28]. Figures 2 and 3 show the typically-observed atomic
and lattice amplitude dynamics for two extremal possibilities for the initial atomic distribution.
In Figure 2a, coherent backaction-induced transport dynamics is evident from the behaviour of the
centroid of an initial atomic wave packet spread over more than 20 lattice sites. In addition to periodic
dynamics that repeats every Bloch period, the centroid also drifts either uphill (∆c − NU0C > 0) or
downhill (∆c − NU0C < 0). On the other hand, when the initial atomic wave packet is localised
within a single lattice site, there is no translation of the centroid (see Figure 2b), and the atomic wave
packet undergoes periodic breathing dynamics. Transport dynamics may be understood as a direct
consequence of the atomic backaction-induced modulation of the intracavity lattice depicted by the
red and blue curves in Figure 3 [61–63,65,66]. Both the modulation and the phase lag between the
lattice dynamics and atomic Bloch oscillation can be controlled by tuning ∆c, allowing for uphill,
as well as downhill transport. In contrast, in the case of a localised initial atomic wave function,
the lattice amplitude modulation is suppressed (black curve in Figure 3). As a result, some of the
interesting features, such as coherent delocalisation [44], expected for localised initial wave packets
in amplitude modulated lattices are absent in our case, and the atomic dynamics observed is similar
to what is expected in a stationary tilted optical lattice.
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Figure 2. Backaction-induced atomic transport and breathing dynamics in a cavity with
U0 = −2π × 1 Hz, κ = −NU0 = 2π × 1 kHz and Bloch frequency ωB = 2π × 744.5 Hz.
(a) Condensate centroid position as a function of time showing uphill (blue, ∆c − NU0 = 1.3κ)
and downhill (red, ∆c − NU0 = −0.7κ) transport for an initial atomic wave packet delocalised
over 20 lattice sites; (b) breathing dynamics of the condensate density at the Bloch period for
∆c − NU0 = −0.7κ and an initial atomic wave packet localised within one lattice site.
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Figure 3. Backaction-induced modulation of the lattice depth (in units of the recoil energy Er = h̄ωr)
as a function of time during intracavity Bloch oscillations. The blue (red) curve corresponds to
parameters giving uphill (downhill) transport in Figure 2a. The black curve corresponds to the
breathing dynamics plotted in Figure 2b.

In this paper, we develop another way to understand the transport behaviour observed in
Figure 2a. This is motivated in part by the behaviour of the power spectral density of the intracavity
light field α(t) shown in Figure 4a; we see that, as expected from the field modulation, there are
sidebands at ±ωB and its higher harmonics. More interestingly, there is a marked asymmetry in the
strength of the sidebands, reminiscent of cavity sideband cooling [2], with uphill (downhill) transport
corresponding to larger strength at −ωB (+ωB) and its harmonics. While in the following section,
we develop a formal mapping to an optomechanical system to clearly explain this behaviour of
the spectrum, the motivation for such a mapping may be gleaned from Figure 4b. There, we plot
the expectation value of the force applied by the (dynamic) intracavity lattice on the atomic wave
packet 〈Flattice〉 = −

∫
dz |ψ(z, t)|2 sin(2krz)U0|α(t)|2 as a function of the mean atomic displacement,

i.e., the centroid position 〈z〉. For ∆ f < 0 (> 0), during each Bloch period, the system traverses a
anti-clockwise (clockwise) closed loop in the 〈Flattice〉–〈z〉 plane, giving rise to a net negative (positive)
work done on the atoms proportional to the area of the loop. This excess work has to be compensated
for by the light. Hence, as depicted in the inset of Figure 4b, we can associate the positive (negative)
work with the case where the driving laser frequency ωL is blue (red) detuned with respect to the
cavity resonance ωc, and to enter the cavity, a laser photon has to give up (absorb) energy in units
of the Bloch frequency ωB enabled by the interaction with atoms. Naturally, such preferential up or
down conversion leads to an asymmetric strength of the sidebands at harmonics of ωB in the cavity
field spectrum.

Another interesting result that we find empirically by performing numerical simulations of the
coupled dynamics over a wide range of parameters is that the dominant oscillation frequency of
observables is very robustly fixed to the Bloch frequency. We do not observe any systematic shift from
the Bloch frequency due to the dynamical backaction. This is especially significant in the context of
the mapping to an optomechanical system that is pursued in the next section, since in conventional
optomechanical systems, the radiation pressure coupling-induced dynamical backaction causes a
shift in the oscillation frequency of the mechanical element, the so-called optical spring effect [2].
In Section 4, we will show analytically that such an optical spring effect is absent for our situation.
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Figure 4. Power spectral density of the cavity field and force-displacement plots for the atomic
dynamics. The parameters are the same as in Figure 2a. (a) Power spectral density of α(t), obtained
by a fast Fourier transform at resolution ωB/100, showing asymmetric sidebands at multiples of
±ωB with more power in the red upper (blue lower) side band corresponding to downhill (uphill)
transport in Figure 2a. Note that the frequency origin corresponds to the driving laser frequency,
which is different for the red and blue points. (b) Average of the force applied by the dynamical
intracavity optical lattice as a function of the atomic wave packet centroid position. During uphill
(downhill) transport of the atoms, the blue (red) curve is traversed in the clockwise (anti-clockwise)
direction, corresponding to positive (negative) work done on the atoms and accounted for by the
down-conversion (up-conversion) of the blue-detuned (red-detuned) pump laser photons (see the
inset). The insets also show the dominant terms in the effective optomechanical Hamiltonian, which
we derive in Section 3, with the operator b̂M annihilating a quantum of excitation from the Bloch
oscillator. The area enclosed by the loops gives the work done on the atoms by the lattice.

3. Mapping to an Optomechanical Hamiltonian

The eigenstates of a quantum particle in a periodic lattice of finite extent that is tilted by an
additional linear potential are the Wannier–Stark (WS) states [66,67]. We define them as the solutions
ϕn(z) of: [

−∂2
z + s0 cos2 (z)− f z

]
ϕn(z) = (e0 + nωB)ϕn(z) (5)

In order to make all quantities dimensionless, we have multiplied the position coordinate z
by the recoil momentum kr and scaled energies by the recoil energy Er, but retained their original
symbols. Thus, f = −ωB/π, with ωB > 0 being the Bloch frequency scaled by the recoil frequency.
s0 denotes a fixed (time independent) lattice depth, and its relation to the cavity parameters will be
explained below. The state ϕn(z) is localised around the n-th lattice site; states at different lattice
sites are simply related by a discrete translation of the coordinate, i.e., ϕn+m(z) = ϕn(z− mπ), and
we shall only include the states of the first band, ignoring higher bands (which are typically not
excited during Bloch oscillations, which are an adiabatic phenomenon). The eigenspectrum e0 + nωB
is organized into a discrete ladder of states with an equal spacing between the rungs given by the
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Bloch frequency. Without loss of generality, we can set the reference energy e0 = 0. The WS
states will play an important role in the rest of this section, where we construct the mapping to an
optomechanical system.

The coupled equations of motion (3) and (4) for the light and matter can be expressed in the
dimensionless notation as:

α̇(t) = −(κ − i∆ f )α(t) + η (6)

i∂tψ(z, t) =
(
−∂2

z + U0|α(t)|2 cos2(z)− f z
)

ψ(z, t) (7)

where frequencies, such as U0, have been scaled by ωr and time by ω−1
r . As above, the same symbols

are retained for the dimensionless variables and parameters as their dimensionful versions. We write
the cavity field amplitude α(t) in terms of a time-independent and a time-modulated part:

α(t) = α0 + ∆α(t) (8)

and use α0 to fix the WS basis 〈z|ϕn〉 = ϕn(z), with the lattice depth s0 = U0|α0|2 in
Equation (5). This splitting also means that the intracavity photon number can be written as
n(t) = |α(t)|2 = |α0|2 + ∆n(t) with:

∆n(t) = α∗0∆α(t) + α0∆α∗(t) + |∆α|2(t) (9)

Next, we wish to expand the atomic wave function in the WS basis as (in Dirac notation):

|ψ(t)〉 = e−iϑ(t) ∑
n

cn(t) |ϕn〉 (10)

where ϑ(t) is a site-independent dynamical phase factor that will be chosen briefly in order to simplify
the equations, and the wave function is normalized so that 〈ψ(t)|ψ(t)〉 = 1. The effective detuning
∆ f = ∆c − NU0C plays a central role in the equations of motion (6) and (7), and hence, it is useful to
evaluate the expectation value C in terms of the WS basis expansion as:

C ≡ 〈ψ(t)| cos2(z) |ψ(t)〉 = ∑
nm

c∗mcn 〈ϕm| cos2(z) |ϕn〉 ≈ γ0 + γ1

(
∑
n

c∗ncn+1(t) + h.c.

)
(11)

with γ0 = 〈ϕn| cos2(z) |ϕn〉 and γ1 = 〈ϕn| cos2(z) |ϕn+1〉, where we have used the following property
for the translation of the WS states:

〈x|ϕn+m〉 = 〈x− nπ|ϕm〉

Note that in the above approximate expression, we neglect the overlap beyond nearest neighbour
WS states, which is justified when working at mean lattice depths s0 large enough that the WS states
are well localised. The matrix elements γ0 and γ1 are key parameters that appear in the equations of
motion. In particular, the static part of the field obeys:

α0 =
ηc

κ − iδ0
(12)

where δ0 = ∆c−NU0γ0, and upon substituting Equations (8) and (10) into the equations of motion (6)
and (7), we obtain:

d∆α(t)
dt

= (−κ + iδ0)∆α(t)− iU0γ1(α0 + ∆α(t))∑
n

(
dnd∗n+1(t) + d∗ndn+1(t)

)
(13)

iḋn(t) = nωBdn(t) + U0γ1∆n(t) [dn+1(t) + dn−1(t)] (14)
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where we have introduced the scaled WS amplitudes dn(t) =
√

Ncn(t), so that the average atom
occupation number at site n is given by |dn(t)|2. In arriving at this form of the equations of motion,
we used our freedom to choose the global phase ϑ(t) by setting it equal to ϑ(t) =

∫ t
0 dt

′
U0 γ0 ∆n(t

′
).

It is straightforward to show that Equations (13) and (14) can be derived from the following
effective (and fully quantized) Hamiltonian:

Ĥeff = −δ0b̂† b̂ + ∑
n

nωBd̂†
nd̂n + U0γ1∆̂n ∑

n

(
d̂†

nd̂n+1 + d̂†
n+1d̂n

)
(15)

where 〈b̂〉(t) = ∆α(t) and ∆̂n(t) = α∗0 b̂ + α0b̂† + b̂† b̂. The collective atomic operator d̂n = |0〉 〈ΨN,n|,
where |ΨN,n〉 represents the state with N atoms coherently occupying the WS state at site n. This
immediately ensures the following commutators for the atomic operators:[

d̂n, d̂†
md̂m

]
= δnmd̂n[

d̂†
n, d̂†

md̂m

]
= −δnmd̂†

n (16)

These commutators, along with the standard bosonic commutators for b̂, can be used to
check that the mean field Equations (13) and (14) follow from the Heisenberg equations of motion
corresponding to the Hamiltonian Equation (15). In this representation, the average 〈d̂†

nd̂n〉 ≡ |dn|2
gives the occupation number of the n-th WS ladder state. The multi-site operators:

b̂M = ∑
n

d̂†
nd̂n+1 = ∑

n
|ΨN,n〉 〈ΨN,n+1| (17)

n̂M = ∑
n

nd̂†
nd̂n = ∑

n
n |ΨN,n〉 〈ΨN,n| (18)

define a “Bloch oscillator”, analogous to the mechanical oscillator in usual optomechanical systems,
and allows us to rewrite Equation (15) in the form of an optomechanical Hamiltonian:

Ĥoptomech Bloch = −δ0b̂† b̂ + ωBn̂M + U0γ1∆̂n(b̂M + b̂†
M) (19)

≈ −δ0b̂† b̂ + ωBn̂M + U0γ1|α0|(b̂ + b̂†)(b̂M + b̂†
M) (20)

where in the second line, we made the approximation ∆̂n(t) ≈ |α0|(b̂ + b̂†).

4. Comparison to Standard Cavity Optomechanics

The standard optomechanical Hamiltonian is generally taken to be:

Ĥoptomech standard = −∆ b̂† b̂ + ΩM ĉ† ĉ− g0|α0|(b̂ + b̂†)(ĉ + ĉ†) (21)

This is Equation (28) in the review on cavity optomechanics by Aspelmayer et al. [2] adapted to
our notation. The operators b̂ and b̂† are for the cavity field as before, but ĉ and ĉ† are for a harmonic
oscillator of frequency ΩM, e.g., a mirror on a spring. The third term in the Hamiltonian accounts
for the radiation pressure on the mirror, where g0 is the coupling rate per photon. Specifically, the
force on the mirror can be written as F̂ = (h̄g0/ZZPF)b̂† b̂, where ZZPF =

√
h̄/(2meffΩM) is the

amplitude of zero-point fluctuations of the mirror position, meff being the effective motional mass
of the mirror-spring system. The detuning ∆ = ∆c − 2g2

0|α0|2/ΩM is the bare laser-cavity detuning
minus the frequency shift due to the displacement in the mirror’s average position caused by the
static part of the radiation pressure.

As can been seen, the Bloch oscillator Hamiltonian Equation (20) replicates the standard
optomechanical Hamiltonian Equation (21) term by term. The role of the coupling constant g0 is
played by U0γ1, and comparing the oscillator energies (second term in each Hamiltonian), we find
that we can associate the total excitation energy of the mechanical harmonic oscillator with the total
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gravitational (or equivalent) potential energy of the atoms distributed across the ladder of WS states.
However, there are also some basic differences between the two systems (see Figure 1). The first thing
to notice is that the expression for the annihilation operator for a harmonic oscillator in terms of its
eigenstates |n〉 is:

â = ∑
n

√
n |n〉 〈n + 1|

This is different from the equivalent expression for the Bloch oscillator in terms of the WS states,
as given in Equation (17), where there are no

√
n factors in the sum describing b̂M. In fact, the origin of

the
√

n factors for a harmonic oscillator is the assumption of a normalized reference or vacuum state,
which does not exist for Bloch oscillations, at least in an infinite lattice. This highlights the point that
the annihilation operator for the Bloch oscillator is really a shift operator, and there is no preferred
reference state along the tilted lattice. Further differences and similarities to the usual harmonic
oscillator can be identified by writing down the relevant commutators for the Bloch oscillator:[

b̂M, n̂M

]
= b̂M,

[
b̂†

M, n̂M

]
= −b̂†

M (22)[
b̂M, b̂†

M

]
= 0 (23)

and moreover, b̂†
M b̂M 6= n̂M.

The above commutators can be used to write down the equation of motion for the quantity
〈b̂M + b̂†

M〉, which serves as the analogue to the mirror position, as:

d2〈b̂M + b̂†
M〉

dt2 = −ω2
B〈b̂M + b̂†

M〉 (24)

Crucially, this tells us that the dynamics of the “position” operator are unaffected by the
interaction, unlike the radiation pressure coupling in typical optomechanical setups [2]. Even in the
presence of the backaction, the oscillation frequency of the system is unchanged from ωB, i.e., there is
no optical spring effect, and the Bloch frequency is robust as observed in Section 2. In hindsight, this
robustness is a consequence of the assumptions of our model, where the dynamical backaction from
the Bloch oscillating atoms only modulates the amplitude of the intracavity lattice, leaving the light
wavelength unchanged, despite its coupling to the atoms. This means that the Bloch frequency is
completely unaffected by the backaction, because it depends only on the wavelength of the light and
is independent of the lattice depth. We examine the validity of this assumption and its consequences
for metrology further in Section 6.

5. Transport as a Manifestation of Cavity Amplification or Cooling

The ability to cool/amplify the motion of a mechanical oscillator by coupling it to an optical
resonator via radiation pressure is one of the most important developments in optomechanics.
The underlying mechanism is most easily understood in the so-called resolved sideband regime,
where ωM ≥ κ (with ωM denoting the mechanical element’s frequency). As depicted in the inset
of Figure 4b, cooling (amplification) results when the cavity is pumped at a frequency red (blue)
detuned from its resonance requiring an up (down) conversion of the photon’s energy in order to
enter the cavity with the energy difference extracted from (supplied to) the mechanical element’s
motional energy. This energy transfer is also apparent in the power spectrum of the cavity light
field shown in Figure 4a as an asymmetry in the amplitude of the sidebands due to the preferential
scattering occurring during the frequency up or down conversion.

The amplification and cooling of the mechanical oscillator by the dispersive coupling to a light
mode can also be understood using a classical argument. The finite ring-down time of the cavity
κ−1 ∼ ω−1

M implies a time lag between the change in the position of the cavity mirror (see schematic
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Figure 1b) and the intracavity photon number â† â. Since the force on the mirror is proportional to
the photon number, the force falls below or above its stationary value depending on whether the
direction of motion of the mirror brings the cavity closer to or further away from the cavity resonance
(the stationary value of the force is calculated by assuming that the cavity field instantaneously
responds to the changes in its length due to the moving mirror i.e., in the κ � ωM limit). When the
mirror dynamics are plotted in a force versus displacement diagram, one therefore expects loops
whose finite area

∮
~F(x) · ~dx gives positive (negative) work done on the mirror when the cavity is

blue (red) detuned from the driving laser.
In the numerical solutions presented in Figure 2a, we see clear evidence for coherent directed

transport up or down the tilted lattice in the regime with ωB ∼ κ. This motion is non-conservative,
because the atomic potential energy increases/decreases steadily as a function of time. Moreover,
Figure 4b shows that the average force on the atoms as a function of the centroid of the atomic cloud
makes loops of finite area, as expected. Thus, it is interesting to ask if the transport process can be
understood in a manner analogous to sideband cooling/amplification. The centroid position is given
in terms of the WS basis coefficients as [66]:

〈z〉 = Z0 + d ∑
n

n|dn(t)|2 + Z1 ∑
n

(
d∗ndn+1e−iωBt + c.c.

)
(25)

with Z0 = 〈ϕn| z |ϕn〉 and Z1 = 〈ϕn| z |ϕn+1〉. The third term (proportional to Z1) in Equation (25)
describes the repeated oscillatory motion seen in Figure 2a. The transport dynamics arises then from
the second term, which is proportional to 〈n̂M〉/N. To that end, we examine the dynamics of the
variable 〈n̂M〉/N:

1
N

d〈n̂M〉
dt

= iU0γ1∆n(t)
〈b̂M − b̂†

M〉
N

(26)

Noting that, d〈b̂M + b̂†
M〉/dt = −iωB〈b̂M − b̂†

M〉, we can use the exact solution to Equation (24)
given by:

〈b̂M + b̂†
M〉(t) = 2N|σ1| cos(ωBt + θ1) (27)

with the initial mean-field state’s site-to-site coherence 〈b̂M〉(t = 0) = ∑n(d∗ndn+1)(t = 0) = σ1eiθ1

with σ1 real to write:

1
N

d〈n̂M〉
dt

= 2U0γ1σ1 sin(ωBt + θ1)∆n(t) (28)

Thus, the time rate of change of the mean position is directly proportional to the time-dependent
part of the cavity photon number ∆n(t). In order to determine this function, we can first exactly solve
Equation (13), which now reads as:

d∆α(t)
dt

= [−κ + i(δ0 − 2NU0γ1σ1 cos(ωBt + θ1))]∆α(t)− i2NU0γ1σ1 cos(ωBt + θ1)α0

in light of Equation (27). For t � κ−1, the above equation can be solved using the Jacobi–Anger
expansion as,

∆α(t) = −α0e−i u1
ωB

sin(ωBt+θ1) ∑
n

inωB Jn

(
u1
ωB

)
ein(ωt+θ1)

κ − iδn
(29)
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where u1 = 2NU0γ1σ1, δn = δ0 − nωB, and Jn denotes a Bessel function of order n. Technically, the

Jacobi–Anger expansion eiy sin(β) =
∞

∑
n=−∞

Jn(y)einβ requires the number of lattice sites to be infinite, but

we expect that the situation will not change qualitatively in a large, but finite box.
Our aim is to use the above solution Equation (29) to evaluate ∆n(t) = α∗0∆α(t) + α0∆α∗(t) +

|∆α(t)|2. Before that, a few simplifying approximations are in order. For the parameter regimes
of interest in this paper, u1/ωB < 1, and in this limit, the Bessel functions Jn quickly decrease in
magnitude as n increases. Thus, we can restrict the sum in Equation (29) to just n = ±1. With this
approximation, we find:

|∆α(t)|2 ≈ |∆α(t)|2 = |α0|2 J1

(
u1

ωB

)2
ω2

B

[
1

κ2 + δ2
1
+

1
κ2 + δ2

−1

]
(30)

so that at lowest order, the contribution to photon number is time independent. On the other hand,
there is also an oscillatory component coming from:

α∗0∆α(t) + α0∆α∗(t) = iωB|α0|2 J0

(
u1

ωB

)
J1

(
u1

ωB

) [
ei(ωBt+θ1)

(
1

κ + iδ−1
− 1

κ − iδ1

)
(31)

+e−i(ωBt+θ1)

(
1

κ + iδ1
− 1

κ − iδ−1

)]
where in the substitution of Equation (29), we have approximated the exponential
e−iu1 sin(ωBt+θ1)/ωB ≈ J0(u1/ωB). It is now key to observe from Equation (29) that 1/(κ − iδ±1)

are the amplitudes of the sidebands at ±ωB of the intracavity light field. Substituting the expression
Equations (30) and (31) in (28), we obtain:

1
N

d〈n̂M〉(t)
dt

= c1 + 2U0γ1σ1|∆α(t)|2 sin(ωBt + θ1) + h.h. (32)

where h.h. denotes terms that are higher harmonics of ωB. As expected, there is a constant drift term
c1, which can be related to the transport velocity, which we define as the net drift of the centroid per
Bloch period in units of the lattice spacing d:

vt/π = 2πc1/ωB = U0|α0|2γ1σ1 J0

(
u1

ωB

)
J1

(
u1

ωB

)
2κ

[
1

κ2 + δ2
1
− 1

κ2 + δ2
−1

]
(33)

= s0γ1σ1 J0

(
u1

ωB

)
J1

(
u1

ωB

)
8κωB

δ0

(κ2 + δ2
1)(κ

2 + δ2
−1)

(34)

From Equation (33), it is clear that the sign and magnitude of the transport velocity are set
by the difference in the strength of the two sidebands at ±ωB. In addition, Equation (34) clearly
demonstrates that the direction of the transport can be tuned by choosing the sign of the effective
detuning δ0. In Figure 5, we give a quantitative comparison of the transport velocity obtained from
the analytical calculation above with that obtained by a numerical calculation and find very good
agreement. We note that our treatment above can be extended by including more than nearest
neighbour couplings for the WS states (for example, in the relation determining C in Equation (11)),
allowing us to describe the effects of the sidebands at higher multiples of ωB. We do not carry out
this extension, as even at this level of approximation, the analytical theory agrees rather well with the
numerical simulations.

Finally, it is clear from Equations (32) and (33) that both the oscillatory motion and coherent
transport are absent when the magnitude of the site-to-site coherence of the initial wave function
σ1 goes to zero. This serves to explain the behaviour observed in Figures 2b and 3 (the black
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curve), where the initial site-to-site coherence is highly suppressed, giving raise to only a very small
modulation and no transport.
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Figure 5. Comparison of the transport velocity as a function of the cavity-driving laser detuning
calculated from the numerical simulation and using the analytical expression Equation (34). System
parameters are as introduced in Figure 2a with η varied to maintain an initial lattice depth of −3Er.

6. Metrology

A fundamental property of Bloch oscillations is that their frequency depends only on the product
of the applied force and the spatial periodicity of the optical lattice and not on the lattice depth. As
we showed in Section 4, this remains true even when the nonlinearity due to dynamical backaction
is included and the equations of motion must be solved self-consistently; the optical spring effect
whereby the frequency depends on the amplitude of the cavity field is absent for the Bloch oscillator.
This is good news for metrological applications and implies that continuous measurements of forces
via Bloch oscillations of atoms in a cavity should be just as robust as their free-space (destructive)
counterparts [41–44].

For metrology, it is necessary to go one step further and ask if there are any circumstances
under which the Bloch frequency might be susceptible to a systematic shift. The most obvious
way for this to happen is if the wavelength of the light in the cavity were to be different from
that of the pump laser (which is assumed to be accurately known). A quick consideration of our
theoretical model for the atom-cavity system, as described in Section 2, reveals that it does not take
into account any change in the spatial mode structure of the cavity field due to its interaction with
the atoms. The model we use is the standard one adopted in theoretical treatments of dilute gases
of atoms in optical cavities [25] and accurately describes the frequency shifts due to a dispersive
interaction with atoms, but it does not include wavelength changes, because these are typically very
small. The underlying physics is the phenomenon of resonance: we are typically only interested
in frequencies in the vicinity of a cavity resonance, because that is where a significant amount
of light is allowed into the cavity. In a good cavity, the width δλ of a resonance is narrow in
comparison to the natural scale over which the wavelength changes, which is given by the free
spectral range ∆λ. More precisely, the free spectral range is the wavelength separation between
neighbouring resonances (which differ by one half wavelength fitting into the cavity), and its ratio
to the resonance width is the finesse F = ∆λ/δλ, which can be a large number. For example, the
cavity used in the experiment [27] was 178µm long with a power decay rate of 2π× 1.3 MHz, giving
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F = 324,000. Thus, even if the dispersive interaction with the atoms shifts the resonance by many
cavity linewidths, the effect on the wavelength will still be tiny. Conversely, the cavity resonances
are super-sensitive to changes in the dispersive coupling. In terms of the refractive index nr, the
wavelength of light in a refractive medium shrinks according to λ = λ0/nr, where λ0 is the vacuum
wavelength, so that the change in refractive index required to shift the wavelength by one linewidth
is δnr = (dnr/dλ) δλ = (dnr/dλ) (dλ/dωL)2κ = (2/nr)κ/ωL ≈ 2κ/ωL ≈ 10−9, where we have assumed
that the pump laser frequency ωL is in the THz range.

For completeness, let us estimate the refractive index due to the atoms in the cavity. In a dilute
gas, the refractive index is related to real part χ′ of the susceptibility as nr ≈ 1+ χ′/2. For a two-level
atom [68]:

χ′ = −N
V

d2
a

ε0h̄
∆a

∆2
a + γ2/4 + Ω2

1/2
≈ −N

V
d2

ε0h̄
1

∆a
(35)

where Ω1 = Ω0〈b̂† b̂〉 is the Rabi frequency and N/V is the atom density. The second (approximate)
equality holds in the large detuning regime. Comparing this expression with that for the optical
lattice potential U0 given in Section 2, we see that we can write:

χ′ = −Vc

V
N U0

ωc
(36)

If we take N to be the number of atoms inside the mode volume, then Vc/V = 1. Assuming
this to be the case and putting −NU0 = 2π × 1 kHz, like in the simulations shown in Figure 2, give
a correction to the vacuum value nr = 1 of order 10−9. Although these estimates are rather crude in
nature and assume, for example, that the atoms are homogeneously distributed, they all point to the
same conclusion that the shift in the wavelength is negligible, even for the purposes of metrology.

The precision of a frequency measurement improves as the observed signal is integrated for
longer times, but only up to the coherence time, beyond which no further benefit is derived [69].
An estimate of the coherence time for atomic motion in a cavity can be obtained by considering the
momentum diffusion rate of a single atom belonging to an ensemble of atoms [70,71]. Although this
calculation treats the atomic centre of mass degrees of freedom as classical variables, it is interesting
to note that estimates based on it agree well with heating rate measurements in the experiment [72].
In the limit of large detuning ∆a (low saturation), the momentum diffusion coefficient is given by:

Dtot ≈ Dsw

[
1 + 2C sin2(2kz)

κ2

κ2 + ∆2
f

]
(37)

where Dsw is the spontaneous emission rate at an antinode of the intracavity lattice given by
Dsw = h̄2k2/2τsp, with τ−1

sp = 2γ|α|2Ω2
0/∆2

a. Defining the coherence time τ as the time when the
momentum distribution has a width equal to one half of the first Brillouin zone i.e., k, we find
τ = τsp/[1 + 2C sin2(2kz) κ2

κ2+∆2
f
]. Note that replacing sin2(2kz) by 1/2 and ∆ f by zero reproduces

the expression given earlier in the Introduction and also in [34]. For our estimate here, we replace the
classical variables in Equation (37) by their time-averaged mean-field values (since we are always in a
time-dependent situation due to the Bloch oscillation dynamics), i.e., sin2(2kz)→ 〈sin2(2kz)〉 ≈ 0.5 and
∆ f → ∆ f . For the parameters used in Figure 2 with 1000 atoms, U0 = −2π × 1 Hz, cooperativity
C = 1.3, linewidth of γ = 2π× 7.6 kHz corresponding to the 1S0−3 P1 transition in 88Sr and assuming
a laser-atom detuning ∆a = −2π × 10 MHz, we find a coherence time of approximately 5 ms. This
is not very large compared to the Bloch oscillation period. Fortunately, as pointed out in [34], the
key parameters only appear in a certain combination, which can be used to rescale them without
changing the dynamics and, yet, improve the situation significantly. In other words, the mean-field
calculations performed in this paper are unchanged under a simultaneous scaling of ∆a by a positive
factor r (which scales U0 by 1/r), of the number of atoms Na by the same factor of r and of the driving
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strength η by
√

r. This scaling maintains the same average intracavity lattice depth, but even a modest
value of r = 20, which gives a detuning of ∆a = −2π× 200 MHz and 20,000 atoms, leads to the much
larger coherence time of 2 s (corresponding to thousands of Bloch oscillations) and is comparable to
the estimate in [34]. Thus, in principle, a high-precision measurement of the Bloch frequency can be
made by integrating the signal over such time scales.

Let us close with some remarks on fundamental aspects of metrology using a Bloch oscillator
that are suggested by the particular form of the optomechanical Hamiltonian given in Equation (20).
When δ0 = 0, the only term in the Hamiltonian depending on the light is the interaction term:

Ĥint = U0γ1|α0|(b̂ + b̂†)(b̂M + b̂†
M) (38)

which implies that the “position” of the Bloch oscillator ẑ ∝ (b̂M + b̂†
M) leads to a phase shift of the

cavity field [2]. Thus, rather than measuring the intensity modulation of the light in order to monitor
the Bloch oscillation frequency, when δ0 = 0, one should instead perform homodyne detection and
measure the phase modulation. Indeed, at zero (time averaged) total detuning from cavity resonance,
the modulation of the detuning about the resonance peak because of the Bloch oscillations has no
effect on the cavity field intensity to first order (assuming a symmetric line shape). This means that
provided we work in the weak coupling regime where the modulation is small, there is vanishing
backaction on the atoms, because they are only sensitive to light intensity and not phase. This would
eliminate deleterious effects, such as parametric heating of the atoms due to being in a lattice with
a time-modulated amplitude. However, even if the classical backaction can be eliminated in this
way, this still leaves quantum measurement backaction. In the quintessential case of the continuous
measurement of the cavity mirror position by homodyne detection of the optical phase shift, quantum
measurement backaction takes the form of an increased noise in the mirror momentum, in agreement
with Heisenberg’s uncertainty relation [2]. This feeds back into the mirror position and enforces
the standard quantum limit, such that the measurement adds at least zero-point position noise to the
intrinsic noise of the oscillator. However, there is an interesting twist in the case of the Bloch oscillator,
because the “position” operator ẑ ∝ (b̂M + b̂†

M) and “momentum” operator p̂ ∝ i(b̂†
M − b̂M) commute

according to Equation (23). This suggests that the Bloch oscillator quadratures are not subject to the
usual Heisenberg uncertainty relations, and so, there could potentially be no quantum measurement
backaction in this type of measurement. Whether or not this tentative conclusion holds up to further
scrutiny would be worthy of further investigation.

7. Conclusions

In this paper, we have developed an optomechanical description of an atomic Bloch oscillator in
a cavity and compared and contrasted it with a standard optomechanical system consisting of a cavity
with a mobile end mirror suspended on a spring. The quantum Hamiltonians for the two systems can
be put into the same form, and the energy levels of both types of oscillator form ladders with equal
spacing between excitations. However, the Wannier–Stark ladder for the Bloch oscillation case has no
ground state (for an infinite lattice), whereas the harmonic oscillator ladder for the mirror-on-a-spring
case is semi-infinite and has a ground state. Both systems can be cooled or heated in the resolved
sideband regime by detuning the pump laser to near the appropriate sideband. In the case of the
Bloch oscillator, cooling/heating corresponds to net transport of the atoms down/up the tilted lattice,
much like an elevator, and this is achieved by red or blue detuning, respectively. We have found a
fully-analytical expression for the transport velocity that agrees well with numerical simulation.

The potential energy lost/gained by the atoms during transport is extracted from the light, and
this leads to asymmetric sidebands, as power is taken from higher sidebands and moved to lower
ones in the case of uphill transport and vice versa for downhill transport. This mechanism is further
confirmed by force versus displacement plots, where the dynamics trace out loops whose enclosed
area gives the work done on the atoms by the light. We also find that initial conditions play a
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significant role in determining the dynamics: in the case of an initial atomic wave packet extending
over many sites, we can obtain transport, but when the initial wave packet is localised to a single site,
we find that the wave packet undergoes a breathing motion with no transport. The transport and
breathing dynamics we find can all be obtained in free-space optical lattices by imposing amplitude
or frequency modulation from the outside [42–44], but in the cavity case, they are self-induced by
dynamical backaction.

There are some significant differences between the Bloch oscillator and the harmonic oscillator.
Chief among these is that the backaction does not alter the frequency of the Bloch oscillations.
By contrast, in the harmonic oscillator case, there is the so-called optical spring effect, which gives
a dependence of oscillator frequency on field amplitude and detuning. To be clear, other motional
frequencies are altered: because the intracavity lattice depth is modulated by the backaction, this will
affect certain types of atomic motions, such as the oscillation frequency of an atom about the bottom
of one of the potential minima [73]. Nevertheless, the Bloch oscillation frequency is robust against
this depth modulation, because it only depends on the lattice period, not its depth. It can be shifted
if the wavelength of the light in the cavity is altered by its interaction with the atoms, but this effect
is generally so tiny as to be completely negligible even by metrological standards. This is promising
for applications where the optomechanical Bloch oscillator is used for continuous measurements of
forces. Furthermore, the unusual commutation relations obeyed by the annihilation and creation
operators for the Bloch oscillator suggest that homodyne measurements of the Bloch frequency might
even evade quantum measurement backaction.
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