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Abstract: Recent advancements in studying long chains of unstable nuclei have revitalised interest
in investigating the hyperfine anomaly. Hyperfine anomaly is particularly relevant for determining
nuclear magnetic dipole moments using hyperfine structures where it limits the accuracy. This
research paper focuses on the calculation of the differential Breit-Rosenthal effect for the 6p2 3P1,2, 1D2

and 6p7s 3P1 states in Pb, utilising the multi-configurational Dirac-Hartree-Fock code, GRASP2018.
The findings show that the differential Breit-Rosenthal effect is typically less than 0.1% fm−2, which
is often much smaller than the Bohr-Weisskopf effect. The differential Breit-Rosenthal effect for the
6p2 3P2 state is one order of magnitude smaller than the rest, which is why this state seems to be
insensible to the hyperfine anomaly.

Keywords: hyperfine anomaly; Breit-Rosenthal effect; lead; MCDHF; nuclear charge radius

1. Introduction

Nuclear magnetic moments play a crucial role in understanding the fundamental
structure of the nucleus. They have significant implications not only in basic nuclear
research but also in various other research fields such as atomic physics, chemistry, and solid-
state physics. The electric quadrupole moment is associated with the nuclear charge
distribution’s shape, while the magnetic dipole moment relates to the angular momentum
of the nucleus.

Throughout the years, diverse techniques have been developed to determine experim-
ental values of nuclear moments for both stable and unstable nuclei [1]. For magnetic dipole
moment determination, many methods require corrections for the effects of the medium
on an applied magnetic field, like diamagnetism, Knight shift, and the hyperfine anomaly
(hfa) [2,3]. The corrections introduce limitations to the uncertainty of the experimental
values. In this study, we specifically focus on the corrections resulting from the non-point-
like nature of the nucleus, i.e., the hyperfine anomaly.

The hyperfine anomaly, 1∆2, is normally defined as:

1 + 1∆2 =
a(1)

a(2)
µ
(2)
I /I(2)

µ
(1)
I /I(1)

(1)

where the ratio of measured hyperfine structure constants (a) for two isotopes is compared
with the independently measured ratio of nuclear magnetic dipole moments (µI) and
nuclear spins (I) for isotopes 1 and 2.

While anomalies in the first order can usually be disregarded for electrons with total
angular momentum j > 1/2 due to vanishing wavefunctions at the nucleus, higher-order
electronic correlations can lead to substantial anomalies in certain cases, such as in p3/2
states [3].

The hyperfine anomaly is composed of two parts: the Bohr-Weisskopf effect
(BW-effect) [2,4,5], related to the magnetization distribution in the nucleus, and the Breit-
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Rosenthal effect (BR-effect) [6–9], associated with the extended charge distribution of
the nucleus.

Bohr and Weisskopf [4] considered the influence of the finite size of the nucleus,
i.e., the distribution of magnetization on the hyperfine structure. They showed that the
magnetic dipole hyperfine interaction constant (a) for an extended nucleus is generally
smaller than the value expected for a point nucleus. The hyperfine interaction constant is
expressed as:

a = apoint(1 + ϵBW) (2)

where ϵBW is the BW-effect, and apoint is the hyperfine interaction constant for a point-
like nucleus.

The Breit-Rosenthal effect (BR-effect) arises from the extended charge distribution
of the nucleus [6–9], and its absolute value can reach up to 25%. Thus, the hyperfine
interaction constant (a) can be written as:

a = apoint(1 + ϵBW + ϵBR) (3)

To compare isotopes of an element and focus on the differential effect, we express the
hfa as:

1 + 1∆2 ≈ 1 + ϵ
(1)
BW − ϵ

(2)
BW + ϵ

(1)
BR − ϵ

(2)
BR (4)

In this context, we are particularly interested in the differential Breit-Rosenthal effect
(BR-anomaly) (∆BR), which is considered to be relatively small, around 10−4 for isotope
pairs. However, when studying long chains of isotopes, significant changes in nuclear
charge distribution, especially at shape transitions, become relevant, underscoring the
importance of systematic investigations of the differential BR-effect.

While the hyperfine anomaly (hfa) and the Bohr-Weisskopf effect have received some
attention in the last two decades, the Breit-Rosenthal effect (BR-effect) has been less explored
since Rosenberg and Stroke’s work in 1972 [9]. They calculated the BR-effect using diffuse
and Hofstadter-type charge distributions for isotope pairs (∆N = 2) in various elements.
However, our focus lies in coupling the BR-anomaly (∆BR) to the change in charge radius
(δ⟨r2

c ⟩) to apply it across long chains of isotopes. The desired form to express the BR-
anomaly is:

∆BR = λδ⟨r2
c ⟩ (5)

where the change in charge radius can be obtained from tables [10] or isotope shift studies.
This work is a continuation of the calculations of the BR-effect completed by Heggset

and Persson in the 6s6p3P1,2 states in Hg [11].
The objectives of this study are twofold. First, we aim to expand the data set of

differential BR-effect as a function of changes in nuclear charge radius in heavy atoms,
building on the results of Heggset et al. [11]. Second, we seek to explore the effect
of extending the configuration expansion in Multi-Configurational Dirac-Hartree-Fock
(MCDHF) calculations on the BR-anomaly, as this seemed to be relatively independent
on the size of the expansions in Hg [11]. This will shed light on the extent of expansions
required in the calculations for other heavy atoms.

2. MCDHF Method

The computations in this study were carried out using the Multi-Configurational Dirac-
Hartree-Fock package, known as GRASP2018 [12]. This package is based on a combination of
the MCDHF (Multi-Configurational Dirac-Hartree-Fock) and RCI (Relativistic Configuration
Interaction) methods [13,14]. In this paper, we follow the procedure laid out in [12,15]
and by Heggset et al. [11]. A detailed description of the calculations can be found in the
master’s thesis of the first author [16].

The specific focus of this study lies on the spectroscopic states 6p2 3P1,2, 1D2 and
6p7s 3P1 in Pb, with 207Pb (I = 1/2) used as the reference isotope. The calculations utilized
the tabulated values for the nuclear radius, with R = 5.4943(14) fm [10], and the nuclear
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moment, with a value of µI = 0.5925839(9) µN [17]. The experimental values used (Table 1)
were taken from [18].

Table 1. Magnetic hyperfine structure constants a of the 207Pb states.

States a (MHz)

6s26p2 3P1 −2390.976 (2)

6s26p2 3P2 2602.060 (1)

6s26p2 1D2 609.818 (8)

6s26p7s 3P1 8802.0 (1.6)

Fermi Distribution

The charge distribution of the nucleus can be modelled in various ways. Rosenberg
and Stroke [9] employed both a simple model with a homogeneous charge distribution and
a Hofstadter distribution. A widely used and realistic model is the two-parameter Fermi
distribution ([19] p. 27), which offers additional flexibility in calculations:

ρ(r) =
ρF

1 + e(r−c)/b
, (6)

where c represents the half-density radius, and b is related to the so-called skin thickness
t by t = b · 4 ln 3. GRASP2018 enables the use of a two-parameter Fermi distribution to
approximate the nuclear charge distribution.

The shape of the nuclear distribution, including the skin thickness, may be characterized
by the expansion of moments ⟨r2n⟩ of the distribution. Consequently, changes in nuclear
size can be described using δ⟨r2n⟩. However, given that the differential Breit-Rosenthal
effect is expected to be small in comparison to the differential Bohr-Weisskopf effect and
the uncertainty in the experimental data, it should be adequate to consider only the first
term (δ⟨r2⟩) and the skin thickness (t) in the expansion.

3. Calculations

Computations were mostly performed with the even parity 6p2 and odd parity
6p7s configurations together, although some single configuration calculations were also
performed. When performing both configurations together, all spectroscopic orbitals
achieved convergence together.

In the calculations, the active orbital sets were introduced layer-by-layer with optimiz-
ation of each layer before the next was introduced. With subsequent smaller contributions
of active orbitals, the total number of layers was limited to four layers ({8s 7p 6d 5f },
{9s 8p 7d 6f }, {10s 9p 8d 7f } and {11s 10p 9d 8f }) in the calculations as the contribution of
additional layers is expected to be small. This can be observed in Figure 1.

The hyperfine interaction is described by one-particle operators, so only CSFs corresp-
onding to single (S) substitutions need to be included in the ASF expansion to first
approximation [20]. Therefore, the bulk of the hyperfine structure was expected to be
obtained in the calculations based on S substitutions. Substitutions from all active subshells
were allowed to the four layers of virtual orbitals. The calculations started with small
valence subshells 7s, 6p and 6s before the core subshells were introduced in subsequent
runs, in the order 5p, 5s, . . . , 2p, 2s.

After the optimization of each layer, the hyperfine structure constants were calculated.
The results are presented in Figure 1.

As the active set was increased, a convergence toward the experimental a-value
for all states was achieved. The results were excellent in 6p2 3P1 and 6p2 1D2, good in
6p7s 3P1 and somewhat off in 6p2 3P2. This is an indication that correlation beyond the
first approximation represented by single substitutions is of importance in the latter state.
For all four states the final expansion, generated by allowing single excitations from
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7s6sp5sp4sp3sp2sp to four layers of active orbitals gave the most accurate calculated a-
value. The deviation from the experimental value of a for all states with single substitutions
is given in Table 2.

Figure 1. Unrestricted single substitutions allowed. Each data series corresponds to one set of active
peel subshells and the four data points in each series correspond to the first, . . . , fourth virtual layer.
The horizontal black lines in each graph indicate the experimental value of a for the given state and
a ±5% interval around the experimental value which serves as a guide to the eye of the quality of
the calculation.

Table 2. Deviation in a-values for the expansion generated by single excitations from
7s6sp5sp4sp3sp2sp to four virtual layers, compared to the experimentally measured value aexp.
Here, δa/aexp ≡ (acalc − aexp)/aexp.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δa/aexp [%] 0.306 −7.52 −0.00889 −1.61

Since correlation effects are important, the calculations were expanded to also include
double (D) substitutions. The procedure of S substitutions was repeated with D substitutions
including valence-valence (vv), core-valence (cv) and core-core (cc) substitutions. The
calculated a values as the active set increases are given in Figure 2.

The calculations based on SD substitutions led to convergence towards the experimental
value and yielded quite good results in all states except 6p2 1D2. The deviation between
the experimental and calculated values of a using the biggest expansion is given in Table 3.
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Table 3. Deviation in a-values for the expansion generated by unrestricted SD excitations from
7s6sp5sp4sp3p to four virtual layers, compared to the experimentally measured value Aexp. Here,
δa/aexp ≡ (acalc − aexp)/aexp.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δa/aexp [%] 3.97 −2.65 29.5 −2.23

Figure 2. Unrestricted single and double substitutions allowed, except one series with unrestricted
single, double and triple substitutions. Each data series corresponds to one set of active peel subshells
and the four (five) data points in each series correspond to the first, . . . , fourth (fifth) virtual layer.
The horizontal black lines in each graph indicate the experimental value of a for the given state,
and and a ±5% interval around the experimental value which serves as a guide to the eye of the
quality of the calculation.

In 6p2 1D2 SD excitations from core subshells cause an overestimation of the hyperfine
structure which was not caused by single substitutions alone, showing the importance of
cv and/or cc correlation. This trend is visible from activation of 5 s but recovers by the
fourth virtual layer.

In terms of accuracy, only in 6p2 3P2 was an improvement in the calculations based
on single and double substitutions observed compared to the calculations based on single
substitutions, indicating that vv and cv correlation is of importance in this state. It should
also be noted that the 6p2 1D2 state is sensitive to these correlations.

To test the higher order of correlations a calculation on unrestricted single, double and
triple (SDT) substitutions were performed, only involving the valence 7s, 6p and 6s orbitals.
This was motivated by the rapidly increasing number of CSFs in the expansion, which
was deemed unfeasible in this study. In this case we allowed an extra (fifth) virtual layer
{12s, 11p, 10d, 9 f } in the calculation. The results are included as a single series in Figure 2.

Including T substitutions did not alter the calculated a values substantially. This is in
agreement with expectations, as CSFs generated by T substitutions correspond to higher-
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order corrections. Overall, the calculations based on SDT substitutions and only valence
orbitals gave quite poor results, indicating that core polarization should be included. This
is certainly the case for the 6p2 1D2 and 6p2 3P2 states. Table 4 shows the deviation between
the calculated a-values for the expansion generated by SDT excitations from 7s6sp to five
layers, relative to the experimental value.

Table 4. Deviation in a-values for the expansion generated by SDT excitations from 7s6sp to five
virtual layers, compared to the experimentally measured value aexp. Here, δa/aexp ≡ (acalc −
aexp)/aexp.

State 6p2 3P1 6p2 3P2 6p2 1D2 6p7s 3P1

δa/aexp [%] −3.59 −19.2 −20.9 −8.18

Expansions for Calculations of the Breit-Rosenthal Effect

From the results of the calculations of the a-constant, the values obtained for the 6p2 3P1
and 6p7s 3P1 are quite stable while the 6p2 3P2 and 1D2 varies for different expansions.
The use of an extended core for triple substitutions might improve the values for these
states, but this was not deemed sensible in this study. The main focus of this study is
on the calculation of the Breit-Rosenthal effect and based on the results we choose to use
five different expansions to investigate how much the different expansions affect the Breit-
Rosenthal effect. This is to answer how large the expansions need to be to give a sensible
value of the Breit-Rosenthal effect. The five expansions selected were:

1. Unrestricted SD excitations allowed from 7s6sp.
2. Unrestricted SDT excitations allowed from 7s6sp.
3. Unrestricted SD excitations allowed from 7s6sp5sp.
4. Unrestricted SD excitations allowed from 7s6sp5sp4sp.
5. Unrestricted S excitations allowed from 7s6sp5sp4sp3sp2sp.

4. Variations in Nuclear Radius

The calculations were performed over the range of all experimental values of the rms
radii R(A) of lead isotopes given by Angeli and Marinova [10] and presently unmeasured
isotopes. That is the range of deviation in the mean squared radius

〈
r2

n
〉

from the 207Pb
reference isotope is between −1.466(fm)2 and +0.779(fm)2, as calculated with the relation
([10] p. 2).

R2(A) = R2(A′) + δ
〈

r2
n

〉A′A
. (7)

The calculations of the hfs constants followed the described procedure using the new
nuclear parameters (radii). The obtained a for every value of δ

〈
r2

n
〉

was compared to the
value a0 for the reference isotope. With the obtained values of δa/a0, the BR effect was
approximated by the proportionality constant λ in the linear fit.

With all expansions and virtual layers a total of 20 values of λ were calculated using a
linear regression with a no-intercept model, forcing the fit through the origin. In this model,
λ was calculated as

λ =
∑i⟨r2

n⟩i
(

δA
A0

)
i

∑i⟨r2
n⟩2

i
,

where the sum is over the values corresponding to the set of nuclear radii.
In Figure 3 an example is presented. Here, the data for the expansion created by

allowing SD substitutions from the 7s6sp5sp subshells is presented, alongside the calculated
linear fit for each state.

The constants λ for the BR effect are presented in Figure 4. The calculated proportionality
constants change as the active set is increased. In addition, the value of λ calculated with
the multireference CSFs is included for comparison. The coefficient of correlation for the
obtained λ-values was R2

0 > 0.99 except for SDT excitations from 7s6sp with R2
0 ≈ 0.84.
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Figure 3. Relative change in the hfs constant δa/a0 against deviation in the mean squared radius of
the nuclear Fermi charge distribution δ

〈
r2

n
〉

from the reference nucleus with hfs constant a0. Based
on the expansion generated with SD excitations from the 7s6sp5sp subshells to four virtual layers.
The red line represents the linear fit.

Figure 4. The proportionality constant λ in the linear fit for the BR effect. Each data series corresponds
to one set of active peel subshells and the four data points in each series correspond to one, . . . , four
virtual layers. The horizontal black line in each plot indicates the value of λ calculated with only the
multireference CSFs.
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Variation in Skin Thickness

The effects of deformation can be investigated by studying the effect of a varying
skin thickness t, that is, the diffuseness parameter b. The effect is expected to be small
so the calculation was only performed for single excitations from 7s6sp5sp4sp3sp2sp to
four virtual layers. In the calculations, the nuclear skin thickness varied by ±0.1 fm and
±0.2 fm from the default value 2.3 fm. These deviations correspond to one and two
standard deviations in the skin thickness obtained for nuclei with nucleon number A > 16
by fitting to scattering data [19].

The relative change in the calculated hfs constant a is presented in Figure 5. The
proportionality constant τ in the linear fit τδt is used for the skin thickness. In units of
%fm−1, the values τ(6p2 3P1) = 0.0351, τ(6p2 3P2) = 0.00327, τ(6p2 1D2) = −0.0375 and
τ(6p7s 3P1) = 0.0278 were obtained, with corresponding coefficients of correlation > 0.998
for all states.

Figure 5. Relative change in the hfs constant δa/a0 against variation δt in the skin thickness of the
nuclear Fermi charge distribution from the reference nucleus with hfs constant a0, based on the
expansion generated with S excitations from 7s6sp5sp4sp3sp2sp to four virtual layers. The straight
line is the linear fit τδt.

5. Discussion
5.1. Variation in Radius

Calculations of the proportionality constant λ for the BR effect were performed for
20 CSF expansions of various sizes. For the 6p2 3P1 and 6p7s 3P1 states, the obtained
values of λ were all in the ∈ (−0.08781,−0.07859), and ∈ (−0.07231,−0.06242)%fm−2,
respectively. Including only the values calculated at the fourth virtual layer, these intervals
are reduced to (−0.08672,−0.08252) and (−0.06803,−0.06375) in units of %fm−2 with
no relative error of greater than ≈5% and ≈7%, respectively. This limitation is justified
since all corresponding series of a-calculations in the 207Pb reference isotope achieved
convergence towards the experimental value at the fourth virtual layer in both 6p2 3P1 and
6p7s 3P1. In addition, the expansion including valence-only correlations, gave values at the
lower part of the interval while expansions adding core correlations yielded values in the
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upper part. Since the latter expansions could more accurately reproduce the experimental
value of a, it was deemed sensible to recommend values slightly toward the higher end of
the intervals as the more probable λ-values. That is, λ(6p2 3P1) = −0.083(2)%fm−2 and
λ(6p7s 3P1) = −0.065(3)%fm−2 are recommended. The uncertainties are given as about
twice the range of the λ-values.

In 6p2 3P2 it was found that the BR effect is practically non-existent, with a tendency
for a small negative value. The calculated values of λ in units of %fm−2 range in the
interval ∈ (−0.01119, 0.007393). Since this state did not converge toward the experimental
a in the 207Pb reference isotope as the active set was increased, it is questionable to put
more weight on the fourth virtual layer. Since all the expansions underestimated a, and a
clear trend with an undershoot of a was observed, the higher the corresponding value of
λ. To limit the number of calculated λ-values based on different expansions only those
yielding a calculated a within ±5% of the experimental value are used. This reduces the
interval to (−0.01119,−0.006998), as only three expansions achieved this accuracy (SD
excitations from 6sp5sp4sp to one, two and four virtual layers, respectively). It should be
noted that the series corresponding to SD excitations from 7s6sp5sp and S excitations from
7s6sp5sp4sp3sp2sp approached the experimental a-value, although not reaching the 5%
accuracy limit. The corresponding λ-values also converged towards a similar range. Thus,
the value λ(6p2 3P2) = −0.009(4)%fm−2 is recommended. The uncertainty is chosen as
twice the interval in question. This is a remarkably low value and similar to the finding
in the 4p1/2 state in potassium [21]. The explanation for this is not known and should
be investigated in detail. It may indicate that the hyperfine anomaly due to the BR- and
BW-effect is almost zero in 6p2 3P2 since their behaviour is very similar.

In the final state, 6p2 1D2, all obtained values of λ were ∈ (0.02907, 0.1220) %fm−2,
with the greatest value being over four times the smallest. It should be noted that λ takes
the opposite sign, compared to expectations. These were also the most scattered results
obtained, including considerable deviation in λ within each series. This is in accord with
6p2 1D2 being the state with the greatest range of calculated a-values in 207Pb. One should
notice that only five of the 20 obtained λ-values were based on expansions that yielded
a calculated a within ±5% of the experimental value. By using these five, the interval
reduces to (0.07750, 0.09633). If only those within ±2.5% of the experimental are included,
further reducing interval to (0.09225, 0.09633), with only two expansions. In the series
including cv and cc correlation, there is some indication of convergence towards a value in
the same range, but these results are inconclusive. It might be important to perform more
comprehensive calculations adding further virtual layers may be performed to see if the
calculated λ-values converge. Due to these facts, the value λ(6p2 1D2) = 0.09(2)%fm−2 is
recommended as the uncertainty may be large.

5.2. Expansions

From the calculations using different expansions, it is clear that the sensitivity varies.
In the case of the 6p2 3P1 and 6p7s 3P1 states the λ-values hardly change, even if the 6p2 3P1
state differs from the multireference CSF. While the 6p2 3P2 and 6p2 1D2 states are more
sensitive, even if the values show tendencies to converge. How well the calculated a-
values compare to the experimental values seems to be a good indicator of the validity
of the λ-value. This indicates that basing calculations of the BR-correction λ on an ASF
that accurately reproduces the experimentally obtained value of the hfs constant a is
important. This is especially important in 6p2 1D2, where the vast range of obtained
λ-values dramatically reduced when removing expansions corresponding to inaccurate
a-values. Moreover, 6p2 3P1 and 6p7s 3P1 has the most consistent calculated a-values near
the experimental value in the 207Pb isotope, and also the most consistent calculated λ.
The same behaviour is seen within the different series: where there were larger changes in
the calculated a, also gives larger changes in the calculated λ.
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5.3. Comparisons with Other Calculations

The results of the systematic study by Rosenberg and Stroke [9] can not be directly
compared to our results as they calculated the s- and p1/2−electron contributions to
the BR-effect between isotope-pairs, not taking mixing of other electrons into account.
Extrapolating their values to Pb gives the same order of magnitude, for the 6p2 3P1
and 6p7s 3P1 states. Gustavsson and Mårtensson-Pendrill [22] reported values in Tl
(Z = 81) of λ = −0.0389% fm−2 and λ = −0.1485% fm−2 for the 6p1/2 and 6s electrons,
respectively. While Heggset and Persson [11] found λ(3P1) = −0.11(1)% fm−2 and
λ(3P2) = −0.12(1)% fm−2 in the 6s6p configuration in Hg. The values are in the same
order as our results indicating that our results are reasonable.

5.4. hfa in Pb and BR-Anomaly

The calculated λ-values in combination with nuclear charge radii gives the BR-anomaly
which can be compared with experimental hfa. This will give an indication of how
important a correction due to the BR-anomaly can be. In the case of Pb, the hyperfine
anomaly is only known in four isotopes [3,18] as shown in Table 5 with I = 13/2 compared
to I = 1/2 for the reference isotope 207Pb. Since the BR-effect is only expected to be of
major importance when the BW-effect is small, that is when the spins of the nuclei are the
same [2,3], we observe that the BR-correction is negligible relative to 207Pb.

Table 5. Experimental hyperfine anomaly in Pb isotopes and calculated BR-correction.

Isotope 207∆A
exp(%) 6p7s 3P1 − 6p2 1D2 Calculated BR-Correction (%)

191Pb −1.94 (68) 0.12 (4)
193Pb −2.10 (58) 0.10 (4)
195Pb −1.73 (70) 0.09 (3)

197mPb −1.90 (123) 0.08 (3)

The values of and errors when taking the hfa between the I = 13/2 isotopes are much
larger than the value of the BR-correction, why it is safe to assume that the BR-effect can be
neglected in Pb until experiments on the hfs with higher accuracy are performed.

6. Conclusions

The differential Breit-Rosenthal effect for the 6p2 3P1,2, 1D2 and 6p7s 3P1 states in Pb
has been calculated. The recommended values are given in Table 6. Our investigation
indicates that the quality of the value of the differential Breit-Rosenthal effect λ is related
to how well the calculation of the a-factor correlates with the experimental value which
indicates that it might not be sufficient to perform calculations with small expansions if
the experimental a-factor is not well reproduced, but the size of the expansions must be
adapted for the specific situation. It is found that the accuracy of the experimental values
of the hfa in Pb does not allow for a comparison with the calculations, but it seems like the
BR-effect can be neglected.

Table 6. Recommended values of the differential Breit-Rosenthal effect.

State λ (%fm−2)

6p2 3P1 −0.083 (2)

6p2 3P2 −0.009 (4)

6p2 1D2 0.09 (2)

6p7s 3P1 −0.065 (3)
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