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Abstract: Most modern calculations of many-electron atoms use basis sets of atomic orbitals.
An accurate account for electronic correlations in heavy atoms is a very difficult computational
problem, and an optimization of the basis sets can reduce computational costs and increase final
accuracy. Here, we propose a simple differential ansatz to form virtual orbitals from the Dirac–Fock
orbitals of the core and valence electrons. We use basis sets with such orbitals to calculate different
properties in Cs including hyperfine structure constants and QED corrections to the valence energies
and to the E1 transition amplitudes.
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1. Introduction

Many efficient methods of atomic calculations, such as configuration interaction (CI),
many-body perturbation theory (MBPT), coupled cluster (CC), or their combinations,
employ basis sets of one-electron orbitals. For example, the methods CI+MBPT and
CI+CC [1–5] use CI for valence electrons, where the electronic-correlations effects are strong,
and account for weaker core-valence correlations by means of either the second order MBPT
or (linearized) CC method. In these methods, the relativistic effects are treated within the
no-pair approximation for the Dirac-Coulomb-Breit Hamiltonian. On the other hand, QED
effects may be approximately accounted for using the model-QED-potential approach [6–8].
For heavy polyvalent atoms, such calculations become very computationally expensive [9].
That is why it is very important to develop efficient basis sets, which provide high accuracy
at reasonable length.

The Dirac–Fock (DF) method serves as an initial approximation for most atomic
calculations. In principle, the DF operator can provide us with an infinite number of
eigenstates. However, in practice, it is useful to keep only some DF orbitals in the basis set.
In particular, it is important to include in the basis set the entire core and some of valence
orbitals. The choice of important valence orbitals depends on their occupation numbers in
the atomic states we are interested in. On the other hand, the highly excited DF orbitals
are usually ineffective for accounting for the correlations between valence electrons, as
their radius grows too rapidly with the principal quantum number n. Because of that the
B-splines [10], Sturm orbitals [11,12], or other simple orbitals [13,14] usually turn out to
be more useful. Therefore, an efficient basis set has to include different types of orbitals.
An effective method to merge two subsets of orbitals into one basis set was proposed in
Ref. [15]. The first subset consisted of DF orbitals for the core and valence shells and the
second subset consisted of B-splines, whose parameters were optimized to complement
the first subset. Such mixed basis sets were tested for calculations of the valence energies
of Au and Fr and sufficiently fast convergence was observed: saturation was reached for
25 splines per partial wave [15].

It is known that accurate calculations of the hyperfine structure and the parity non-
conservation effects for heavy atoms are much more challenging than calculations of the
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energies, or transition amplitudes. These properties depend on the wave function at small
distances. Correlations change the behavior of the valence-electrons wave functions in this
region and lead to large corrections to the matrix elements of these operators. Because of
that the convergence with respect to the number of orbitals in the basis set is typically much
slower. Test calculations of the magnetic hyperfine constant A for Au did not converge even
for the mixed basis set with 45 B-splines per partial wave [15]. It was found that the small
components of the valence orbitals near the origin were not smooth. Increasing the size of
the basis set decreased the amplitude of these non-physical dips or bumps, but shifted them
closer to the origin, where the hyperfine interaction was particularly strong. The solution
proposed in that paper was to add to the basis set a small number of DF orbitals for the ion
AuM+, or, in other words, the orbitals for the VN−M potential, where N is the number of
electrons in the neutral atom. Such orbitals are similar to those of the neutral atom, but are
more contracted. That allowed to smoothly change the orbitals near the nucleus. After that
the calculation of the hyperfine constants A for Au already converged for two such ionic
orbitals and 24 B-splines per partial wave. For this recipe to work one needs to choose M
in such a way that ionic orbitals are neither too different, nor too similar to those of the
neutral atom. In the former case, such orbitals become less useful, while in the latter one
can run into the linear dependency problem. In Ref. [15] the orbitals for the VN−6 potential
were used. Here, we propose another method to form additional orbitals to supplement DF
orbitals and B-splines. The new procedure is more formal and does not require arbitrary
adjustments. We test these basis sets for calculation of the QED corrections and hyperfine
constants in neutral Cs.

2. Method

The basis set for atomic calculations consists of subsets for different partial waves,
which are defined by the relativistic quantum number κ = (l − j)(2j + 1), where l and j
are the orbital and total angular momenta. The relativistic two-component radial wave
functions have the form

ψnκ(r) =
1
r

(
Pnκ(r)
Qnκ(r)

)
. (1)

Most atomic calculations are done in the no-pair approximation [16–18], when the Dirac–
Coulomb, or Dirac–Coulomb–Breit Hamiltonian is projected on the positive-energy states
of the one-electron Dirac operator. Within this approximation the QED corrections can
be included approximately by means of the model operators [7,8,19]. The exact form of
the projection operator to the positive energy states is unknown, and some additional
approximation has to be used. The most common method to exclude negative energy
continuum from the basis set is to imply the kinetic balance condition [20] on the lower
components of the basis orbitals, Equation (1):

Qnκ(r) = −α

2

(
d
dr

+
κ
r

)
Pnκ(r) , (2)

where α ≈ 1
137 is the fine structure constant (if not stated otherwise, we use atomic units

h̄ = me = |e| = 1 throughout the paper). Let us mention that for the ab initio atomic
QED calculations beyond the no-pair approximation the basis sets are usually formed with
the help of the dual kinetic balance method [21]. Such basis sets accurately approximate
negative continuum of the Dirac spectrum. In this paper we neglect all contributions from
the negative continuum. Therefore, below we assume that the small components are always
formed with the help of Equation (2) and focus on the large components P.

When some small perturbation is added to the Hamiltonian, the large component P of
the electronic orbital changes slightly. These changes do not affect the asymptotic behavior
at large and small distances and the number of nodes of the function P remains the same.
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To account for such changes we need to add basis functions with similar features. Let us
consider a simple stretching transformation:

P(r) → P̃(r) = P(kr) , (3)

where k = 1 + ε, |ε| ≪ 1. Expanding P̃ in powers of ε we get:

P̃(r) = P(kr) = P((1 + ε)r) ≈ P(r) + εr
dP
dr

. (4)

Thus, if we want to guarantee that the stretched DF orbital P̃nκ can be accurately expanded
in the basis set, we can add a virtual orbital:

Pvκ(r) = r
dPnκ

dr
, (5)

where index v numerates virtual orbitals for a partial wave with the given relativistic
quantum number κ. Note that this function has the same asymptotic behavior for r → 0 and
for r → ∞ as Pnκ, however it has an extra node. When new orbital is added to the basis set,
we first generate the small component Qvκ using the kinetic balance condition, Equation (2),
then we orthogonalize it to all the other orbitals with the same quantum number κ and
normalize it to unity. The index v here does not mean principal quantum number and is
not linked to the number of nodes, which changes during the orthogonalization process.
Only if we diagonalize the Hamiltonian matrix on the basis set, the new eigenvectors can
be indexed with the principal quantum number n.

3. Test Calculations for Cs

To illustrate usefulness of the ansatz from Equation (5) let us consider QED corrections
in neutral Cs. Firstly, we used a sufficiently large basis set to diagonalize the Dirac-
Fock operator together with the model QED potential from Refs. [19,22]. After that, we
calculated the difference between the large components with and without QED corrections
and compared them with the respective scaled orbitals from Equation (5). Figure 1 shows
that the latter very much resemble the former. Thus, we can expect that adding orbitals
generated with the help of Equation (5) to the basis set will significantly improve its quality
and will speed up the convergence.

Figure 1. Comparison of the differential ansatz, Equation (5), with the difference between DF orbitals
for the Dirac-Coulomb Hamiltonian with and without the model QED potential.

We formed the basis set for Cs which included DF orbitals 1s1/2 − 7s1/2, 2pj − 7pj, and
3dj − 6dj, where j = l ± 1

2 . For each DF orbital we added respective virtual orbital using
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the differential ansatz. To ensure that the number of virtual orbitals is the same in each
partial wave, we formed one additional p orbital per partial wave and three additional
d orbitals per partial wave using the method of Ref. [14]. Thus, this basis set included
seven virtual orbitals per partial wave, or sixty-two orbitals in total. This calculation was
compared with calculation performed using the long basis set, which included these seven
virtual orbitals plus twenty-three additional ones per partial wave. Below, we refer to these
basis sets as B7 and B30, respectively. Figure 2 shows the difference between the perturbed
by the model QED operator 1s and 6s orbitals for Cs and unperturbed ones. We see that the
QED correction for the orbital 1s has some non-physical oscillations in both basis sets, but
their amplitude for the large basis set is few times smaller. Such oscillations are typical for
the calculations with finite basis sets and they indicate that convergence is not yet achieved.
For the valence 6s orbital the QED correction is practically the same for both basis sets,
which means that the convergence here is reached already for the short basis set. Similar
situation is observed for the valence 6p orbitals.

Figure 2. Comparison of the QED calculations with the short (B7) and the long (B30) basis sets. The
short basis set includes 7 virtual orbitals per partial wave. In the s wave all of them are formed using
ansatz (5), while in other partial waves additional orbitals were added using method [14]. The long
basis set includes 30 virtual orbitals per partial wave.

In the calculations of neutral atoms one usually explicitly need to know only the wave
functions of the valence electrons, where the short basis set seems to work nicely. To test it
further, we calculated QED corrections to the valence binding energies ϵ(nlj) and to the E1
transition amplitudes. In both cases we used the model QED potential [19]. This model
potential accounts for the QED corrections to the wave functions. For the E1 amplitudes
there are also QED corrections to the vertex, which are not included here. They were
calculated in Refs. [23,24] and found to be much smaller than the corrections to the wave
functions. Results obtained with the basis sets B7 and B30 are compared in Table 1. We see
that two calculations give practically identical QED correction to the binding energy of the
6s electron. For the other partial waves, the corrections to the energies are much smaller
and the difference between results is about 1–2% (the absolute difference is of the same
order of magnitude, as for the s wave). For the s–p transition amplitudes the agreement
is again very good, but for the p–d transitions the difference between the two basis sets is
about 10%. On the one hand, these corrections are small. On the other hand, in the d wave
we have only four orbitals formed with the help of the differential ansatz, while other three
orbitals of the basis set B7 are apparently less useful. This is the reason why the short basis
set for the d wave is not as efficient, as for the case of s and p waves.

We mentioned earlier that convergence in calculations of the hyperfine constants A
is often very slow. Because of that we compared the random-phase approximation (RPA)
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corrections for these constants obtained with the basis sets B7 and B30. For the orbitals
6s, 6p1/2, and 6p3/2 the difference was around 1% of the RPA correction. Note that this
corresponds to a fraction of a percent in respect to the final value of the hyperfine constant.
This is smaller, than, for example, the Bohr-Weisskopf, or the Breit-Rosenthal corrections
(the former is caused by the distributions of magnetization inside the nucleus and the latter
is associated with the nuclear charge distribution). Our final values of the RPA corrections
to the constants δRPA A(6s1/2) = 293.3 GHz and δRPA A(6p1/2) = 40.56 are close to the
values obtained in Ref. Dzuba et al. [25], 289 GHz and 39 GHz, respectively.

Table 1. Comparison of the calculations using basis sets B7 and B30 for Cs. Results are given for the
QED corrections to the valence binding energies ϵ(nlj), the reduced E1 transition amplitudes and for
the RPA corrections to the hyperfine constants A. Column three gives DF values. Next two columns
give QED or RPA corrections calculated on the basis set B7 with 7 virtual orbitals per partial wave
and basis B30 with 30 virtual orbitals per partial wave. Last column gives the difference between two
calculations in percent.

Property Units DF Value QED Correction
Basis B7 Basis B30 Diff.

ϵ(6s1/2) (cm−1) 27,954.1 −15.798 −15.782 −0.1%
ϵ(6p1/2) 18,790.5 0.814 0.805 −1.1%
ϵ(6p3/2) 18,388.8 0.169 0.165 −2.6%
ϵ(5d3/2) 14,138.5 2.177 2.151 −1.2%
ϵ(5d5/2) 14,162.6 2.063 2.032 −1.5%

E1(6s1/2 − 6p1/2) (a.u.) 5.27769 0.00322 0.00322 0.0%
E1(6s1/2 − 6p3/2) 7.42643 0.00476 0.00475 −0.2%
E1(6p1/2 − 5d3/2) 8.97833 −0.00159 −0.00175 10.1%
E1(6p3/2 − 5d3/2) 4.06246 −0.00069 −0.00076 10.1%
E1(6p3/2 − 5d5/2) 12.18640 −0.00180 −0.00190 5.6%

DF value RPA correction
A(6s1/2) (GHz) 1423.3 297.6 293.3 −1.4%
A(6p1/2) 160.88 40.02 40.56 1.3%
A(6p3/2) 23.916 19.12 18.91 −1.1%

Results presented in Table 2 show that the basis sets, which include virtual orbitals,
generated with the help of Equation (5), provide fast convergence for calculations of the
QED and RPA corrections, which are particularly sensitive to the quality of the basis
set. Below we compare QED corrections calculated with these basis sets with the values
reported in the literature by other groups and study potential sources of the differences.
We focus primarily on the QED corrections to the E1 transition amplitudes.

3.1. QED Corrections to the E1 Amplitudes in Cs

There are many calculations of the QED corrections to the transition amplitudes in
highly-charged ions, see for example [23,26,27]. However, for neutral atoms and weakly
charged ions, these corrections are usually neglected. The most prominent exception is
neutral Cs, where QED corrections to the E1 amplitudes were calculated several times.
Sapirstein and Cheng [24] calculated 6s1/2 − 6p1/2 amplitude within the one-determinant
approximation, while calculations [28–30] included correlations, but neglected the vertex
correction. Traditionally QED corrections to the E1 amplitude are expressed in terms of the
parameter R:

E1 = E10

(
1 +

α

π
R
)

, (6)

where E10 is the amplitude without QED correction. There are two contributions to the
QED correction R:
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R = RPO + RV , (7)

where RPO accounts for the correction to the one-electron wave functions (perturbed
orbitals) and RV is the vertex correction. The former is supposed to be larger than the
latter [7] and it can be approximately calculated with the help of the model QED potentials.
At present, the effective operator for the vertex correction is unknown, and it can be
calculated only within the consistent QED approach.

In Table 2 we compare our results for RPO with results of other groups. Sapirstein
and Cheng [24] made ab initio QED calculation using the local Kohn-Sham potential. They
calculated both corrections and found, that the vertex correction RV was significantly
smaller, RV = −0.065. Other calculations used the non-local DF operator and the model
potential [7,31,32]. Here we made calculations with model potentials [7,19], which we
denote as STY and FG potentials, respectively.

Table 2. Comparison of the PO QED corrections RPO (see Equation (7)) to the E1 transition amplitudes
in Cs with other calculations. Our calculations were done using the model potentials STY [19] and
FG [7].

Transition This Work [24] [28] [29]
Method STY FG Ab Initio (KS) FG FG

RPO(6s1/2 − 6p1/2) 0.262 0.267 0.326 0.272 0.26
RPO(6s1/2 − 6p3/2) 0.275 0.280 0.286 0.28
RPO(6s1/2 − 7p1/2) −2.89 −2.97 −2.80 −2.89
RPO(6s1/2 − 7p3/2) −1.84 −1.84 −1.76 −1.84
RPO(7s1/2 − 6p1/2) −0.442 −0.452 −0.433 −0.44
RPO(7s1/2 − 6p3/2) −0.369 −0.376 −0.359 −0.37

Table 2 shows that the results obtained with two QED potentials agree within 2–3%.
The difference between different groups is somewhat bigger, about 4–6%. There are small
differences in the model potentials described in Refs. [7,31,32]. Incompleteness of the basis
sets can be another reasons of the disagreements. The only direct QED calculation is about
20% larger, than all three calculations with the model potentials. Note that this calculation
was done with the local Kohn-Sham potential instead of the non-local DF potential used by
all other groups. Because of that, it is important to check, how much QED corrections to
the E1 amplitudes depend on the choice of the potential. Note also that the parametrization
in Equation (6) allows one to partly compensate for differences in the value of the initial
amplitude E10 in different approximations.

3.2. Local Screening Potentials

We made calculations with the model QED operator [19] and three widely used local
screening potentials: the first one is the core-Hartree potential (CH) induced by the core
electrons of Cs+ ground-state configuration, the other two are the Kohn-Sham (KS) [33] and
Slater (S) [34] potentials corresponding to the ground-state configuration of the neutral Cs.
The proper asymptotic behavior of the potentials KS and S is restored by including the Latter
correction [35]. In Table 3 the results obtained using these three local screening potentials
are compared with the Dirac-Fock results. We see that calculations of QED corrections δϵ
with local potentials do not correlate with the DF calculations for all partial waves, but the
s wave. The reason for this discrepancy is obvious. In the DF approximation the energy
correction comes from the direct contribution of the perturbation and the contribution from
the adjustment of the self-consistent field (relaxation of the core) δVSCF. The former is large
for the s wave and rapidly decreases with the orbital quantum number l. At the same time,
the relaxation of the core similarly affects all valence orbitals. Two contributions become
comparable already for the valence p orbitals. For the local potentials there is only the
direct contribution. The KS potential reproduces valence orbital energies ϵ better than two
other potentials. The average deviation from the DF values is about 3% for the KS potential,
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and 6% and 9% for the CH and S potentials, respectively. QED corrections δϵ to the s wave
energies for the CH and KS potentials are of the similar accuracy, 6% and 8% respectively,
while for S potential the errors are almost 50%. Slater screening potential is clearly the
least accurate.

Taking into account that the core relaxation is very important for the p and d waves,
the local approximation is clearly inapplicable for the QED corrections to the E1 transitions
between p and d orbitals. The results of the calculations for the s ↔ p transitions are
presented in Table 4. Again, the KS potential gives better agreement with the DF method,
than two other potentials. In most cases the difference is less, or about 10%. The only
exception is the 6s1/2 − 7p1/2 transition, where the difference is 24%. For the CH and S
potentials the average differences are about 14% and 22%, respectively.

Table 3. QED corrections δϵ to the binding energies ϵ in Cs calculated in DF approximation and with
three local potentials, core-Hartree (CH), Kohn-Sham (KS), and Slater (S). All calculations were done
using the model QED potential STY (see Ref. [19]).

Orbital Dirac-Fock Core-Hartree Kohn-Sham Slater
ϵ δϵ ϵ δϵ ϵ δϵ ϵ δϵ

(a.u.) (cm−1) (a.u.) (cm−1) (a.u.) (cm−1) (a.u.) (cm−1)

6s1/2 0.12737 −15.80 0.11998 −16.13 0.12394 −16.22 0.13573 −23.54
6p1/2 0.08562 0.80 0.08130 −0.20 0.08489 −0.17 0.08908 −0.20
6p3/2 0.08379 0.16 0.07876 −1.09 0.08278 −0.91 0.08676 −0.96
5d3/2 0.06442 2.15 0.05898 0.04 0.06041 0.07 0.07735 0.38
5d5/2 0.06453 2.03 0.05886 −0.05 0.06011 −0.09 0.07570 −0.49
7s1/2 0.05519 −4.30 0.05327 −4.71 0.05457 −4.85 0.05791 −6.40
7p1/2 0.04202 0.29 0.04060 −0.07 0.04184 −0.06 0.04334 −0.07
7p3/2 0.04137 0.05 0.03971 −0.39 0.04108 −0.32 0.04251 −0.34
6d3/2 0.03609 1.22 0.03318 0.11 0.03422 0.19 0.04152 0.24
6d5/2 0.03609 0.88 0.03311 −0.13 0.03402 −0.22 0.04106 −0.32

Table 4. Comparison of the PO QED corrections RPO to the s ↔ p transition amplitudes in Cs for
different potentials. For local potentials we also give the difference with the DF results in percent. All
calculations were performed using the model QED potential STY (see Ref. [19]).

Transition Dirac-Fock Core-Hartree Kohn-Sham Slater

RPO(6s1/2 − 6p1/2) 0.266 0.299 12% 0.281 6% 0.365 37%
RPO(6s1/2 − 6p3/2) 0.274 0.316 15% 0.296 8% 0.389 42%
RPO(6s1/2 − 7p1/2) −2.856 −2.646 7% −3.541 24% −3.000 5%
RPO(6s1/2 − 7p3/2) −1.810 −1.388 23% −1.945 7% −1.814 0%
RPO(7s1/2 − 6p1/2) −0.446 −0.417 7% −0.433 3% −0.492 10%
RPO(7s1/2 − 6p3/2) −0.373 −0.311 17% −0.341 8% −0.403 8%
RPO(7s1/2 − 7p1/2) 0.255 0.311 22% 0.284 11% 0.372 46%
RPO(7s1/2 − 7p3/2) 0.292 0.318 9% 0.289 1% 0.380 30%

We conclude that for Cs the KS potential provides higher accuracy for the QED
calculations than CH and S potentials. It should be noted, that the result of Sapirstein and
Cheng [24] for the 6s1/2 − 6p1/2 transition cited in Table 2 was obtained using KS potential.
Our KS value is closer to their value, than the DF one. Thus, the approximately 20%
difference between ab initio calculation [24] and calculations with model QED potentials
presented in Table 2 can be attributed in part to the local potential error. This once again
demonstrate the importance and usefulness of the model QED potentials for the calculations
of the QED corrections in multielectron atoms.

4. Conclusions

Many numerical methods for atomic calculations require one-electron basis sets. Here
we proposed the differential ansatz to generate virtual orbitals from the DF orbitals of
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the core and valence electrons. The number of such orbitals cannot exceed the number
of DF orbitals. More virtual orbitals can be added using B-splines, or other traditional
methods. Our test calculations for Cs showed good convergence of calculations of different
properties, including QED corrections and hyperfine structure constants.

Another possible application of our differential ansatz may be for the multiconfigura-
tional calculations of the complex polyvalent atoms. The size of the configuration space
roughly scales as MN , where M is the number of correlated electrons and N is the number
of valence and virtual orbitals in the basis set. That puts a very stringent limit on the
permissible length of the basis set for M ≳ 5. Thus, we expect that adding virtual orbitals
generated with the help of Equation (5) from the outer-core and the valence DF orbitals
will be useful for treating valence correlations in such systems. In particular, it is known,
that changing of the occupation number of the valence d shell of a transition metal, or the
valence f shell of a rare earth metal, leads to the relaxation of the whole respective shell.
To a first approximation, this relaxation can be described by the stretching transformation,
given by Equation (3). Therefore, adding a single virtual orbital, Equation (5), can describe
most of this relaxation. We plan to report results of such calculations in the near future.

We also tested three local potentials, which are often used for the QED calculations in
many-electron atoms and found out that for the lowest partial wave l = 0 the Kohn-Sham
local potential demonstrated the best agreement with the DF potential. For the higher
partial waves, the results obtained with all tested local potentials are very different from
the results obtained with the non-local DF potential. These differences are caused by the
absences of the contribution from the change of the self-consistent field induced by the
perturbation. This effect becomes dominant for the partial waves with l > 1 making
calculation of the respective QED corrections problematic. In order to improve the accuracy
of the ab initio QED calculations in heavy atoms, it is necessary to include core-relaxation
effects by going to the next order of the perturbation theory in the electron-electron interac-
tion. At present, the quantum-mechanical approach allows for more accurate treatment of
electronic correlations. In this approachl, the QED corrections can be included by means
of the effective, or model QED operators. Existing model QED potentials allow one to
account for the corrections to the electronic binding energies and the so-called ’perturbed
orbital’ corrections to the transition amplitudes. On the next step, it is necessary to construct
effective QED operators to account for the currently neglected vertex contributions.
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