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Abstract: We present a theoretical study of the interaction between light and a cold gas
of three-level, ladder configuration atoms close to two-photon resonance. In particular, we
investigate the existence of collective atomic recoil lasing (CARL) instabilities in different
regimes of internal atomic excitation and compare to previous studies of the CARL instability
involving two-level atoms. In the case of two-level atoms, the CARL instability is quenched
at high pump rates with significant atomic excitation by saturation of the (one-photon)
coherence, which produces the optical forces responsible for the instability and rapid heating
due to high spontaneous emission rates. We show that in the two-photon CARL scheme
studied here involving three-level atoms, CARL instabilities can survive at high pump rates
when the atoms have significant excitation, due to the contributions to the optical forces from
multiple coherences and the reduction of spontaneous emission due to transitions between
the populated states being dipole forbidden. This two-photon CARL scheme may form the
basis of methods to increase the effective nonlinear optical response of cold atomic gases.
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1. Introduction

The rapid progress over recent years in the ability to cool atomic gases down to temperatures of a
fraction of a degree Kelvin has stimulated intense interest in fundamental aspects and applications of the
interaction of light with cold and ultracold matter.

In contrast to matter-light interactions involving “hot” atomic gases or vapours, in cold
atomic media, the centre-of-mass motion produced by optical forces can have a sufficiently long
coherence time such that new regimes of collective behaviour can result. In this paper, we will
use the term collective atomic recoil lasing (CARL) as a general label for collective instabilities
that involve simultaneous growth of optical fields and atomic density modulations with periods on
the scale of the optical wavelength, although it should be noted that the literature on this topic
contains a number of other names for related effects, including, e.g., recoil-induced resonance,
superradiant Rayleigh scattering (SRS) and optomechanics. Since the initial theoretical studies of
CARL [1,2], numerous theoretical and experimental studies have been performed on related phenomena
involving optical forces and cold atoms, e.g., instabilities involving self-organisation [3–23], collective
cooling [24–26], optomechanical transverse pattern formation [27–32] and quantum simulation [33–35].
Experiments have involved a variety of atomic media, e.g., both thermal [8–11] and degenerate
gases [3,7,12,17,20,23,33–35], and a diverse range of configurations, including optical cavities
consisting of multiple mirrors [8,9,11,20,23,33–36], single mirror feedback [31] and mirrorless
configurations [3,7,10,12,18,19].

Recently, there has also been interest in enhancing the nonlinear optical response of atomic gases to
realise nonlinear effects at low light levels, ultimately at intensities comparable to that of single photons.
It has been proposed and demonstrated that CARL-like induced bunching of atoms could play a role
in providing this nonlinearity enhancement [18,19]. It is therefore timely to consider nonlinear optical
interactions that combine quantum electronic nonlinearities associated with internal atomic excitation
and optomechanical CARL-like behaviour. In most previous theoretical treatments of CARL, the atoms
were considered to have two internal energy states, and in most cases, the population of the excited
energy state was assumed to be negligible, with the atom responding to the incident optical field as
a classical dipole. Increasing the level of atomic excitation in a two-level atomic system is usually
undesirable for two reasons: the first is that saturating the atomic transition makes the optically-induced
dipole force acting on the atoms disappear [2,37], and the second is that in two-level atoms, a significant
population of the excited state leads to substantial spontaneous emission, the stochastic nature of which
heats the atomic gas. For these reasons, we extend the analysis of CARL-type instabilities to a cold
gas of atoms whose internal energy structure consists of three levels in a ladder configuration, as shown
schematically in Figure 1, where the frequency of the light is tuned to be close to two-photon resonance,
i.e., 2ω ≈ ωeg, where ω is the frequency of the optical field and h̄ωeg is the energy difference between
the upper (excited) and ground state of the atom. While the atom-light coupling is inherently weaker
than for two-level atoms, as it involves a two-photon resonance rather than a one-photon resonance,
this system is attractive in that there are contributions to the dipole forces on the atoms originating
from both one-photon and two-photon coherences, and it allows a population of atomic states between
which transitions are dipole forbidden, causing spontaneous emission to be minimised and the light-atom
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interaction to remain coherent. Extremely narrow linewidth dipole-forbidden transitions in cold gases
of Sr and Yb have recently been proposed as the basis for the next generation of optical atomic
clocks [38,39].
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Figure 1. Schematic diagram of the atomic energy level structure in the two-photon model.

2. Model

We consider the case where the atomic gas is enclosed within a unidirectional ring cavity, as shown
schematically in Figure 2. Two optical fields, a strong pump, assumed to be constant, and a weak probe,
interact with a cold, collisionless atomic gas. The probe circulates in a high finesse cavity and evolves
in time. It is assumed that the atomic cloud is a classical collisionless gas and that the optical fields
are classical, frequency degenerate with angular frequency, ω, and approximately counter-propagating
where they interact with the atoms.
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Figure 2. Schematic diagram of the collective atomic recoil lasing (CARL) configuration.
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The model which describes the evolution of the coupled system of light and atoms consists of
three main parts: the internal atomic dynamics of the atoms, the centre-of-mass motion of the atoms
and the evolution of the optical field in the cavity. Here we present an outline derivation of our
working equations.

2.1. The Three-Level Atom

We consider the case of two counter-propagating, frequency degenerate fields interacting with a
three-level atom consisting of a ground state (|g〉), an intermediate state (|i〉) and an excited state (|e〉),
as shown in Figure 1. It is assumed that transitions between the ground and excited states are dipole
forbidden (µeg = 0), but that transitions between |i〉 ↔ |g〉 and |e〉 ↔ |i〉 are dipole allowed (µei 6= 0,
µig 6= 0). Consequently, we can write the dipole moment of each atom as:

d = (µigρig + µeiρei + c.c.) (1)

as µjk = µkj and ρjk = ρ∗kj . For simplicity, we assume that E = Eê, µig = µigê and µei = µeiê, so
that the Bloch equations describing the evolution of the density matrix elements ρj,k(j, k = g, i, e) are:

dρgg
dt

= −γggρgg + i
µigE

h̄
(ρig − c.c.) (2)

dρee
dt

= −γeeρee − i
µigE

h̄
(ρei − c.c.) (3)

dρii
dt

= −γiiρii − i
E

h̄
(µigρig − µeiρei − c.c.) (4)

dρig
dt

= − (γig + iωig) ρig + i
E

h̄
(µigρgg + µeiρeg − µigρii) (5)

dρei
dt

= − (γei + iωei) ρei + i
E

h̄
(µeiρii − µigρeg − µeiρee) (6)

dρeg
dt

= − (γeg + iωeg) ρeg + i
E

h̄
(µeiρig − µigρei) (7)

2.2. The Two-Photon Approximation

We now assume that the intermediate energy level |i〉 is sufficiently detuned from resonance with the
optical fields such that its population is negligible, i.e., ρii = 0. We also assume that we have a closed
system, i.e., γgg = 0 and ρgg + ρee = 1. Making the change of variables:

ρeg = sege
−2iωt

ρig = sige
−iωt

ρei = seie
−iωt

E(z, t) =
(
a1e

i(kz−ωt) + a2e
−i(kz+ωt) + c.c.

)
(8)

then the equations for the coherences ρig, ρei and ρeg, Equations (5) and (6) reduce to:
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dsig
dt

= (−γig + i∆ig) sig +
i

h̄

(
µigρgg(a1e

ikz + a2e
−ikz) + µeiseg(a

∗
1e
−ikz + a∗2e

ikz)
)

(9)

dsei
dt

= (−γei + i∆ei) sei −
i

h̄

(
µigseg(a

∗
1e
−ikz + a∗2e

ikz) + µeiρee(a1e
ikz + a2e

−ikz)
)

(10)

dseg
dt

= (−γeg + i∆eg) seg +
i

h̄
(µeisig − µigsei)

(
a1e

ikz + a2e
−ikz) (11)

where ∆ig = ω − ωig, ∆ei = ω − ωei, ∆eg = 2ω − ωeg, pj is the atomic momentum and m is the atomic
mass. It is possible to adiabatically eliminate sig and sei, so that Equations (9) and (10) give:

sig ≈ −
1

h̄∆ig

(
µigρgg(a1e

ikz + a2e
−ikz) + µeiseg(a

∗
1e
−ikz + a∗2e

ikz)
)

(12)

sei ≈ +
1

h̄∆ei

(
µigseg(a

∗
1e
−ikz + a∗2e

ikz) + µeiρee(a1e
ikz + a2e

−ikz)
)

(13)

Note that ∆ig + ∆ei = ∆eg, so close to two-photon resonance, where |∆eg| � |∆ei|, |∆ig|, then ∆ei ≈
−∆ig, and Equation (13) becomes:

sei ≈ −
1

h̄∆ig

(
µigseg(a

∗
1e
−ikz + a∗2e

ikz) + µeiρee(a1e
ikz + a2e

−ikz)
)

(14)

Substituting Equations (12) and (14) in Equations (2), (3) and (11) gives an effective two-level
description in terms of quantities involving levels |e〉 and |g〉 only:

ds

dt
=

(
−γeg + i∆′eg

)
s− 2i

µigµei

h̄2∆ig

(
a2

1e
2ikz + 2a1a2 + a2

2e
−2ikz

)
D (15)

dD

dt
= −γee

(
D − 1

2

)
+ i

µigµei

h̄2∆ig

[(
a2

1e
2ikz + 2a1a2 + a2

2e
−2ikz

)
s∗ − c.c.

]
(16)

where we have defined s ≡ seg, D = ρgg−ρee
2

as two-photon coherence and population difference
variables, respectively, and:

∆′eg = ∆eg +
µ2
ig − µ2

ei

h̄2∆ig

(
|a1|2 + |a2|2 + a1a

∗
2e

2ikz + a∗1a2e
−2ikz

)
which demonstrates the ACStark shift. In what follows, we assume µig = µei = µ, so that ∆′eg = ∆eg,
i.e., the position- and intensity-dependent AC Stark shift is neglected.

2.3. Atomic Motion

The force on each atom along the cavity axis (z) is given by:

Fz = d.
∂E

∂z

so:
Fz = µ

(
sige

−iωt + seie
−iωt + c.c.

) (
ika1e

i(kz−ωt) − ika2e
−i(kz+ωt) + c.c.

)
(17)

Substituting for sig and sei using Equations (12) and (14), we eventually obtain:

Fz = −i2kµ
2

h̄∆ig

[
a1a

∗
2e

2ikz +
(
a2

1e
2ikz − a2

2e
−2ikz

)
s∗ − c.c.

]
(18)
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2.4. Cavity Field Evolution

The evolution of the cavity field is determined by Maxwell’s wave equation:(
∇2 − 1

c2

∂2

∂t2

)
E =

1

ε0c2

∂2P

∂t2
(19)

where the polarisation, P , for a classical gas of point particles is:

P =
N∑
j

djδ(r − rj(t))

Using the definitions of E and dj in Equation (8), Equation (1) assuming ∂2P
∂t2
≈ −ω2P , using

the slowly-varying envelope approximation (SVEA) and averaging over an interaction volume, V ,
we obtain:

da1(t)

dt
=

iωcµn

2ε0c

(〈
sige

−ikz〉+
〈
seie

−ikz〉) (20)

Substituting for sig and sei using Equations (12) and (14), Equation (20) becomes:

da1(t)

dt
= −i ωnµ2

2ε0h̄∆ig

(
a1 + a2

〈
e−2ikz

〉
+ 2a∗1

〈
se−2ikz

〉
+ a∗2 〈s〉

)
+ (iδc − κ) a1 (21)

where κ = cT
Lcav

is the cavity linewidth and δc = ω − ωc is the detuning of the pump from the cavity
resonance frequency ωc.

The coupled set of equations that describe our system, Equations (15), (16), (18) and (21), can be
written as:

dzj
dt

=
pj
m

(22)

dpj
dt

= −i2h̄kU0

[
α1α

∗
2e

2ikzj +
(
α2

1e
2ikzj − α2

2e
−2ikzj

)
s∗j − c.c.

]
(23)

dsj
dt

=
(
−γeg + i∆′eg

)
sj − 2iU0

(
α2

1e
2ikzj + 2α1α2 + α2

2e
−2ikzj

)
Dj (24)

dDj

dt
= −γee

(
Dj −

1

2

)
+ iU0

[(
α2

1e
2ikzj + 2α1α2 + α2

2e
−2ikzj

)
s∗j − c.c.

]
(25)

dα1(t)

dt
= −iNU0

(
α1 + α2

〈
e−2ikz

〉
+ 2α∗1

〈
se−2ikz

〉
+ α∗2 〈s〉

)
+ (iδc − κ)α1 (26)

where p = mvz is the atomic momentum, U0 = g2

∆ig
is the dispersive frequency shift due to a single

atom, g = µ
√

ω
2ε0h̄V

is the single photon Rabi frequency and α1,2 = a1,2

√
2ε0V
h̄ω

, so that |α1,2|2 represents
the number of photons in the probe (1) or the pump (2) beam.

In the following section, we will investigate features of the system behaviour, in particular the
existence of CARL-like instabilities in which probe/cavity field amplification occurs simultaneously with
spatial modulations in the atomic density. Of particular interest is how the character of the instability
changes as the degree of atomic excitation is varied. For the purposes of illustration, we will consider the
ideal case where there is no incoherent decay of the excited state population or two-photon coherence,
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i.e., γeg = γee = 0. We also assume that cavity losses are negligible on the time scales considered here
(κ → 0), that the distribution of atomic positions is initially uniform in space and that the temperature
of the atoms is initially sufficiently cold that any thermal dephasing occurs on time scales much longer
than the development of the instability (pj = 0 ∀ j).

3. Two-Photon CARL with Weak and Strong Excitation

We now investigate how the CARL instability changes as the degree of the excited state population
is varied. We first define a reference or “saturation” pump intensity by solving Equations (24) and
(25), which describe the evolution of the two-photon coherence and population difference variables s,D.
Solving for D in the limit where α1 = 0, we obtain:

D =
1

2

∆2
eg

∆2
eg + 4U2

0 |α2|4
+

2U2
0 |α2|4

∆2
eg + 4U2

0 |α2|4
cos(

√
∆2
eg + 4U2

0 |α2|4t)

Averaging over an oscillation period, this becomes:

D =
1

2

∆2
eg

∆2
eg + 4U2

0 |α2|4
(27)

so we can define a “saturation” pump intensity as being that for which the average excited-state
population, ρee, is 1/4, i.e., D = 1/4. From Equation (27), it can be seen that this occurs when the
pump photon number is:

|α2|2 ≡ |α2|2sat =

∣∣∣∣∆eg

2U0

∣∣∣∣ (28)

We first consider the limit |α2|2 � |α2|2sat, such that each atom is only weakly excited internally and
almost all of the atomic population remains in the ground state, |g〉, i.e., D → 1

2
and s→ 0. In this limit,

Equations (22)–(26) reduce to:

dzj
dt

=
pj
m

(29)

dpj
dt

= −i2h̄kU0

(
α1α

∗
2e

2ikzj − c.c.
)

(30)

dα1(t)

dt
= −iNU0

(
α1 + α2

〈
e−2ikz

〉)
+ (iδc − κ)α1 (31)

which, when written in terms of the dimensionless variables:

θ = 2kz , p̄ =
2

ρ
p , ā =

√
2

ρN
α1

become the CARL equations originally derived for two-level atoms [1,2] in the so-called free-electron
laser (FEL) limit [37]:

dθj
dτ

= p̄j (32)

dp̄j
dτ

= −
(
āeiθj + c.c.

)
(33)

dā

dτ
=

〈
e−iθ

〉
− κ̄ā (34)
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where α2 = −i|α2| and δc = NU0 have been assumed, the dimensionless time coordinate τ = ωrρt, the
cavity decay rate κ̄ = κ

ωrρ
, ωr = 2h̄k2

m
is the recoil frequency and the scaling parameter ρ is defined as:

ρ =

(
2NU2

0 |α2|4

ω2
r

)1/3

It has been shown in, e.g., [1,2,37] that these equations display a collective instability in which the
initially homogeneous distribution of atomic positions is unstable and the resulting instability involves
exponential growth of both the probe field intensity (|ā|2) and density modulation amplitude/spatial order
parameter (|b| = |

〈
e−iθ

〉
|).

An example of the system evolution in the weak-excitation regime is shown in Figures 3, 4 and 5.
Figure 3 shows the evolution of the cavity field intensity, bunching parameter and average population
difference, respectively. It can be seen that an exponential growth of the cavity field intensity occurs
simultaneously with the growth of the bunching parameter, indicating the development of a strong
modulation in the atomic density with spatial period λ/2, in common with the behaviour of the CARL
instability in two-level systems [1,2,37]. The development of this density modulation is clearly seen in
the snapshots of the phase space (θ, p) shown in Figure 4. In contrast to the behaviour of the atomic
motion, Figure 3 and the snapshots of the atomic population distribution (θ,D) shown in Figure 5 show
that the atomic population difference does not deviate significantly from its original value, with the
atomic population remaining almost entirely spatially uniform and in the ground state.
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Figure 3. Evolution of probe photon number, |α1|2, bunching parameter, |b|, and mean
population difference, < D >, for a case of weak excitation. The parameters used are
U0/ωr = 5× 10−5, ∆eg = 10, α2 = 100, N = 1000.
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Figure 4. Snapshots of momentum distribution (θj, pj) for each atom j = 1..1000 when (a)
t = 0ω−1

r , (b) t = 20ω−1
r and (c) t = 26ω−1

r in the case of weak excitation. The parameters
used are as in Figure 3.
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Figure 5. Snapshots of population difference distribution (θj, Dj) for each atom j = 1..1000

when (a) t = 0ω−1
r , (b) t = 20ω−1

r and (c) t = 26ω−1
r in the case of weak excitation. The

parameters used are as in Figure 3.
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4. Strong Excitation

An example of the system evolution in the strong pump limit is shown in Figures 6–8. From Figure 6,
it can be seen that, again, an exponential growth of the cavity field intensity occurs simultaneously
with the growth of the bunching parameter. In contrast to the weak excitation limit, Figure 6 and the
snapshots of the atomic population distribution (θ,D) shown in Figure 8 show that the atomic population
difference now also undergoes significant evolution during the instability, deviating significantly from
its original value of 0.5. Figure 6 shows that after rapid (two-photon) Rabi oscillations, the population
difference results in a strongly periodic distribution of atomic population in addition to the strongly
periodic spatial distribution of atomic positions/density. The amplitude of the population difference
modulation is sufficiently large such that a significant number of atoms have D < 0, i.e., their internal
population is inverted. In a two-level atom, this would result in significant spontaneous emission and,
consequently, heating, due to the stochastic nature of the recoil associated with spontaneous emission
events, but the three-level/two-photon configuration considered here avoids this and allows significant
population of the upper state while retaining the coherence of the system. It should also be noted that
in two-level atoms, strong pumping and, consequently, the strong population of the upper state would
result in D → 0 on average [37], and the dipole force, which bunches the atoms, would also disappear.
As can be seen from Figure 6, this does not happen in the case considered here, because the dipole force
contains contributions from the one-photon coherences ρei, ρig, which are not saturated, in addition to the
two-photon coherence, s. The damping of the Rabi oscillations seen in Figure 6c occurs when the probe
intensity is amplified to values comparable to that of the pump. At this point, the position (θ) dependence
of the total field driving the populations of the atoms becomes significant (see Equations (24) and (25)).
Consequently, the momentum spread induced by the atomic bunching/CARL instability causes the atoms
to experience different fields, which dephases their Rabi oscillations.
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Figure 6. Evolution of probe photon number, |α1|2, bunching parameter, |b|, and mean
population difference, < D >, for a case of strong excitation. The parameters used are
U0/ωr = 5× 10−5, ∆eg = 1, α2 = 100, N = 1000.
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Figure 7. Snapshots of momentum distribution (θj, pj) for each atom j = 1..1000 when (a)
t = 0ω−1

r , (b) t = 20ω−1
r and (c) t = 30ω−1

r in the case of strong excitation. The parameters
used are as in Figure 6.

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(a) : t/ωr=0.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(b) : t/ωr=20.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(c) : t/ωr=30.0

Figure 8. Snapshots of population difference distribution (θj, Dj) for each atom j = 1..1000

when (a) t = 0ω−1
r , (b) t = 20ω−1

r and (c) t = 30ω−1
r in the case of strong excitation. The

parameters used are as in Figure 6.

5. Conclusions

We have performed a theoretical study of a CARL instability involving a cold gas of three-level
atoms. In contrast to previous theoretical treatments of CARL, the atoms were considered to have three
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internal energy states in a ladder configuration where transitions between the lowest and highest states
are dipole forbidden. It was shown that when the population of the excited (highest) state is small,
the behaviour of the system reduces to that of previous studies of CARL in two-level atomic systems.
However, when the level of the atomic system is increased, the behaviour of the system diverges from
that of the two-level model, as the existence of a collective instability involving strong bunching/density
modulation persists in the three-level system. Even though the bunched atoms are highly excited, the
rate of spontaneous emission will be small, as transitions to the ground state are dipole forbidden.
While the atom-light coupling is inherently weaker in this three-level ladder scheme than for two-level
atoms, as it involves a two-photon resonance rather than a one-photon resonance, this system offers
advantages in that there are contributions to the dipole forces on the atoms that are not saturated and
that it allows a significant population of atomic states between which transitions are dipole forbidden
and spontaneous emission rates are small. Candidates for the realisation of the effects predicted here are
gases of alkaline-earth-like atoms, e.g., Sr or Yb, which can be cooled and possess long-lived/metastable
states due to forbidden transitions.

The coherent nature of the interaction, even in the absence of high levels of atomic excitation, suggests
that such instabilities should exist not only in classical gases, but also in BECs . This offers the intriguing
prospect of simultaneous, coherent control of discrete electronic and momentum states of a BEC.
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