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Abstract: We show that a collection of two-level atoms in an optical cavity beyond the
rotating wave approximation and in the dispersive-adiabatic and non-dispersive adiabatic
regime constitutes a nonlinear medium and is capable of generating squeezed state of light.
It is found that squeezing produced in the non-dispersive adiabatic regime is significantly
high compared to that produced in the dispersive-adiabatic limit. On the other hand, we also
show that it could be possible to observe the Dicke superradiant quantum phase transition
in the dispersive-adiabatic regime where the ~A2 term is negligible. Such a system can be an
essential component of a larger quantum-communication system.
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1. Introduction

Non-classical states of light sources are one of the essential component for implementing
quantum-information processing and secure telecommunication quantum systems [1–4]. The
experimental generation of quantum light has made remarkable progress in the recent years, thereby
opening the path for implementing novel quantum devices based on quantum light [5–16]. A
paradigmatic example of quantum light source is the optical parametric amplifier, which is usually
realized with nonlinear crystals in resonators [17]. In the recent past, there have been theoretical
proposals that a single atom and two atoms in a suitable setup can act as a nonlinear medium to generate
squeezed light [18–23]. More recently, it was proposed that a Bose-Einstein condensate in an optical
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cavity also generates squeezed light with the two-body atom-atom interaction appearing as a coherent
handle to control this generation [24]. In this paper, we study the generation of squeezed states of light
from a medium comprising of N two-level atoms confined in an optical cavity in the non-rotating wave
approximation (non-RWA). The fully quantum-mechanical model for the interaction of light and matter
was given by Jaynes and Cummings [25].

HJCM =
~ωeg

2
σz + ~ωca†a+ ~goσx(a† + a) (1)

where ~ωeg is the level spacing between the ground and the excited state of the atoms, ωc is the frequency
of the electromagnetic field mode, and go is the dipole interaction strength. σα, α = x, y, z are the Pauli
matrices while a† and a denote the bosonic creation and annihilation operators of the electromagnetic
field mode. In the interaction picture the co-rotating terms in the Jaynes-Cummings model (JCM),
oscillate with the phase factors e±i(ωeg−ωc)t, while the counter-rotating terms oscillate with the phase
factors e±i(ωeg+ωc)t. Near resonance, the detuning (ωeg − ωc) is small, |ωeg − ωc| << ωeg + ωc and
hence the co-rotating terms oscillate slowly, whereas the counter-rotating terms oscillate fast.In addition,
if the atom-field coupling go is sufficiently weak, one can then replace the counter-rotating terms by their
vanishing time average. This leads to the usual RWA-JCM.

Thus the RWA-JCM is valid for go << |ωeg − ωc| << ωeg + ωc, where the first inequality is the
dispersive limit [26]. Now in the adiabatic limit, i.e., ωeg << ωc or ωeg >> ωc, the inequality
|ωeg − ωc| << ωeg + ωc is no longer valid and hence RWA breaks down. In fact in the adiabatic
limit |ωeg − ωc| ≈ (ωeg + ωc) and hence the counter-rotating terms are equally significant.

In the current paper, we will work in the dispersive-adiabatic limit, i.e., only the inequality
go << |ωeg−ωc| is satisfied and compare our results with those in the non-dispersive-adiabatic limit (i.e.,
when go >> |ωeg−ωc|, g0 >> γ (cavity field decay rate) and |ωeg−ωc| ≈ (ωeg+ωc)). The non-dispersive
adiabatic coupling between the atom and the field which is difficult to realize experimentally also does
not allow us to ignore the counter-rotating terms. The importance of the dispersive limit lies in the use
of two-level systems to simulate quantum spin chains or building quantum switch. The importance of
the non-dispersive adiabatic regime is evident from the study of the Dicke model which shows strong
atom-field entanglement [27]. In recent years, the non-dispersive adiabatic regime in atomic systems has
been achieved [28]. The condition go << |ωeg − ωc| is then a less stringent condition compared to the
non-dispersive adiabatic condition. Earlier theoretical studies on the Dicke model in the high detuning
limit [29] and in RWA/non-RWA [30,31] have shown that there is no field squeezing.

2. The Model

Let us consider a collection of N identical, non-interacting atoms coupled to the quantum field of
a cavity resonator by electric dipole interaction (Figure 1). The bare Hamiltonian for a single jth atom is

Hj =
M∑
i=1

P 2
ij

2mij

+ Vj (2)

where Vj is the position dependent generic potential energy. The index ij denotes one of the M particles
of charge qi making up the atom. The momentum and mass of the jth atom is

∑
i Pij and

∑
imij . The
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Hamiltonian for N atoms is Ha =
∑N

j=1Hj . Now, if we consider the interaction of the N -atoms
with the quantum field in the optical cavity, then according to the principle of minimal coupling,
~Pij → ~Pij − qij

~A(~ri), where ~A is the vector potential field in the region occupied by the atoms.
Considering only one cavity mode and neglecting the spatial variation of the field in the region occupied
by the atoms, we can write ~A(~r) = ~Ao(a

† + a). Here a†(a) is the cavity mode creation and annihilation
operator. Therefore, the Hamiltonian for the interaction part is ,

Hint = −
N∑
j=1

M∑
i=1

(
qij
mij

~Pij • ~Ao(a† + a) +
q2
ij

2mij

A2
o(a
† + a)2

)
(3)

The Hint can be written as

Hint = −i~Ωo(a
† + a)b† + h.c+ ~D(a† + a)2 (4)

where Ωo = ωeg

~
~deg • ~Ao

√
N . ωeg is the atomic transition frequency while ~deg is the electric dipole matrix

element. Also D =
∑M

i=1
q2i

2mi

NA2
o

~ . The bosonic operator b† is the bright excitation operator defined as

b† =
1√
N

N∑
j=1

(|e >< g|) (5)

where |e > and |g > are the two eigenstates of each atom. The atomic Hamiltonian can be rewritten as
Ha = ~ωegb†b, while the cavity mode Hamiltonian is written as Hcav = ~ωca†a. The total Hamiltonian
is H = Ha +Hcav +Hint.

Figure 1. Sketch of the system considered in this paper: Collection of N identical atoms
confined in a small volume at the center of the optical cavity coupled to the quantum field of
the cavity by their electric dipole.

3. Squeezing of the Intra-Cavity Field

The Heisenberg equations of motion for the atomic and photonic operator is

ȧ = −i(ωc + 2D)a− i2Da† + Ωo(b− b†)− γa (6)

ḃ = −iωegb− Ωo(a+ a†) (7)
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In the limit of large atom-photon detuning, we adiabatically eliminate the atomic degrees of freedom,
b = iΩo(a+a†)

ωeg
. In cavity QED systems, the collective coupling Uo = Ω2

o/ωeg and D are dependent
on each other. Infact D = αUo, where α is a parameter. The value of α is determined by the
Thomas-Reiche-Kuhn sum rule [32,33]. It is important to note that the ~A2 term is significant only in the
strong-coupling limit. This yields the following Heisenberg-Langevin equation for the field operators
a and a†,

ȧ = − (i[ωc + 2Uo(α− 1)] + γ) a− 2iUo(α− 1)a† + F (t) (8)

ȧ† = − (−i[ωc + 2Uo(α− 1)] + γ) a† + 2iUo(α− 1)a+ F †(t) (9)

Here γ represents the cavity decay and F (t) is the associated noise operator with the following
properties: < F (t) >= 0, < F (t)F (t′) >=< F †(t)F (t′) >=< F †(t)F †(t′) >= 0 and
< F (t)F †(t′) >= 2γδ(t− t′). We see that the cavity frequency is shifted as ωc → ωc + 2U0(α− 1) due
to atomic back-action and ~A2 term.

In the steady state, from Equations (8) and (9), one can calculate |as|2 (intra-cavity steady state photon
number) as,

|as|2 = −(γ2 + (ωc + 2U0(α− 1))2)

(ω2
c + 4ωcU0(α− 1) + γ2)

(10)

In the dispersive regime, one can put α = 0 since the atom-field coupling is weak and |as|2 → ∞
at the critical atom-photon coupling Ωc =

√
ωeg(ω2

c+γ2)

4ωc
. This is the Dicke superradiant quantum phase

transition (QPT) [27]. In the strong coupling regime, α is finite and α > 1 and hence the NO-GO
theorem is valid [29,30]. In the case of systems comprising of two-level atoms in a cavity coupled to
the electromagnetic field of the cavity through their electric dipole, the inclusion of the ~A2 term in the
Dicke Hamiltonian forbids the occurrence of the QPT as a consequence of the Thomas-Reiche-Kuhn
sum rule for the oscillator strength. This analysis indicates that it could be possible to observe the Dicke
superradiant QPT in a collection of two level atoms in an optical cavity in the dispersive regime where
the ~A2 term responsible for the NO-GO theorem is negligible. Indeed, a superradiant phase transition
does not require ωeg ≈ ωc [32].

In order to study the squeezing properties of the signal mode in the steady state, we have to evaluate
< a >, < a2 >,< a†2 > and < a†a >. Taking into account that all correlation functions involving the
noise operators are zero except < Fa† >=< aF † >= γ, yields the following steady state values,

A1 =< a2 >ss=
ΩPΓ∗

2(|ΩP |2 − ΓΓ∗)
(11)

A2 =< aa† + a†a >ss=
−ΓΓ∗

(|ΩP |2 − ΓΓ∗)
(12)

A3 =< a†2 >ss=
Ω∗PΓ

2(|ΩP |2 − ΓΓ∗)
(13)

where ΩP = −2iUo(α − 1) and Γ = −(i[ωc + 2Uo(α − 1)] + γ). To calculate the variances, the field
is expressed in terms of Hermitian operators X1 = 1

2
(ae−iθ/2 + a†eiθ/2) and X2 = 1

2i
(ae−iθ/2 − a†eiθ/2).

The variances of these operators in the steady state for θ = 0 are,
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(∆X2
1 )ss =

1

4

γ2 + ω2
c + 2ωcUo(α− 1)

γ2 + ω2
c + 4ωcUo(α− 1)

(14)

(∆X2
2 )ss =

1

4

γ2 + ω2
c + 8U2

o (α− 1)2 + 6ωcUo(α− 1)

γ2 + ω2
c + 4ωcUo(α− 1)

(15)

Note that to be in the dispersive-adiabatic limit, we keep Uo << ωc. In RWA limit,
(∆X2

1 )ss = (∆X2
1 )ss = 1/4, i.e., both the quadratures are in the coherent state. Figure 2 illustrates

the quadrature variances in the dispersive-adiabatic limit (left plot) and the non-dispersive-adiabatic
limit (right plot). In the dispersive limit since g0 << |ωeg − ωc|, we take α = 0. Evidently, squeezing
of the cavity field is moderately enhanced for the non-dispersive adiabatic case compared to that in the
dispersive adiabatic case. The quadrature variances does not reflect the true experimental situation which
is concerned with the field outside the cavity. We address this issue in the next section.
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Figure 2. Left Plot: Plot of the variances versus ωc/γ for U0 = 0.01γ and α = 0 . Right
Plot: U0 = 1.1γ and α = 1.2. ∆X2

1 (thick line) and ∆X2
2 (thin line).

4. Squeezing of the Output Field

The Heisenberg-Langevin equations of motion for the cavity field including the input field is
written as,

ȧ = Γa+ ΩPa
† +
√

2γain (16)

ȧ† = Γ∗a† + Ω∗Pa+
√

2γa†in (17)

where ain(a†in) is the destruction(creation) operator for the input cavity field. The relationship that
connects the external fields (both input and output) and the intracavity field is [17],

aout(t) + ain(t) =
√

2γa(t) (18)

where aout(a
†
out) is the destruction(creation) operator for the output cavity field. Eliminating the internal

cavity mode using Equations (16) and (17) in the Fourier space, we obtain

aout =
(ω2 − ωc∆c − γ2 − 2iωγ)

(ω2 − ωc∆c − γ2)2 + 4ω2γ2

(
(−ω2 + ωc∆c − γ2 + 2iγ∆̃c)ain − 2γΩPa

†
in

)
(19)
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where ∆c = ωc+4Uo(α−1) and ∆̃c = ωc+2Uo(α−1). The squeezing spectrum for the two quadratures
is then obtained as [17],

S1out(ω) =
1

4

(ω2 − ωc∆c + γ2)2 + 4γ2ω2
c

(ω2 − ωc∆c − γ2)2 + 4γ2ω2
(20)

S2out(ω) =
1

4

(ω2 − ωc∆c + γ2)2 + 4γ2∆2
c

(ω2 − ωc∆c − γ2)2 + 4γ2ω2
(21)

Figure 3 displays the spectrum of squeezing in the dispersive-adiabatic limit (left plot) and
the non-dispersive-adiabatic limit (right plot). We note, as expected, that in the non-dispersive
adiabatic regime, squeezing at the cavity output is significantly enhanced compared to that in the
dispersive-adiabatic regime. In the non-dispersive adiabatic regime, the term ~D(a†+ a)2 is responsible
for enhancing the squeezing due to the nonlinear two-photon process. This nonlinear term introduces
coupling between a and a†. In fact higher is the nonlinearity, higher is the squeezing. Further in both
the limits, increasing U0, increases the squeezing. We also observe that in the non-dispersive adiabatic
regime, the S1out(ω) quadrature is squeezed while in the dispersive-adiabatic limit S2out(ω) quadrature
is squeezed. Another striking difference noticed is that in the dispersive-adiabatic regime, the maximum
squeezing is at ω = 0 while in the non-dispersive adiabatic regime the maximum squeezing shifts
symmetrically to the both sides of ω = 0.
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Figure 3. Left Plot: Spectrum of squeezing in the dispersive-adiabatic limit for U0 = 0.05γ

(thin line) and U0 = 0.1γ (thick line), α = 0. Right Plot: Spectrum of squeezing in the
strong-coupling-adiabatic limit for U0 = 0.5γ (thin line) and U0 = 1.2γ (thick line), α = 2.1.
In both the curves, ωc = γ.

5. Conclusions

We have analyzed the potential of a system comprising of a collection of two-level atoms inside an
optical cavity, for the preparation of squeezed state of light. In the adiabatic limit the system behaves
like a nonlinear medium, which is capable of generating squeezed state of light. In particular, we
have compared the results for the dispersive-adiabatic and non-dispersive-adiabatic limit. We have
found that squeezing of the output light is significantly high in the non-dispersive adiabatic regime.
The dispersive-adiabatic limit though easier to implement is only able to squeeze the output light
moderately. On the other hand, the dispersive-adiabatic limit was found to be suitable to observe the
Dicke superradiant quantum phase transition where the ~A2 term is negligible.
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