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Abstract: Ab initio calculations sometimes do not reproduce the experimentally observed energy
separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a
process which seeks to ensure that calculated energy separations of the states that mix are in agreement
with experiment. The process gives more accurate measures of the mixing than can be obtained in ab
initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is
generally not the case for calculations based on jj-coupled configuration state functions. We show that
this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a
Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed
back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic
Atomic Structure Package is described and test runs to validate the program operations are reported.
The new method is applied to the computation of the 2s2 1S0− 2s2p 1,3P1 transitions in C III and to the
computation of Rydberg transitions in B I, for which the 2s2p2 2S1/2 perturber enters the 2s2ns 2S1/2

series. Improved convergence patterns and results are found compared with ab initio calculations.

Keywords: fine-tuning; multiconfiguration Dirac–Hartree–Fock; jj-coupling; LSJ-coupling; coupling
transformation

1. Introduction

Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks
to ensure that calculated energy separations of the states that mix are in agreement with
experiment. The process gives more accurate measures of the mixing than can be obtained
in an ab initio calculation and leads to more stable convergence patterns of calculated
transition parameters as the calculation is systematically improved. Starting from already
extensive calculations, fine-tuning has been used very successfully by Hibbert and co-
workers to compute highly accurate transition parameters for both intercombination and
allowed transitions [1–4]. Fine-tuning can, among other things, be used to compensate for
the fact that energies of different LS-terms, depending on if the spins of the outer electrons
are aligned or not, converge at different rates with respect to the increasing active set of
orbitals building the wave functions, see for example ([5], pp. 96–97). It thus gives more
accurate term mixings [6]. Fine-tuning can also be used to correctly position perturbers
within a Rydberg series, something that can have very large effects on the transition
rates, as well as other properties such as fine- and hyperfine structures, for neighboring
states [7,8].

Fine-tuning has been applied to LSJ-coupled multiconfiguration Hartree–Fock (MCHF)
and configuration interaction (CI) calculations within the Breit–Pauli approximation, and it
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is available as an option in the frequently used computer codes CIV3 and ATSP2K [9,10].
The tuning process has, so far, not been used for jj-coupled multiconfiguration Dirac–
Hartree–Fock (MCDHF) or relativistic configuration interaction (RCI) calculations, the rea-
son being that the Hamiltonian matrix is not diagonally dominant, and whatever tuning
is applied it by necessity has to include also off-diagonal Hamiltonian matrix elements.
In this work, we show how the problems related to off-diagonal matrix elements can be
circumvented by a scheme that transforms from jj-coupling to LSJ-coupling and then
back again.

2. Multiconfiguration Methods
Expansions over Configuration State Functions in LSJ- and jj-Coupling

In multiconfiguration methods, the wave function of an atomic state ΓJMJ , with Γ
being its identifying label, J the total angular momentum quantum number, and MJ the
total magnetic quantum number, is approximated by an atomic state function (ASF), which
is a linear combination of CSFs

Ψ(ΓJMJ) =
NCSF

∑
i=1

ciΦ(γi JMJ), (1)

where γi specifies the orbital occupancy and spin-angular coupling tree quantum numbers
of each CSF. Requiring the energy computed from the multiconfiguration expansion to
be stationary with respect to perturbations in the expansion coefficients leads to a matrix
eigenvalue problem,

(H − EI)cT = 0, (2)

where c = (c1, c2, . . . , cM) is the vector of expansion coefficients and H is the M × M
Hamiltonian matrix with elements Hij = 〈Φ(γi JMJ)|H|Φ(γj JMJ)〉 of the appropriate
Hamiltonian operator H. The latter depends on the formalism: the non-relativistic for-
malism with corrections in the Breit–Pauli approximation or the fully relativistic Dirac
formalism with the transverse photon interaction [5,11–13].

The CSFs in the non-relativistic formalism, with relativistic corrections in the Breit–
Pauli approximation, are constructed from a set of spin-orbitals

ψnlml ms(r, θ, ϕ) =
Pnl(r)

r
Ylml

(θ, ϕ)χ
(1/2)
ms ,

where Pnl(r) is the radial function, Ylml
(θ, ϕ) a spherical harmonic and χ

(1/2)
ms a spin function.

A general non-relativistic configuration consists of m groups of equivalent electrons

(n1l1)w1(n2l2)w2 . . . (nmlm)wm , N =
m

∑
i=1

wi,

where wi is the occupation number of the subshell i and N the total number of electrons.
Antisymmetric and LS-coupled functions for each group of equivalent electrons are built
from products of spin-orbitals using recursive methods in terms of coefficients of fractional
parentage (CFPs). To construct the CSFs associated with the above configuration, one
starts with the products of the antisymmetric eigenfunctions for the different groups of
equivalent electrons. With the repeated use of vector coupling expansions, we can couple
the product functions to the final total angular momenta LMLSMS. Coupling applies from
left to right and L1S1 of the first group of equivalent electrons are coupled to L2S2 of the
second group to intermediate angular momenta L12S12, which in turn is coupled to L3S3 of
the third group and so on until we obtain the final total angular momenta LS

(. . . ((L1S1L2S2)L12S12L3S3)L123S123 . . .)LMLSMS. (3)
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This procedure leads to functions which are antisymmetric with respect to co-ordinate
permutations within each subshell, but not antisymmetric with respect to permutations
between different subshells [14]. The additional antisymmetrization can, however, be
accomplished through the restricted permutations involving co-ordinate exchange only
between two different subshells such that the co-ordinate number within each subshell
remains in an increasing order. As a final step, the L and S are coupled to a final J.
This coupling we refer to as LSJ-coupling. We can now write a CSF associated with the
configuration as

Φ((n1l1)w1 α1ν1(n2l2)w2 α2ν2 L12S12(n3l3)w3 α3ν3 L123S123 . . . (nmlm)wm αmνm LS JMJ), (4)

where α and ν are additional quantum numbers needed to obtain a one-to-one classification
of the energy levels. The construction of the LSJ-coupled CSFs is detailed in [11].

The CSFs in the relativistic formalism are constructed from a set of Dirac orbitals

ψnlsjm(r, θ, ϕ) =
1
r

(
Pnlj(r) Ωlsjmj

(θ, ϕ)

i Qnlj(r) Ωl̃sjmj
(θ, ϕ)

)
, (5)

where Pnlj(r) and Qnlj(r) are the radial functions and Ωlsjmj
(θ, ϕ) are two-component spheri-

cal spinors built from the coupling of the spherical harmonics Ylml
(θ, ϕ) and the spin functions

χ
(1/2)
ms . A general relativistic configuration consists of m̃ groups of equivalent electrons

(n1l1 j1)w1(n2l2 j2)w2 . . . (nm̃lm̃ jm̃)
wm̃ , N =

m̃

∑
i=1

wi, (6)

where wi is the occupation number of the relativistic subshell i and N the total number
of electrons. The construction follows the prescription in the non-relativistic case. Anti-
symmetric and jj-coupled functions for each group of equivalent electrons are built from
products of spin-orbitals using recursive methods in terms of CFPs. To construct the CSFs
associated with the above relativistic configuration, one starts with the products of the
antisymmetric eigenfunctions for the different groups of equivalent electrons. With the
repeated use of vector coupling expansions, we can couple the product functions to the
final total angular momenta JMJ . Coupling applies from left-to-right and J1 of the first
group of equivalent electrons are coupled to J2 of the second group to intermediate angular
momenta J12, which in turn is coupled to J3 of the third group and so on until we obtain
the final total angular momenta JMJ

(. . . ((J1 J2)J12 J3)J123 . . .)JMJ . (7)

This coupling we refer to as jj-coupling. Performing restricted permutations involving
co-ordinate exchange only between two different relativistic subshells, we end up with the
most general form of a CSF

Φ((n1l1 j1)w1 α1ν1 J1 (n2l2 j2)w2 α2ν2 J2 J12(n3l3 j3)w3 α3ν3 J3 J123 . . . (nm̃lm̃ jm̃)
wm̃ αm̃νm̃ Jm̃ JMJ). (8)

The CSFs in LSJ- and jj-couplings belonging to a number of configurations constitute
two different sets of orthonormal basis functions. In the non-relativistic limit,

Pnlj(r)→ Pnl(r), and Qnlj(r)→ 0, (9)

they span the same vector space.

3. Hamiltonian Matrix in LSJ- and jj-Coupling

For light systems, where the relativistic effects are small, the CSFs in LSJ-coupling
give a Hamiltonian with small off-diagonal elements between CSFs with different LS. As a
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consequence, the CSF expansion for a state will be dominated by CSFs with the same LS
quantum numbers. These quantum numbers are to some approximation ’good’ quantum
numbers. The situation is very different in jj-coupling. There are no approximate good
quantum numbers, and there are in many cases large off-diagonal elements between CSFs.

We take the 2s2p 3P1 and 2s2p 1P1 states in C III as an illustrative example. In the
non-relativistic formalism, with relativistic corrections in the Breit–Pauli approximation,
the two states can, in the simplest approximation, be described by two CSFs (where we
have suppressed the MJ quantum number for brevity)

Φ1 = |2s2p 3P1〉 and Φ2 = |2s2p 1P1〉. (10)

Given radial orbitals from an LS averaged Hartree–Fock (HF) calculation and running
the Breit–Pauli configuration interaction (CI) program of the ATSP2K package [10] we
obtain

H =

(
−36.248683 0.000184

0.000184 −35.970479

)
. (11)

The off-diagonal matrix elements between the CSFs with different LS terms are small
compared with the difference (36.248683− 35.970479 = 0.278204) between the diagonal
matrix elements. Diagonalizing the Hamiltonian matrix gives the energies

E1 = −36.248683 Eh and E2 = −35.970479 Eh (12)

and the eigenvectors

Ψ(“2s2p 3P1”) = −0.99999978 Φ1 + 0.00066201 Φ2 (13)

and
Ψ(“2s2p 1P1”) = −0.00066201 Φ1 − 0.99999978 Φ2, (14)

where the use of quotation marks for the labels to the left highlights the fact that the
notation is just an identifying label, even though the wave function is a mixture of CSFs.

In the relativistic formalism the two states are, again in the simplest approximation,
described by

Φ1 = |(2s1/22p1/2)1〉 and Φ2 = |(2s1/22p3/2)1〉. (15)

Determining, to be as consistent as possible with the calculation above, the relativistic
orbitals in the Pauli limit [15,16]

Pnlj(r) = PHF
nl (r), Qnlj(r) =

α

2

(
d
dr

+
κ

r

)
PHF

nl (r) (16)

where

κ =

{
−(l + 1) for j = l + 1/2

+l for j = l − 1/2
(17)

and running the CI program of the fully relativistic GRASP2018 package [17] including the
Breit interaction yields the following Hamiltonian

H =

(
−36.063028 0.131089

0.131089 −36.156113

)
. (18)

Now the off-diagonal matrix elements between the CSFs are of the same magnitude as
the difference (36.156113− 36.063028 = 0.09308) between the diagonal matrix elements.
Diagonalizing the Hamiltonian gives the energies

E1 = −36.248677 Eh and E2 = −35.970464 Eh (19)
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and the eigenvectors

Φ(“2s2p 3P1”) = 0.81687864 Φ1 − 0.57680957 Φ2 (20)

and
Φ(“2s2p 1P1”) = 0.57680957 Φ1 + 0.81687864 Φ2. (21)

The energies are essentially the same as for the MCHF and Breit–Pauli calculation.
The small differences can be attributed to differences in the order to which relativistic
effects are included. The eigenvector composition, however, is totally different from the
LSJ-coupling case.

4. Transition Parameters in LSJ- and jj-Coupling

The differences in eigenvector composition between the LSJ- and jj-coupling schemes
have a huge impact on the computation of transition rates. For simplicity, we restrict the
discussion to electric dipole (E1) transitions in the long wavelength approximation. The
different transition parameters, line strength, transition rates, oscillator strengths, for a
transition from an upper state Γ′ J′MJ′ to any of the 2J + 1 states ΓJMJ , MJ = −J,−J +
1, . . . , J of a lower energy level are proportional to the line strength

S(Γ′ J′, ΓJ) = |〈Ψ(Γ′ J′)‖D(1)‖Ψ(ΓJ)〉|2, (22)

where D(1) is the dipole operator in length or velocity gauge (Babushkin and Coulomb
gauge in relativistic theory), see [5,13,18]. The factors of proportionality are mixtures of
powers of the transition energy ∆E, statistical factors and physical constants, depending on
the type of the parameter and gauge.

The dynamical range of E1 transitions is huge, and the transitions are most often sorted
in different categories. LS-allowed transitions are normally strong and occur between states
for which the dominant components in LSJ-coupling fulfill the selection rules. LS-forbidden
transitions, or intercombination transitions, are often weak and occur between states for
which the dominant component in LSJ-coupling breaks one of the above selection rules.
If ∆S = 1 we talk about a spin-forbidden transition.

To fully appreciate the differences between the computations of transition rates in
LSJ- and jj-coupling schemes, we look at the line strength in the length (Babushkin) gauge
for the 2s2 1S0 − 2s2p 3P1 intercombination transition in C III. Approximating the 2s2 1S0
ground state with a single CSF, |2s2 1S0〉, and using the expansion given in Equation (13)

Ψ(“2s2p 3P1”) = −0.99999978 |2s2p 3P1〉+ 0.00066201 |2s2p 1P1〉 (23)

we have
S(1S0, 3P1) = |0.00066201 〈2s2 1S0‖D(1)‖2s2p 1P1〉|2 , (24)

where we have used that the electric dipole transition matrix element between states with
different spins is zero. The reduced transition matrix element between the singlet states is

〈2s2 1S0‖D(1)‖2s2p 1P1〉 = 1.873529, (25)

which yields S(1S0, 3P1) = 1.538332 × 10−6. From Equation (24) it is now clear the
smallness of the line strength comes from the smallness of the 1P1 mixing into the wave
function of the 2s2p 3P1 state. The situation is very different in jj-coupling; see [19] for an
excellent discussion. Now

Ψ(“2s2p 3P1”) = 0.81687864 |(2s1/22p1/2)1〉 − 0.57680957 |(2s1/22p3/2)1〉 (26)
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and we have

S(1S0, 3P1) = |0.81687864 〈(2s2
1/2)0‖D(1)‖(2s1/22p1/2)1〉 (27)

−0.57680957 〈(2s2
1/2)0‖D(1)‖(2s1/22p3/2)1〉|2.

The reduced transition matrix elements are

〈(2s2
1/2)0‖D(1)‖(2s1/22p1/2)1〉 = 1.081695, 〈(2s2

1/2)0‖D(1)‖(2s1/22p3/2)1〉 = 1.529757 (28)

which gives S(1S0, 3P1) = 1.525381× 10−6, in perfect agreement with the value above. In
this case, the smallness of the line strength comes from subtraction of two large, but al-
most cancelling, contributions. We have a numerically ill-conditioned problem with a
cancellation of three orders of magnitude. Even a small change of the mixing coefficients,
due to added electron correlation or fine-tuning, may have an appreciable effect on the
line strength.

5. Transformation between Coupling Schemes

We denote the CSF basis in jj-coupling belonging to one or more relativistic config-
urations by Φ = (Φ1, Φ2, . . . , Φm)T and the corresponding CSF basis in LSJ-coupling by
Φ̂ = (Φ̂1, Φ̂2, . . . , Φ̂m)T. The two bases are related through

Φ̂ = TT
LSJ,jj Φ, (29)

where TLSJ,jj is the coupling transformation matrix. For two-electron systems, there are
simple analytical expressions for the transformation matrix; see ([20], p. 249). In the general
many-electron case, the transformation matrix is computed with a modified version of the
jj2lsj program [21] in which TLSJ,jj ≡ 〈γs JP‖γrLrSr JP〉 ([22], Equation (5)) is expressed
in terms of the transformation between the jj- and LSJ-couplings of the subshells and
additionally taking into account the transformations between the jj- and LSJ-couplings in-
side the subshell states 〈lwανLSJ|(lw1

− ν1 J1, l(w−w1)
+ ν2 J2) J〉 with the same l orbital quantum

number ([21], Equation (3)). For more information about the transformation, see [23–26].
An atomic state function Ψ can be expressed in both the Φ base and the Φ̂ base

Ψ = c1Φ1 + c2Φ2 + . . . + cmΦm = ĉ1Φ̂1 + ĉ2Φ̂2 + . . . + ĉmΦ̂m. (30)

Given the transformation matrix, the vector c with expansion coefficients in the jj-
coupled basis is transformed to a vector ĉ in the LSJ-coupled basis according to

ĉ = T−1
LSJ,jj c. (31)

Using the fact that the transformation between two orthonormal bases is unitary, we
have T−1

LSJ,jj = TT
LSJ,jj and

ĉ = TT
LSJ,jj c. (32)

The Hamiltonian matrix H in the jj-coupled basis with elements Hij = 〈Φi|H|Φj〉
is transformed to a matrix Ĥ in the LSJ-coupled basis with elements Ĥij = 〈Φ̂i|H|Φ̂j〉
according to

Ĥ = T−1
LSJ,jj H TLSJ,jj. (33)

With the use of T−1
LSJ,jj = TT

LSJ,jj this can also be written

Ĥ = TT
LSJ,jj H TLSJ,jj. (34)

The jj- to LSJ-coupling transformation changes the wave function representationand
also the Hamiltonian matrix. The wave functions themselves, along with computed proper-
ties, remain invariant.
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6. Fine-Tuning of Eigenvalues

All atomic calculations are approximate. Depending on the scale of the calculation
(number of CSFs, size of orbital set and the amount of included correlation effects) and
complexity of the atomic system, the observed excitation or transition energies may be
predicted more or less accurately. Known problematic cases are transition energies between
states with different total spins. States where the spins of the outer electrons line up to give
maximal spin quantum numbers are in general associated with less electron correlation
energy than states where they do not line up. This often leads to cases where the energies
of high spin states are too low in comparison with the energies of low spin states ([5],
pp. 96–97). Other known problematic cases are perturber states in Rydberg sequences,
where, depending on the case, the perturber state may be too low or too high in relation
to the Rydberg states [7,8]. It is in general very hard to optimize a balanced orbital set
that accurately positions perturber states in the often rather densely spaced Rydberg series.
A failure to accurately predict the energy structure most often translates to uncertain
transition rates.

Fine-tuning is a semi-empirical correction process that is applied to the diagonal
elements of the M × M Hamiltonian matrix in Equation (2) in order to rectify the CSF
expansion coefficients and improve computed energy separations and transition param-
eters. Let, closely following Hibbert [3], Φ1 and Φ2 be single CSFs or CSF expansions
approximately describing two states. We now want to add another CSF Φ3 to improve the
representation of the second state, where, for simplicity, we assume 〈Φ1|H|Φ3〉 = 0. This
gives a Hamiltonian of the form  A h 0

h B f
0 f C

 (35)

where, as a consequence of the fact that Φ1 and Φ2 approximately describes the two states,
|h| � |A− B|. We now diagonalize the 2× 2 submatrix associated with the Φ2 and Φ3
interaction to obtain the diagonal matrix(

B′ 0
0 C′

)
(36)

and the eigenvectors

Φ′2 = αΦ2 + βΦ3 and Φ′3 = −βΦ2 + αΦ3 (37)

with α2 + β2 = 1. Typically, | f | � |B − C|, which, to a good approximation, gives the
eigenvalues

B′ = B +
f 2

B− C
and C′ = C− f 2

B− C
. (38)

The coefficients of the eigenfunctions are, again to a good approximation, given by

α =
1√

1 + x2
and β = αx =

x√
1 + x2

, (39)

where x = f /|B− C|. In the Φ1, Φ′2, Φ′3 basis, the Hamiltonian becomes A q p
q B′ 0
p 0 C′

 (40)

with
p = 〈Φ1|H|Φ′3〉 = −βh = −αhx and q = 〈Φ1|H|Φ′2〉 = αh. (41)
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Since x � 1 we infer that α ≈ 1, q ≈ h and |p| � |q|. The major effect of the
interaction with Φ3 is thus a change of the original 2× 2 submatrix associated with the Φ1
and Φ2 interaction (

A h
h B

)
→
(

A q
q B′

)
. (42)

We now understand the mechanism by which fine-tuning works: the inclusion of an
extra CSF Φ3 can instead be effected to a good approximation by a change to the diagonal
matrix element B. In the general context, aiming for several states, and where we want to
correct their relative positions, we tune the diagonal matrix elements in the Hamiltonian
matrix. The requirements are that the off-diagonal matrix elements are small relative to the
differences in the diagonal matrix elements.

7. Fine-Tuning of Eigenvalues in LSJ-Coupling

We apply the fine-tuning process to the 2s2p 3P1 and 2s2p 1P1 states in C III. The
Hamiltonian matrix for the two LSJ-coupled CSFs in the Breit–Pauli approximation is
given in Equation (11). As discussed in the introduction, there is more electron correlation
in the 2s2p 1P1 state than in 2s2p 3P1 and in the limited two CSF calculation the 2s2p 1P1
state is far too high relative to 2s2p 3P1 (∆E = E2 − E1 = 61,055.99 cm−1 compared
with ∆E = 49,961.29 cm−1 from NIST). To bring the 2s2p 1P1 state down, we subtract
61,056 − 49,961 = 11,095 cm−1 from the corresponding diagonal matrix element to yield

H =

(
−36.248683 0.000184

0.000184 −36.021031

)
. (43)

Diagonalizing the Hamiltonian matrix gives the energies

E1 = −36.248683 Eh and E2 = −36.021031 Eh. (44)

The energy difference is ∆E = E2 − E1 = 49,961.51 cm−1, in good agreement with
what we aimed for. The change in the diagonal matrix element leads to modified eigenvalue
compositions

Ψ(“2s2p 3P”, J = 1) = −0.99999967 Φ1 + 0.00080901 Φ2 (45)

and
Ψ(“2s2p 1P”, J = 1) = −0.00080901 Φ1 − 0.99999967 Φ2. (46)

Fine-tuning affects the transition parameters in two ways: firstly, the fine-tuned
energy modifies the energy factor ∆E that is multiplied with the line strength to obtain,
e.g., transition rates and oscillator strengths, and secondly, the line strength changes due to
the fact that the mixing coefficients change.

8. Fine-Tuning of Eigenvalues in jj-Coupling

Fine-tuning is not directly applicable in the jj-coupled case due to the fact that a state
is not well described by a single CSF; it is a combination of two or more CSFs that describes
the state. This means that we have large off-diagonal matrix elements, and a tuning of the
diagonal matrix elements will not result in the desired energy separations. To circumvent
the problems of fine-tuning in jj-coupling, we have developed a method in which the
Hamiltonian in the jj-coupled basis is transformed to a matrix in the corresponding LSJ-
coupled basis, for which now the prerequisites for fine-tuning often, but not always, are
fulfilled. We fine-tune by modifying the diagonal matrix elements and transform back to
a matrix in the jj-coupled basis. This in effect modifies both diagonal and off-diagonal
Hamiltonian matrix elements. The procedure can be summarized as follows:



Atoms 2023, 11, 70 9 of 21

• arrange the full CSF expansion so that the CSFs in the multireference (MR) come first.
• compute the coupling transformation matrix TLSJ,jj between the jj-coupled CSFs in

the MR and the corresponding LSJ-coupled CSFs.
• perform a relativistic CI calculation for the full CSF expansion. Save the Hamiltonian

on disk in sparse format.
• read and transform the Hamiltonian submatrix corresponding to the CSFs in the MR

from jj-coupling (Hjj) to LSJ-coupling (HLSJ) according to

HLSJ = TT
LSJ,jj Hjj TLSJ,jj. (47)

• allow the user to fine-tune the diagonal elements of HLSJ to yield Hft
LSJ .

• transform the fine-tuned Hamiltonian matrix Hft
LSJ back to jj-coupling according to

Hft
jj = TLSJ,jj Hft

LSJ TT
LSJ,jj (48)

and merge it into the Hamiltonian saved on disk.
• perform a relativistic CI calculation for the full CSF expansion based on the Hamilto-

nian for which the submatrix corresponding to the CSFs in the MR was modified.

9. Program Implementation

The procedure for fine-tuning in jj-coupling is implemented in the GRASP2018 pack-
age [17] through the new programs jj2lsj_2022 and rfinetune, both publically available
at the GRASP GitHub repository at https://github.com/compas, accessed on 27 March 2023.
The programs assume that an rci calculation has been performed for a CSF expansion (list),
where the CSFs in the MR appear first in the list, so that a restart file, rci.res, containing
the Hamiltonian matrix in sparse format is available, (see [27], Section 6.7). If an MPI run
has been performed using the rci_mpi program, the Hamiltonian is distributed, and in
this case there is one restart file per processor residing in the directories defined by the
disks file, see ([27], Section 6.4). In addition, the CSFs in the MR should be available in
a separate list. The jj2lsj_2022 program reads the jj-coupled CSFs in the MR list and
generates the corresponding LSJ-coupled CSFs that are saved to file. In addition, the pro-
gram computes the transformation matrix between the jj-coupled CSFs in the MR and
the corresponding LSJ-coupled CSFs and writes it to a binary file .lsj.T. The rfinetune
program reads the list of LSJ-coupled CSFs, the transformation matrix and the Hamiltonian
submatrix corresponding to the CSFs in the MR from the rci.res file. The Hamiltonian
submatrix is transformed from jj- to LSJ-coupling. For each LSJ-coupled CSF, the user
has the opportunity to fine-tune the corresponding diagonal matrix element of the trans-
formed Hamiltonian with a prescribed energy that is entered in cm−1. After the tuning,
the program transforms the Hamiltonian submatrix back to jj-coupling and inserts it into
the rci.res file. Finally, running the rci (or rci_mpi) program in restart mode, so that all
matrix elements are read from the updated rci.res file, yields the fine-tuned energies and
the modified expansion coefficients of the CSFs in the full list.

10. Test-Run

We test the new programs on the 2s2 1S0, 2s2p 1P1 and 2s2p 3P0,1,2 states in C III
and aim to fine-tune the submatrix corresponding to the MR of the odd states. We save,
for future use, the MR list of the odd states in a file DF_odd.c. The file is shown below.

Core subshells:

Peel subshells:
1s 2s 2p- 2p

CSF(s):
1s ( 2) 2s ( 1) 2p-( 1)

1/2 1/2

https://github.com/compas
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0-
*
1s ( 2) 2s ( 1) 2p ( 1)

1/2 3/2
1-

1s ( 2) 2s ( 1) 2p-( 1)
1/2 1/2

1-
*
1s ( 2) 2s ( 1) 2p ( 1)

1/2 3/2
2-

Some preparatory work is needed, and we start by generating a set of radial orbitals up
to n = 7 ({7s, 7p, . . . , 7h, 7i}) in extended optimal level (EOL) MCDHF calculations based
on CSF expansions accounting for valence–valence electron correlation of the above even
and odd states. The MCDHF calculations are followed by an rci_mpi calculation using,
in this test-run, four processors for the even 2s2 1S0 state accounting for the Breit interaction.
The CSF list and the wave function file for the 2s2 1S0 state are saved in 2s2.c and 2s2.w
and the rci_mpi calculation outputs the 2s2.cm mixing file. The rci_mpi calculation for
the even state is followed by an rci_mpi calculation, again using four processors, for the
odd 2s2p 1P1, 2s2p 3P0,1,2 states accounting for the Breit interaction. The CSF list and the
wave function file for the odd states are saved in 2s2p.c and 2s2p.w and the rci_mpi
calculation outputs the 2s2p.cm mixing file. The rci_mpi calculation for the odd states
using four processors also gives four restart files rci000.res, rci001.res, rci002.res,
rci003.res containing the Hamiltonian matrix in sparse format. The files reside in the
directories set by the disks file. For the rci_mpi calculation of the odd states we used the
rcsfzerofirst program to ensure that the CSFs in the MR came first in the list, see ([27],
Section 14.1). The excitation energies from the rci_mpi calculations are shown in Table 1
together with the experimental energies from the NIST the database [28].

Table 1. Excitation energies from rci_mpi calculations compared with experimental energies from
the NIST database. The differences give how much the energies of the odd states should be fine-tuned
to be in accordance with the experimental energies.

---------------------------------------------------------------------------
No Pos J Parity Configuration RCI NIST fine-tune

(cm^-1) (cm^-1) (cm^-1)
---------------------------------------------------------------------------

1 1 0 + 2s(2)_1S 0.00 0.00
2 1 0 - 2s_2S.2p_3P 52463.43 52367.06 -96
3 1 1 - 2s_2S.2p_3P 52486.91 52390.75 -96
4 1 2 - 2s_2S.2p_3P 52543.19 52447.11 -96
5 2 1 - 2s_2S.2p_1P 102530.94 102352.04 -179

---------------------------------------------------------------------------

The last column gives how much the energies of the odd states should be fine-tuned to
be in accordance with the experimental energies. The main observation is that the 2s2p 3P
states are somewhat too high compared with the 2s2 1S0 ground state and should be pushed
down. The 2s2p 1P1 state is also somewhat too high and should be pushed down.

We are now in the position to fine-tune and start by running jj2lsj_2022 for the four
CSFs in the MR saved in DF_odd.c to obtain the corresponding LSJ-coupled CSFs along
with the transformation matrix.
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***********************************************************************
* RUN JJ2LSJ_2022 TO OBTAIN TRANSFORMATION MATRIX *
* AND LSJ-COUPLING CSFs LIST *
* INPUT FILES: name.c, name.(c)m *
* (optional) name.lsj.T *
* OUTPUT FILES: name.lsj.lbl *
* (optional) name.lsj.c, name.lsj.j,name.uni.lsj.lbl, *
* name.uni.lsj.sum, name.lsj.T *
***********************************************************************

>>jj2lsj_2022

jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LS-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2022).
Input files: name.c, name.(c)m
(optional) name.lsj.T

Ouput files: name.lsj.lbl,
(optional) name.lsj.c, name.lsj.j,

name.uni.lsj.lbl, name.uni.lsj.sum,
name.lsj.T

Name of state
>>DF_odd
Loading Configuration Symmetry List File ...
There are 4 relativistic subshells;
There are 4 relativistic CSFs;
... load complete;

Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)

>>n
nelec = 4
ncftot = 4
nw = 4
nblock = 3

block ncf nev 2j+1 parity
1 1 1 1 -1
2 2 2 3 -1
3 1 1 5 -1

Default settings? (y/n)
>>n
All levels (Y/N)

>>y
Maximum % of omitted composition

>>0.0
What is the value below which an eigenvector composition
is to be neglected for printing?

>>0.0
Do you need the transformation output file *.lsj.T? (y/n)

>>y
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Below 1.0E-16 the eigenvector component is to be neglected for
calculating Below 0.0E+00 the eigenvector composition is to be
neglected for~printing

............

Finish Date and Time:
Date (Yr/Mon/Day): 2022/02/01
Time (Hr/Min/Sec): 20/34/08.044
Zone: +0800

jj2lsj: Execution complete.

The four LSJ-coupled CSFs generated by jj2lsj_2022 are available in the file
DF_odd.lsj.c, which is displayed below.

1s( 2) 2s( 1) 2p( 1)
1S0 2S1 2P1 2S 3P
*
1s( 2) 2s( 1) 2p( 1)

1S0 2S1 2P1 2S 1P
1s( 2) 2s( 1) 2p( 1)

1S0 2S1 2P1 2S 3P
*
1s( 2) 2s( 1) 2p( 1)

1S0 2S1 2P1 2S 3P
*

We now run the rfinetune program. The program reads the list of LSJ-coupled CSFs,
the transformation matrix and the Hamiltonian submatrix corresponding to the CSFs in the
MR from the rci000.res, rci001.res, rc1002.res and rci003.res files. The Hamiltonian
submatrix is transformed from jj-coupling to to LSJ-coupling. For each LSJ-coupled CSF,
the user has the opportunity to fine-tune the corresponding diagonal matrix element of the
transformed Hamiltonian with a prescribed energy.

***********************************************************************
* RUN RFINETUNE TO FINE-TUNE THE HAMILTONIAN MATRIX FROM *
* THE RCI_MPI RUN ON FOUR PROCESSORS *
* INPUT FILES: rci000.res, rci001.res, rci002.res, rci003.res, *
* DF_odd.lsj.T,DF_odd.lsj.T,DF_odd.c *
* OUTPUT FILE: rci000.resnew, rci001.resnew, *
* rci002.resnew, rci003.resnew *
***********************************************************************

>>rfinetune

RFINETUNE
This is the rfinetune program
Input files: rci.res, name.lsj.T, name.lsj.c,name.c
Output files: rci.resnew

Transformation matrix is from calculation of:
0--serial
1--parallel

>>1
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Name of MR state:
>>DF_odd
rci.res is from parallel calculation...
Name of the temporary directory: (e.g.’/home/user/tmp/’)

>>’/home/ytli/tmp/’
There are 4 files in the temp directory...

BLOCK 1
No. in LSJ-couping = 1

1s( 2) 2s( 1) 2p( 1)
1S0 2S1 2P1 2S 3P

How many diagonal elements should be finetuned:
>>1
Give serial the number of the CSF in LSJ-couping you should
fine-tune together with the energy change in cm-1

>>1,-96

BLOCK 2
No. in LSJ-couping = 1

1s( 2) 2s( 1) 2p( 1)
1S0 2S1 2P1 2S 1P

No. in LSJ-couping = 2
1s( 2) 2s( 1) 2p( 1)

1S0 2S1 2P1 2S 3P
How many diagonal elements should be fine-tuned:

>>2
Give the serial number of the CSF in LSJ-couping you should
fine-tune together with the energy change in cm-1

>>1,-179
Give the serial number of the CSF in LSJ-couping you should
fine-tune together with the energy change in cm-1

>>2,-96

BLOCK 3
No. in LSJ-couping = 1

1s( 2) 2s( 1) 2p( 1)
1S0 2S1 2P1 2S 3P

How many diagonal elements should be fine-tuned:
>>1
Give serial the number of the CSF in LSJ-couping you should
fine-tune together with the energy change in cm-1

>>1,-96
Created rcixxx.resnew in /home/ytli/tmp/

The modified matrix elements corresponding to the CSFs in the MR are merged into the
full set of matrix elements and written to rci000.resnew, rci001.resnew, rc1002.resnew
and rci003.resnew. These files should be renamed before running rci_mpi in restart
mode.

***********************************************************************
* RENAME ALL THE FINE-TUNED RESTART FILES ASSUMING THAT THE *
* RESTART FILES RESIDE IN /home/ytli/tmp/ *
* CHECK THE DISKS FILE IN YOUR OWN CASE *
***********************************************************************
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>>rename resnew res /home/ytli/tmp/*/*

We now run rci_mpi on four processors in restart mode, see ([27], Section 6.7). The
restart mode means that the full Hamiltonian is read from the restart files and the only
operation of the program is to diagonalize the Hamiltonian matrix.

***********************************************************************
* RUN RCI_MPI IN RESTART MODE USING 4 PROCESSORS *
* INPUT FILES: isodata, 2s2p.c, 2s2p.w *
* rci000.res, rci001.res, rci002.res, rci003.res *
* OUTPUT FILES: 2s2p.cm, 2s2p.csum, 2s2p.clog *
* THIS IS A RESTART THAT READS THE rcixxx.res file *
***********************************************************************

>>mpirun -np 4 rci_mpi

====================================================
RCI_MPI: Execution Begins ...

====================================================
Participating nodes:

Host: node84 ID: 000
Host: node84 ID: 001
Host: node84 ID: 002
Host: node84 ID: 003

Start Dir:
node84: /home/ytli/data_node238/CIII/mpitest
node84: /home/ytli/data_node238/CIII/mpitest
node84: /home/ytli/data_node238/CIII/mpitest
node84: /home/ytli/data_node238/CIII/mpitest

Serial I/O Dir (node-0 only):
node84: /home/ytli/data_node238/CIII/mpitest

Work Dir (Parallel I/O):
node84: /home/ytli/tmp
node84: /home/ytli/tmp
node84: /home/ytli/tmp
node84: /home/ytli/tmp

Default settings?
>>n
Name of state:

>>2s2p
Block 1 , ncf = 9744
Block 2 , ncf = 27532
Block 3 , ncf = 40692
Loading CSF file ... Header only
There are/is 49 relativistic subshells;
Restarting RCI90 ?

>>y
Estimate contributions from the self-energy?

>>n

.........
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mpi stopped by node- 0 from RCI_MPI: Execution complete.
mpi stopped by node- 1 from RCI_MPI: Execution complete.
mpi stopped by node- 2 from RCI_MPI: Execution complete.
mpi stopped by node- 3 from RCI_MPI: Execution complete.

To display the energy separations after fine-tuning, we use the rlevels program,
see ([27], Section 6.1).

***********************************************************************
* READ THE *.cm FILES AND DISPLAY THE ENERGIES *
***********************************************************************

>>rlevels 2s2.cm 2s2p.cm

nblock = 1 ncftot = 9788 nw = 49 nelec = 4
nblock = 3 ncftot = 77968 nw = 49 nelec = 4

Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor

--------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration

(a.u.) (cm^-1) (cm^-1)
--------------------------------------------------------------------------

1 1 0 + -36.5052083 0.00 0.00 1s(2).2s(2)_1S
2 1 0 - -36.2666030 52367.82 52367.82 1s(2).2s_2S.2p_3P
3 1 1 - -36.2664960 52391.30 23.48 1s(2).2s_2S.2p_3P
4 1 2 - -36.2662396 52447.57 56.28 1s(2).2s_2S.2p_3P
5 2 1 - -36.0388389 102356.24 49908.67 1s(2).2s_2S.2p_1P

--------------------------------------------------------------------------

The energies are now in very good agreement with the experimental energies from
NIST. The remaining differences are due to interactions that have not been catered for. If
deemed important, the fine-tuning can be redone to improve the energies further.

11. Applications

In this section, we apply fine-tuning for the computation of the 2s2 1S0 − 2s2p 1,3P1
transition rates in C III and for investigating the effect of the 2s2p2 2S1/2 perturber on the
lifetimes of the 2s2ns 2S1/2 (n = 3− 7) Rydberg states in B I.

11.1. Transition Rates in C III

The calculations for C III proceed as in the test-run. The radial orbitals were generated
in EOL MCDHF calculations optimizing simultaneously on the even and odd state levels
based on CSF expansions generated by SD excitations to an active set of orbitals with the
restriction that the 1s2 core electrons are kept fixed. The active set of orbitals was increased
layer-by-layer up to n = 7 ({7s, 7p, . . . , 7h, 7i}), resulting in 133 CSFs of even parity and
760 CSFs of odd parity. The MCDHF calculations were followed by separate rci_mpi
calculations for the even and odd state CSF expansions generated by SDT excitations to an
active set of orbitals with the restriction that there should never be more than one excitation
from the 1s2 core. The rci_mpi calculation includes the Breit interaction. The resulting
expansions consisted of 9 788 and 77 968 CSFs for even and odd parity, respectively. Fine-
tuning was applied to all rci_mpi calculations for the odd states based on the 2s2p MR.
The excitation energies and the root-mean-square deviations, σM, between our results and
the experimental energies from the NIST database [28] are shown in Table 2 as functions
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of the increasing set of orbitals. The fine-tuned energies are all close to the experimental
energies from the NIST database [28]. The ab initio energies, especially the energy for
2s2p 1P1, are rather far away from the experimental energies for the small orbital sets
(n = 3, 4), but improve as the orbital set is increased. Even for n = 7, some energy
differences remain for the ab initio calculation. For variational calculations, the convergence
of the energy differences is not always smooth, but the differences may increase or decrease
a little between the orbital layers depending on where the orbitals are localized. In this case
we see that the excitation energies become a little worse when going from n = 6 to n = 7.
The overall trend is however to approach the experimental energies. The tendency for the
energy differences from ab initio calculations to jump up and down is a further argument
for fine-tuning.

Table 2. Convergence of C III excitation energies in (cm−1) from ab initio and fine-tuned CI calcula-
tions based on increasing sets of orbitals. The root-mean-square deviations, σM , between our results
and the experimental energies from the NIST database are also given.

State
Ab Initio Fine-Tuned

NIST
n ≤ 3 n ≤ 4 n ≤ 5 n ≤ 6 n ≤ 7 n ≤ 3 n ≤ 4 n ≤ 5 n ≤ 6 n ≤ 7

2s2 1S0 0 0 0 0 0 0 0 0 0 0 0
2s2p 3P0 52,321.81 52,445.12 52,411.16 52,407.97 52,463.43 52,366.94 52,367.32 52,367.24 52,367.23 52,367.82 52,367.06
2s2p 3P1 52,344.14 52,468.08 52,434.34 52,431.32 52,486.91 52,390.57 52,391.08 52,390.92 52,390.89 52,391.30 52,390.75
2s2p 3P2 52,398.05 52,523.24 52,490.00 52,487.35 52,543.19 52,446.97 52,447.43 52,447.27 52,447.31 52,447.57 52,447.11
2s2p 1P1 104,112.00 102,962.02 102,613.81 102,517.46 102,530.94 102,395.09 102,366.93 102,358.33 102,356.05 102,356.24 102,352.04

σM 880.92 312.23 136.21 89.86 122.24 21.53 7.45 3.15 2.01 2.16

As discussed in Section 4, fine-tuning affects the calculated transition parameters
in two ways: through the corrected transition energies ∆E that enter as multiplicative
factors and through the modification of the expansion coefficients. The transition rates
for 2s2 1S0 − 2s2p 1P1 and 2s2 1S0 − 2s2p 3P1 are shown in Table 3 as functions of the
increasing set of orbitals. In accordance with what has been reported in the literature
for MCHF-BP calculations, the convergence to final values are faster for the fine-tuned
calculations compared with the ab initio calculations. In this case, we see no tendency
of the fine-tuning process to “over-correct” for inaccuracies in energy separations, as is
sometimes the case [1].

Table 3. The 2s2 1S0 − 2s2p 1,3P1 transition rates in C III as functions of the increasing orbital set from
ab initio and fine-tuned CI calculations.

Method Orbitals 2s2 1S0 − 2s2p 1P1 2s2 1S0 − 2s2p 3P1

ab initio

n ≤ 3 1.86× 109 8.73× 101

n ≤ 4 1.80× 109 9.59× 101

n ≤ 5 1.78× 109 1.00× 102

n ≤ 6 1.77× 109 1.02× 102

n ≤ 7 1.77× 109 1.03× 102

fine-tuned

n ≤ 3 1.77× 109 9.56× 101

n ≤ 4 1.77× 109 9.80× 101

n ≤ 5 1.77× 109 1.01× 102

n ≤ 6 1.77× 109 1.02× 102

n ≤ 7 1.77× 109 1.03× 102

experiment 1.77× 109 a 1.0294(14)× 102 b

a NIST [28], b Reference [29].

11.2. Lifetimes of the 2s2ns 2S1/2 Rydberg States in B I

The energy level structure for B I, given in Figure 1, is similar to that of a one-electron
system. The ground configuration is 1s22s22p, and higher states are formed by excitation
of the 2p electron. In addition, the 1s22s2p2 configuration gives rise to a few states below
the ionization energy. The presence of these states, especially 1s22s2p2 2S1/2, causes pertur-
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bations of close-lying states of the same symmetry. This can be observed as irregularities in
the energy positions of the levels. The perturbation can also have a strong effect on lifetime
values. In an unperturbed sequence, lifetime values can be expected to increase regularly
with the principal quantum number. There are more electron correlation for the states of
the 1s22s2p2 perturber than there are for the Rydberg states, and very large and balanced
calculations are required to place the perturbers at the right position. This is a case where
fine-tuning is very valuable.
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Figure 1. Energy-level diagram for neutral boron. The 2s2p2 2S1/2 perturber is embedded in the
ns 2S1/2 Rydberg series, with high impact on the lifetimes of the nearby states.

The radial functions of B I are from EOL MCHF calculations using the ATSP2K
package [10]. Separate calculations were performed for the 2S and 2P states. The calcula-
tions for 2S targeted the 2s2ns 2S (n = 3− 7) Rydberg states and the 2s2p2 2S perturbing
state and were based on complete active space (CAS) expansions with 1s2 as a closed core.
The orbital set was systematically increased to {12s, 8p, 8d, 8 f , 8g, 7h}. The calculations for
2P targeted the 2s2np 2P (n = 3− 6) Rydberg states and were based on CAS expansions with
1s2 as a closed core. The orbital set was systematically increased to {8s, 12p, 8d, 8 f , 8g, 7h}.
The rwfnmchfmcdf program was used to convert the non-relativistic radial orbitals to rela-
tivistic ones in GRASP format, see [27], Sections 3.3 and 6.2. The MCHF calculations were
followed by separate rci_mpi calculations for the even and odd state CSF expansions,
accounting also for the Breit interaction. The energies from the rci_mpi calculations are
displayed in Table 4 from which we see that the 2s2p2 2S1/2 perturbing state is too high
and in the wrong position in the Rydberg series. To correct for this, fine-tuning was applied
for the even states based on the 2s2ns 2S1/2 (n = 3− 7) and 2s2p2 2S1/2 MR. Even in LSJ-
coupling, the states are heavily mixed with relatively large off-diagonal matrix elements,
see [8]. Due to this strong mixing, the fine-tuning had to be carried out iteratively before a
good agreement with the experimental energies were found. The fine-tuned energies are
displayed in Table 4. Now the agreement with the experimental energies from the NIST
database [28] is good, and the perturber is in the correct position between the 6s 2S1/2 and
7s 2S1/2 Rydberg states.

The position of the perturber has a dramatic effect on the computed lifetimes of the
2S states as is seen in Table 5. In the ab initio calculation, the 2s2p2 2S1/2 short-lived
perturber is too high relative to the 2s2ns 2S1/2 (n = 3− 7) Rydberg states, which results
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in erroneously weak mixing into the latter. The weak mixing leads to lifetimes of the
Rydberg states that are too long. The fine-tuning brings the perturber into the correct
position with a corresponding increased mixing into the 2s2ns 2S1/2 (n = 3− 7) Rydberg
states, which are now considerably more short-lived, in good agreement with the lifetime
measurements by Lundberg et al. [8] using laser-induced fluorescence. The effect of the
increased mixing is more pronounced for the higher Rydberg states, but can be traced
back also to the low 2s23s 2S1/2 and 2s24s 2S1/2 states. The effect of the fine-tuning on the
lifetime of the perturber itself is small.

Table 4. Energies (in cm−1) for B I from ab initio and fine-tuned CI calculations compared with
experimental energies from the NIST database [28].

State Ab Initio Fine-Tuned NIST

1s22s22p 2Po
1/2 0 0 0

1s22s22p 2Po
3/2 14.51 15.287

1s22s23s 2S1/2 39,800.91 40,038.65 40,039.6907
1s22s23p 2Po

1/2 48,520.93 48,611.8663
1s22s23p 2Po

3/2 48,522.60 48,613.6486
1s22s24s 2S1/2 54,707.61 55,012.88 55,010.2338
1s22s24p 2Po

1/2 57,669.26 57,786.4336
1s22s24p 2Po

3/2 57,669.86 57,787.0683
1s22s25s 2S1/2 59,860.42 60,146.56 60,146.414
1s22s25p 2Po

1/2 61,306.69 61,433.59
1s22s25p 2Po

3/2 61,306.97 61,433.59
1s22s26s 2S1/2 62,254.45 62,476.47 62,482.167
1s22s26p 2Po

1/2 63,129.71 63,263.24
1s22s26p 2Po

3/2 63,129.87 63,263.24
1s22s2p2 2S1/2 65,102.64 63,464.94 63,560.638
1s22s27s 2S1/2 63,526.70 64,166.09 64,156.017

Table 5. Lifetimes (in ns) for the 2s2ns 2S1/2 Rydberg sequence in neutral boron from ab initio and
fine-tuned CI calculations compared with experimental lifetimes and lifetimes from other theory.

State Ab Initio Fine-Tuned Experiment MCHF

2s23s 2S1/2 4.11 3.99 4.0 (2) a 3.97 b

2s24s 2S1/2 9.86 8.67 8.7 (4) a 8.59 b

2s25s 2S1/2 17.6 12.2 11.0 (6) b 11.3 b

2s26s 2S1/2 25.1 8.40 7.7 (4) b 7.65 b

2s2p2 2S1/2 3.24 3.29 3.3 (2) b 3.65 b

3.6 (3) c

2s27s 2S1/2 23.6 11.1 8.3 (4) b 8.01 b

a Reference [30], laser-induced fluorescence. b Reference [8]; experiment selective laser excitation and theory
fine-tuned MCHF calculations. c Reference [31], beam-foil.

12. Heavy and Complex Systems

The applications in Section 11 were for two light systems C III and B I, mainly because
highly accurate experimental values of transition rates and lifetimes are available for
comparison. The real benefit of fine-tuning is however for more heavy and complex
systems with dense energy structures, and the new programs jj2lsj_2022 and rfinetune
are applicable also in these cases. As for the CPU time for fine-tuning, this mainly depends
on the number of CSFs and the number of tuning iterations needed to reach a good
agreement with the experimental energies. Assuming a case with around 2.2 million CSFs
for a single J-block, the construction of the Hamiltonian matrix takes roughly 1400 s using
16 processors on an AMD EPYC 7763 Linux server, see Table 6 in [32].The diagonalization
takes an additional 200 s making a total of around 1600 s for the initial rci_mpi run.
Even for spectrum calculations for heavy and complex systems, the number of CSFs in
the MR is small and the transformation from jj- to LSJ using jj2lsj_2022 is performed
in seconds on a single processor. The subsequent execution of rfinetune to produce
the transformed Hamiltonian submatrix that is merged into the restart files of the initial
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rci_mpi calculation also finishes within seconds on a single processor. The only non-
negligible time for fine-tuning is the additional time for running rci_mpi in restart mode.
This amounts to diagonalizing the modified Hamiltonian matrix, which in this case takes
around 200 s. If four iterations are needed to reach a good agreement with the experimental
energies, the additional time for fine-tuning is around 800 s. This time corresponds to 50%
of the time for the initial rci_mpi calculation.

13. Summary and Conclusions

Fine-tuning of diagonal elements of the Hamiltonian matrix is an efficient way to
ensure that calculated energy separations of states which mix are in agreement with exper-
iment. The process gives more accurate measures of the mixing than can be obtained in
ab initio calculations and results in improved convergence of computed properties such
as transition rates as the calculation is enlarged. Fine-tuning assumes that off-diagonal
matrix elements are small compared with the differences between diagonal elements. This
assumption is often not fulfilled for relativistic calculations in jj-coupling. We show that
these problems can be overcome with a transformation of the Hamiltonian submatrix
corresponding to the CSFs in the MR from jj- to LSJ-coupling. The method is implemented
in the GRASP2018 package [17] through the new programs jj2lsj_2022 and rfinetune.
Transformation from jj- to LSJ-coupling is not the only option, but an improved method-
ology would rely on a transformation from jj-coupling to the optimal coupling (LSJ, JK,
LK etc.), in which the states are as pure as possible. Work along these lines are in progress
based on the Coupling program by Gaigalas [33]. Even in optimal coupling, some states
may be considerably mixed due to close degeneracies, and fine-tuning then becomes a
non-linear problem that needs to be solved iteratively. The best approach in this case would
be to see fine-tuning as a non-linear least squares problem that can be solved by interfacing
the current programs with a secant-based least-squares code such as NL2SOL [34]. A final
question relates to which states to fine-tune and by how much. To answer this question we
compute the mean level deviation (MLD)

MLD =
1
N

N

∑
i=1
|Eexp(i)− Ecalc(i) + ES|, (49)

where the energy shift (ES) is chosen as to minimize the sum. ES indicates to what extent
the ground state level is relatively too low (ES negative) or too high (ES positive) in the
theoretical binding energy balance [35]. Once ES is determined, the ground state may be
fine-tuned by −ES and the remaining states by Eexp(i)− Ecalc(i) + ES.
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to Relativistic Theory as Implemented in GRASP. Atoms 2023, 11, 7. [CrossRef]
13. Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer Science and Business Media, LLC:

New York, NY, USA, 2007.
14. Fano, U. Interaction between Configurations with Several Open Shells. Phys. Rev. A 1965, 67, 140. [CrossRef]
15. Armstrong, L., Jr.; Feneuille, S. Relativistic Effects in The Many-Electron Atom. Adv. At. Mol. Phys. 1974, 10, 1.
16. Boualili, F.Z.; Nemouchi, M.; Godefroid, M.; Jönsson, P. Weak correlation and strong relativistic effects on the hyperfine interaction

in fluorine. Phys. Rev. A 2021, 104, 062813. [CrossRef]
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