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Abstract: The robustness of an atomic fountain interferometer with respect to variations in the initial
velocity of the atoms and deviations from the optimal pulse amplitude is examined. We numerically
simulate the dynamics of an interferometer in momentum space with a maximum separation of 20h̄k
and map out the expected signal contrast depending on the variance of the initial velocity distribution
and the value of the laser field amplitude. We show that an excitation scheme based on rapid adiabatic
passage significantly enhances the expected signal contrast, compared to the commonly used scheme
consisting of a series of π/2 and π pulses. We demonstrate further substantial increase of the
robustness by using optimal control theory to identify splitting and swapping pulses that perform
well on an ensemble average of pulse amplitudes and velocities. Our results demonstrate the ability
of optimal control to significantly enhance future implementations of atomic fountain interferometry.

Keywords: atom interferometry; atomic fountain; optimal control; ensemble optimization

1. Introduction

Atom interferometry [1–3] is a core technology for quantum metrology and quantum
sensing [4]. Its operating principle exploits the wave nature of matter in the same way
that classical optical interferometers exploit the wave nature of light. In the type of atom
interferometer considered here, an initial wavepacket is split into two pathways that are
separated spatially. These pathways are then mirrored and recombined. The recombination
maps an accumulated phase difference between the two pathways into population at the
output ports as an interference pattern.

Since atoms have mass, this relative phase is affected by gravitational fields, accelera-
tion, and rotation. This enables not only applications in fundamental physics [5–7], but also
direct practical implementations of gradiometers, gyroscopes, and inertial navigation sen-
sors [8,9]. A second advantage, as well as a challenge of atomic matter waves, is that their
wavelength is many orders of magnitude smaller than that of light, thus promising ex-
tremely high sensitivity, but making it difficult to implement “beamsplitters” and “mirrors”
that can diffract at that scale. The highest precision can be reached through light–matter
interaction [10,11]; specifically, the interaction of the atoms with counter-propagating laser
fields. There are different regimes in which the atoms can absorb or emit photons, imparting
momentum kicks [12]. Most commonly, in the Raman regime, the change in momentum
is associated with a change in the internal state of the atom [13–16], whereas in the Bragg
regime, the atom remains in its internal ground state [17–21].

Here, we consider the setup of an atomic fountain interferometer (AFI) [21–24]. We
focus on the Bragg regime, which allows for higher momentum space separation and is less
susceptible to ac-Stark and Zeeman shifts [25]. A cloud of atoms with a well-defined initial
momentum is launched into a 10 m tower [26]. After the launch, counter-propagating
laser beams with appropriately controlled amplitude and phase impart momentum kicks
onto the atoms to implement a momentum space beamsplitter, mirror, and recombination.
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The scale of the atomic fountain architecture allows for time of flight on the order of seconds
and, thus, achieves the largest interferometric space–time area to date.

The contrast of the interferometer, particularly in the Bragg regime, is constrained by
the spread in the initial momentum of the atoms [16,27], as well as by deviations in the laser
field intensity [28]. Here, we quantify the expected contrast for different widths in the initial
velocity distribution, and for variations in the pulse amplitude by ±10%, for a sequence
of π/2 and π pulses. We further analyze the robustness of analytical pulse schemes
using rapid adiabatic passage (RAP) [29,30]. These use linearly chirped laser pulses to
transfer population between the momentum states. In the context of AFI, they have been
demonstrated to achieve large momentum space separation [30,31]. RAP is inherently
robust to deviations in the pulse amplitude. We show here that the combination of RAP and
π/2 and π pulses significantly enhances the robustness of the full interferometric scheme.

Going beyond standard analytic pulse shapes, such as Gaussians, more elaborate
shapes have been demonstrated to improve robustness [28,32]. Finding appropriate pulse
shapes is the focus of optimal control theory (OCT) [33–35]. For atom interferometers
in the Raman regime and two-level dynamics, the ability of optimal control to achieve
robust pulses has been demonstrated [32,36,37]. Optimal control has also been applied to
Bose–Einstein condensates in atom interferometers [38]. Here, we use Krotov’s method
of optimal control [39–42] for an ensemble optimization [43–45] to identify robust pulses
for large momentum state separation in the Bragg regime. The ensemble optimization
targets the average of a statistical ensemble of atoms with different initial velocities and
experiencing different pulse amplitudes. We find that the most robust scheme overall uses
optimized pulses driving transitions between the ground momentum state |0〉 and the first
excited momentum state |1〉 corresponding to the momentum 2h̄k. These optimized pulses
are combined with analytical RAP pulses to amplify the momentum state separation, to the
momentum state |10〉 corresponding to 20h̄k, in our example.

This paper is organized as follows. In Section 2, we describe the interaction of an
atom with two counter-propagating laser beams inside an atomic fountain interferometer
and derive its momentum space Hamiltonian in the Bragg regime. Section 3 reviews two
analytic pulse schemes: first, a train of π/2 and π pulses, and second, a combination of
π/2 and π pulses and rapid adiabatic passage. Section 4 analyzes the robustness of these
schemes in terms of the expected contrast for varying pulse amplitudes and for initial
velocities of varying uncertainties. In Section 5, we describe the ensemble optimization
approach used to improve the robustness of the analytical schemes. We analyze the
resulting control fields and dynamics and compare the resulting robustness throughout the
parameter landscape. Section 6 concludes.

2. Model

In this paper, we consider an atomic fountain interferometer [21,24,46] with light
pulses in the Bragg regime [17–19]. A cloud of ultracold Rubidium atoms with atomic mass
m is launched along the z axis of a ten-meter tower [26]. After the launch, the atoms are
subjected to two counter-propagating laser fields with wave number k = 2π/λ for a given
laser wavelength λ. These laser fields have tunable amplitude Ω1(t), Ω2(t) and frequency
Φ1(t), Φ2(t) and are used to implement momentum space “beamsplitters” and “mirrors”.
A schematic of the interaction for a single atom is shown in Figure 1a.

The laser fields off-resonantly drive an internal electronic transition, e.g., the Rubid-
ium D2 line 52S1/2 → 52P3/2. The atom is described by the wave function |Ψ(z, t)〉 =
a(z, t) |g〉+ b(z, t) |e〉, where |g〉 and |e〉 are the 52S1/2 and 52P3/2 levels, respectively. For a
large detuning ∆, the amplitude b(z, t) of the excited state can be adiabatically eliminated.
This results in an effective two-photon field with amplitude and phase

Ω(t) =
Ω1(t)Ω2(t)

4∆
, ϕ(t) = Φ1(t)−Φ2(t) , (1)
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acting only on the ground state amplitude a(z, t) [47]. A transformation from coordinate
space to momentum space shows that the effective field can change the momentum only in
discrete units of 2h̄k relative to the rest frame defined for the initial momentum p0 [48,49].

(a) (b)

z

b(z, t)

a(z, t)

∆Ω1(t) cos(Φ1(t) + kz) Ω2(t) cos(Φ2(t)− kz)

|0〉

|−1〉

|−2〉

|n = 1〉

|2〉

Ω(t)Ω(t)

Ω(t) Ω(t)

p

Figure 1. Interaction of an atom with interferometer laser fields in the Bragg regime. (a) Two-level
atom described as |Ψ(z, t)〉 = a(z, t) |g〉+ b(z, t) |e〉 in the coordinate representation with the two-
level transition |g〉 ↔ |e〉 off-resonantly driven by two fields counter-propagating along the z axis,
with a detuning ∆ and time-dependent amplitudes Ω1(t) and Ω2(t) and time-dependent phases Φ1(t)
and Φ2(t). (b) Momentum space ladder |n〉 corresponding to momentum n · 2h̄k, with transitions
between neighboring levels being driven by the effective pulse amplitude Ω(t).

We thus consider the entire dynamics of the atom in momentum space, where the
ground state |0〉 corresponds to the rest frame momentum p0, and the Hilbert space is de-
fined in terms of levels |n〉 corresponding to the momentum p0 + n · 2h̄k. The Hamiltonian
takes the form

Ĥ =

(
∞

∑
n=−∞

En(t) |n〉〈n|
)
−
(

∞

∑
n=−∞

(µ h̄Ω(t) |n〉〈n + 1|+ µ h̄Ω∗(t) |n + 1〉〈n|)
)

. (2)

The time-dependent energy levels are

En(t) = n2 h̄ωk + β2 h̄ωk − h̄Ω∆(t) + 2n β h̄ωk + nh̄ϕ̇(t) (3)

with the two-photon recoil frequency ωk = 2h̄k2/m, the dimensionless initial momentum
β = p0/2h̄k, and the common light shift Ω∆(t) = (Ω2

1(t) + Ω2
2(t))/4∆. We consider

here β < 1 and neglect the term proportional to β2. Moreover, as it does not depend on
n, the common light shift Ω∆(t) only contributes a global phase to the dynamics of the
interferometer and can be dropped. Thus, we use

En(t) ≈ n2 h̄ωk + 2n β h̄ωk + nh̄ϕ̇(t) (4)

in the remainder of the paper.
The energy levels En(t) form the parabolic momentum ladder shown in Figure 1b.

These levels are shifted by the angular frequency ϕ̇(t) of the driving field. An appropriate
frequency can shift neighboring levels into resonance, which then allows the effective am-
plitude Ω(t) to transfer population. A nonzero value of β, that is, a nonzero momentum of
the atom relative to the rest frame, would result in an effective detuning of this momentum
space transition.

The factor µ in Equation (2) accounts for deviations of the effective pulse amplitude
Ω(t) from the optimal value, e.g., due to misalignment of the position of the atomic cloud
relative to the cross section of the laser pulse. By default, we take µ = 1. The effective
amplitude Ω(t) is allowed to be complex-valued only in the context of optimal control. Op-
timizing the real and imaginary part of a complex-valued Ω(t) independently is equivalent
to optimizing a real-valued field amplitude and phase. That is, the complex phase of Ω(t)
expresses a deviation from the phase ϕ(t) in Equation (4).

For complete generality, we express the energies En(t) and h̄Ω(t) in units of h̄ωk.
Using the corresponding time unit of 1/ωk makes the Schrödinger equation dimensionless.
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For Rb-87, with a laser wavelength of λ = 780 nm, we have ωk = 2π · 15.1 kHz, and a
corresponding time unit of approximately 10−5 s.

3. Analytical Pulse Schemes

A full atomic fountain interferometer ideally consists of the following steps:

1. Split the initial state |0〉 into a superposition of |0〉 and |N〉. In the example here,
we use N = 10, corresponding to a momentum state separation of 20h̄k. This is the
analog of a beamsplitter in a classic interferometer. The splitting may further be
subdivided as:

(a) Perform an initial splitting, from |0〉 to a superposition of |0〉 and |1〉.
(b) Amplify the momentum state separation by transferring population from |1〉 to

|N〉, resulting in a superposition of |0〉 and |N〉.
2. Let the atoms evolve freely as they travel up the tower. During this time, an external

gravitational field or acceleration may introduce a differential phase between the
states |0〉 and |N〉.

3. Swap the complex amplitudes of the |0〉 and |N〉 states. This is the analog of a mirror
in a classic interferometer. It may be subdivided as in step 1:

(a) De-amplify the population from |N〉 to |1〉, so that the interferometer is in a
superposition of |0〉 and |1〉.

(b) Swap the amplitude of |0〉 and |1〉.
(c) Amplify the population from |1〉 to |N〉, which again brings the interferometer

into a superposition of |0〉 and |N〉, with swapped amplitudes relative to the end
of step 2.

4. Let the atoms continue to evolve freely as they descend the tower, potentially accu-
mulating a further differential phase.

5. Recombine the state into a superposition of |0〉 and |1〉. This would be subdivided as:

(a) De-amplify the population from |N〉 to |1〉, resulting in a superposition of |0〉
and |1〉.

(b) Coherently recombine the amplitudes of |0〉 and |1〉 by applying the inverse
process of step 1 (a). For a phase φ accumulated in steps 2 and 4 that is a
multiple of π, this results in the population returning to the ground state |0〉.
More generally, the final state is a superposition of |0〉 and |1〉, depending on the
accumulated phase φ, with the population in |0〉 as

P0(φ) ≡ |〈0 |Ψ(T)〉|2 = cos2
(

φ

2

)
(5)

and the population in |1〉 as P1(φ) = 1− P0(φ).

There are possible variations of the above procedure. For example, the interferometer
could be designed symmetrically, where, in step 1, the initial state is split into a superpo-
sition of |−N〉 and |N〉 [16,37]. However, this generally requires additional laser fields,
as a single pair of counter-propagating fields cannot address both branches of the interfer-
ometer. Furthermore, the subdivision into a splitting between levels |0〉 and |1〉, which is
then amplified to a superposition between |0〉 and |N〉, could be generalized so that the
initial splitting is between |0〉 and some higher level |NS〉 with 1 < NS < N, and where
|NS〉 is then still further amplified to |N〉. Physically, this situation would occur with
higher-order Bragg pulses [46], where the final state of the interferometer would then be
a superposition of |0〉 and |NS〉. Here, we consider only first-order Bragg pulses, which
change the momentum in steps of 2h̄k, following the setup in Reference [26].

The interferometer signal contrast is defined as

C ≡ Pmax − Pmin

Pmax + Pmin
, (6)
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with Pmax ≡ maxφ P0(φ) = P0(φ = 0) and Pmin ≡ minφ P0(φ) = P0(φ = π/2). In a
non-ideal system, with imperfect splitting and mirror operations, population may be lost
from the |0〉, |1〉 subspace at final time, and the population in the ground state may deviate
from the ideal Equation (5), resulting in a loss of contrast.

3.1. Train of π/2 and π Pulses

A straightforward approach is to use a train of π- and π/2-pulses to manipulate the
wave function of the atoms [26,46]. Each pulse in this train uses a fixed laser frequency
ϕ̇(t) = ω

(n0)
L that is resonant with a specific transition from level n0 to n0 + 1. The transition

is resonant for
ω
(n0)
L = −ωk(2n0 + 1) . (7)

Plugging this into Equation (4) produces (β = 0)

E(Rabi)
n = (n′ 2 − n′)h̄ωk + n0(n0 + 1)h̄ωk , (8)

with n′ ≡ n− n0. The second term contributes only a global phase and can be dropped.
Steps 1–5 of the full interferometer with a maximum separation of N = 10 are imple-

mented by a series of π/2 and π pulses, as shown in the top of Figure 2b. Each pulse is a
Blackman shape of duration tRabi = 15 /ωk, which corresponds to roughly 150 µs for Rb-87
and a laser wavelength of 780 nm. Neglecting all but the two resonant levels for each pulse
allows to calculate the pulse amplitude analytically. The first pulse is a π/2 pulse with an
amplitude chosen such that ∫ tRabi

0
ΩTLS(t)dt =

π

2
, (9)

in order to produce a 50/50 superposition of |0〉 and |1〉. The pulse amplitude is 0.125 ωk,
corresponding to 1.88 · 2π kHz.

0.90 0.95 1.00 1.05 1.10
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2

π
2π π. . . . . .

0 100 200 300 400 500
time (1/ωk)

−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10
11

m
om

en
tu

m
(2

h̄k
)

phase kick: φ
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(c)

Figure 2. (a) Error 1− |〈0 |Ψ(T)〉|2 of the population in the ground state after a sequence of π/2 and
π pulses for a scaled pulse amplitude. The factor Ω(t)/ΩTLS(t) is the ratio of the pulse amplitude
Ω(t) used in the simulation and the analytic amplitude ΩTLS(t) for Rabi cycling in a two-level system
with a pulse area of π/2 or π, Equation (9). The minimum error is reached for a ratio of ≈1.01,
indicated by the dashed vertical line. (b) Momentum space dynamics for an interferometric scheme
using a sequence of π/2 and π pulses. Each pulse has a Blackman shape, drawn at the top of the
panel, with an amplitude adjusted by the correction determined in panel (a). The time unit 1/ωk
corresponds to roughly 10−5 s for Rb-87 atoms and a laser wavelength of 780 nm, making the duration
of the scheme (excluding the free time evolution) roughly 5.9 ms. (c) The final time population in |0〉
if an instantaneous phase kick is applied to the |10〉 component of the wave function at maximum
separation to account for the free time evolution starting at t = 150 /ωk and t = 450 /ωk (not shown).

Subsequent pulses are π-pulses at twice the amplitude of Equation (9) that fully
transfer population between neighboring levels, respectively swap the population of |0〉
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and |1〉 at the center of the scheme. The final π/2 pulse recombines the population. For
simplicity, we do not show the free time evolution in the scheme. The phase that would
be accumulated during the free time evolution, when the interferometer is at maximum
momentum separation, can be numerically emulated by applying an instantaneous phase
kick to the |10〉-component of the wave function, as indicated in Figure 2b. The shown
dynamics are for φ = 0. A kick with a value of φ > 0 only affects the population in the
central swap pulse and at final time. The resulting final time population in |0〉 is shown in
Figure 2c and matches Equation (5).

The use of π/2 and π pulses is slightly complicated by the presence of the additional
levels. According to Equation (8), the transition to the next higher or lower levels is
detuned by 2ωk, which is not completely negligible compared to the amplitude of the
π pulse, 0.25ωk. The additional levels induce an effective shift in the two-level system
that can be compensated with a modified pulse amplitude. In Figure 2a, we numerically
analyze the fidelity of the scheme depending on a scaling factor for the empirical pulse
amplitude Ω(t) relative to the analytical amplitude ΩTLS(t) defined in Equation (9) for an
ideal two-level system. We find that an increase in pulse amplitude by 1% results in the
lowest error. Thus, we include this correction in the scheme shown in Figure 2b, as well as
in all future π/2 and π pulse amplitudes.

3.2. Rapid Adiabatic Passage

An alternative scheme formulated in References [30,31] is to replace the train of pulses
with a single pulse implementing rapid adiabatic passage (RAP) with a linear frequency
chirp, respectively, a phase of

ϕRAP(t) = −
αωk(t− tc)2

2
, (10)

where α is the chirp rate and tc is a time offset relative to the start of the pulse. Plugging
the phase into Equation (4) with β = 0 results in

ERAP
n (t) = (n2 − nα(t− tc))h̄ωk . (11)

An example for the dynamic energy levels ERAP
n (t) and the resulting population

dynamics is depicted in Figure 3a, with a chirp rate α = 0.1 ωk. Neighboring levels cross at
time intervals of τB = 2/|α|, see the center of panel (a), resulting in a population transfer as
shown in the top of panel (a).

For the given chirp rate, the RAP pulse we employ here is as short as possible, while
still transferring momentum with high fidelity. This includes a finite switch on/off from/to
zero. The transfer fidelity in this case depends on the specific switch-on time and shape,
and an offset tc in Equation (10) that determines the zero point of the induced energy shift.
Effectively, this offset accounts for the fact that the RAP dynamics start only when the
field reaches some minimum amplitude. We use a Blackman shape for the switch-on/off
and numerically determined the switch-on time tr, the offset tc and the peak amplitude
via an optimization of the transfer fidelity using the Nelder–Mead method. We found
tc = 5.927 /ωk for a switch-on/off time of tr = 19.252 /ωk and a peak amplitude of
0.7 ωk, corresponding to roughly 11 · 2π kHz for Rb-87 and a laser wavelength of 780 nm.
The resulting envelope Ω(t) is shown at the bottom of panel (a) with tc and tr indicated by
the dotted green and blue lines, respectively.
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Figure 3. (a) Transfer of population from momentum state |2〉 to |10〉 using rapid adiabatic passage
(RAP) with a constant linear chirp rate α = 0.1 ωk with an offset time of tc = 5.93 /ωk in Equation (11)
(green dotted line, bottom). The pulse envelope Ω(t), shown in the bottom of panel (a), has a
switch-on and switch-off time of tr = 19.25 /ωk (blue dotted line), using half of a Blackman shape.
The center of panel (a) shows the dynamic energy levels of the Hamiltonian according to Equation (11).
Neighboring levels cross at intervals of τB = 2/|α|, resulting in the transfer of population shown
at the top of panel (a). (b) Momentum space dynamics for a full interferometric scheme using an
initial π/2 and π pulse to achieve momentum state separation, cf. Figure 2. Then, the RAP pulse
from panel (a) first amplifies and then de-amplifies the momentum state separation. The momentum
components are swapped with three central π pulses. In the second half of the scheme, two additional
RAP pulses amplify and de-amplify again. Finally, a π and π/2 pulse perform the recombination.
The amplitude of the envelope Ω(t) in each pulse is drawn to scale at the top of the panel. (c) The
final time population in |0〉, if an instantaneous phase kick is applied to the |10〉 component of the
wave function at maximum separation, to account for the free time evolution starting at t = 201.8 /ωk
and t = 590.6 /ωk (not shown).

A noteworthy feature of the RAP population transfer is that it is relatively insensitive
to the pulse amplitude, promising some degree of robustness when used as part of an atom
interferometric scheme. It also allows to transfer population to arbitrarily high momentum
states, for as long as the constant chirp can be maintained. However, compared to the
“Rabi” scheme consisting only of π/2 and π pulses, it is relatively more challenging to
use RAP for the initial splitting, the central swap of |0〉 and |1〉, or the final recombination
required for the full scheme. Thus, we combine it with a π/2 pulse to achieve the initial
splitting, followed by another π pulse to achieve sufficient separation for the RAP scheme
to transfer population to maximum separation. In the center of the scheme, three π pulses
swap the amplitude, and, finally, a π pulse and a π/2 pulse perform the recombination.
The full scheme is depicted in Figure 3b.

Compared to the sequence of π/2 and π pulses in Figure 2b, the required pulse area
for RAP is significantly larger; see the amplitudes shown in the top of both panels. Further
compressing the RAP pulses in time would cause increasingly non-adiabatic dynamics
and a breakdown of the population transfer, shown in Figure 3a. The fast oscillations
that can be seen at the top of panel (a), are already non-adiabatic effects, showing that the
chosen parameters approach the time limit for RAP. Thus, the RAP scheme in Figure 3b
is slightly slower than the comparable Rabi scheme of π/2 and π pulses in Figure 2b,
with a combined duration T = 792.4 /ωk versus T = 585.0 /ωk. In general, this should
have a negligible effect on the overall interferometer, as the free time of flight, measured in
seconds [26], dominates the time T for splitting, mirroring, and recombination, measured
in milliseconds.
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4. Robustness

The dynamics shown in Figures 2 and 3 for the analytical Rabi and RAP scheme are for
ideal parameters, i.e., zero velocity relative to the rest frame and the ideal pulse amplitude,
β = 0 and µ = 1 in Equations (2) and (4), where µ = 1 now includes the correction of 1.01,
obtained from Figure 2a. We can now analyze the robustness of the different interferometric
schemes with respect to variations in atom velocity and pulse amplitude. Since the width
of the atomic cloud is small relative to the cross section of the laser pulse, deviations from
the ideal amplitude are most likely due to the position of the atomic cloud within the laser
field, or due to variations in the overall laser amplitude itself, but are the same for all atoms
in the ensemble. On the other hand, the velocity relative to the rest frame varies within the
ensemble. It is normal-distributed with a variance that depends on the temperature of the
atomic cloud.

In Figure 4a,b, we show the expectation value of the contrast for static deviations from
the optimal pulse amplitude by ±10% (µ ∈ [0.9, 1.1]) and for β (the momentum relative to
the rest frame in units of 2h̄k) drawn from a normal distribution with a standard deviation
between 0 and 0.4. For every point in this robustness landscape, we evaluated N = 50,000
samples to find

P̄max(µ, ∆β) =
1
N

N

∑
n=1

P0(φ = 0; µ, βn) ,

P̄min(µ, ∆β) =
1
N

N

∑
n=1

P0(φ =
π

2
; µ, βn) ,

(12)

where P0 is the population in the ground state at final time, φ is the differential phase
accumulated between the two branches of the interferometer, and βn is a value of β drawn
from the distribution of width ∆β. The expectation value of the contrast shown in Figure 4
is then

C̄(µ, ∆β) =
P̄max(µ, ∆β)− P̄min(µ, ∆β)

P̄max(µ, ∆β) + P̄min(µ, ∆β)
, (13)

cf. Equation (6).
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Figure 4. Contrast achieved with both analytical and optimized pulse schemes for a full 20h̄k
interferometer scheme. In each panel, the expectation value of the signal contrast is shown for a fixed
amplitude scaling factor µ of the ideal pulse amplitude, and assuming a Gaussian distribution with
width ∆β for the atom’s initial momentum relative to the rest frame in units of 2h̄k. The schemes are
(a) a train of π/2 and π Rabi pulses, (b) a combination of π/2 and π pulses with rapid adiabatic
passage (RAP), and (c) a scheme using optimized control pulses in combination with rapid adiabatic
passage, cf. Figures 2, 3 and 7. The value of the contrast for each point is obtained from the average
populations in the ground state, see Equation (13).

We find that the contrast is relatively robust with respect to deviations from the optimal
pulse amplitude, but decays quickly for broader distributions in the atomic velocity. Using
the scheme of π/2 and π Rabi pulses, Figure 2b, the contrast crosses the 50% mark for
a standard deviation of ∆β ≈ 0.1 and effectively approaches zero for ∆β > 0.2. Taking
advantage of rapid adiabatic passage (RAP) with the scheme shown in Figure 3b, we
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find a measurable improvement in robustness. The sensitivity to deviations in µ nearly
disappears, and the loss of contrast, due to ∆β > 0, is reduced by at least a factor of 1.5.
That is, a 50% loss of contrast occurs at ∆β ≈ 0.15. Even at ∆β = 0.4, the contrast is still
≈12%.

The change in contrast between the Rabi and RAP schemes is quantified in Figure 5a.
The RAP scheme improves on the Rabi scheme by an increase in contrast of up to 0.35.
This maximum improvement is reached for deviations of the pulse amplitude near 10%
and a standard deviation of 0.1 · 2h̄k in the initial momentum of the atoms in the ensemble.
The light gray areas in the plot mark a loss of contrast for some points near ∆β = 0. These
losses are comparatively negligible at |∆C| < 0.04.
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Figure 5. Contrast improvement between different schemes. Panel (a) shows the difference between
Figure 4a,b, that is, between a scheme using a train of π/2 and π Rabi pulses and a scheme using
rapid adiabatic passage (RAP). Panels (b,c) show the difference between Figure 4a,c, respectively
Figure 4b,c; that is, between a scheme using pulses derived from optimal control theory (OCT) and
the two analytic schemes (Rabi, RAP). The light gray points mark a (negligible) loss of contrast,
|∆C| < 0.04 in panel (a) and |∆C| < 0.01 in panels (b,c).

5. Optimal Control for Robust Pulse Schemes

To further increase the robustness, we now consider the use of optimal control theory
(OCT). We optimize the specific steps of the interferometric scheme in Section 3 separately:
the initial splitting into a superposition of |0〉 and |1〉, step 1 (a), the amplification from
|1〉 to |10〉, steps 1 (b) and 3 (c), the de-amplification, steps 2 (a) and 5 (a), and the swap of
amplitudes |0〉 and |1〉, step 3 (b).

It can be shown [47] that any relative phase introduced by the amplification and
de-amplification cancels out. Thus, these steps can be implemented with an optimization
functional that only considers populations, e.g., for the amplification step,

Jpop(|Ψ(T)〉) = 1− 1
2

∥∥∥~P(|Ψ(T)〉)− ~Ptgt
∥∥∥2

, (14)

where the components of the vectors ~P and ~Ptgt are the populations in the different mo-
mentum levels for the propagated state and the target state, respectively. A relative phase
introduced by the initial splitting has to be compensated for in the recombination step. This
is automatic if we perform the initial splitting between levels |0〉 and |1〉 by optimizing for
an effective π/2 pulse,

|0〉 → 1√
2
(|0〉+ i |1〉) , |1〉 → 1√

2
(i |0〉+ |1〉) (15)

up to a global phase, i.e., using a square-modulus overlap functional [50]. This ensures
that the same optimized pulse targeting step 1 (a) in Section 3 can also be used for the final
recombination, step 5 (b).

For the amplification and de-amplification, we optimized starting from a RAP pulse
that transfers |1〉 → |10〉, respectively |10〉 → |1〉, cf. Figure 3a. The optimization modifies
the envelope Ω(t) in order to minimize the population functional in Equation (14). In prin-
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ciple, the chirp rate α in Equation (10) could also be made time-dependent. Instead, we left
the chirp rate constant and allowed Ω(t) to be complex-valued.

To make the optimized pulses robust with respect to deviations in the pulse amplitude
and variations in the initial velocity, we employed an ensemble optimization [43–45]. That
is, we considered multiple copies of the Hamiltonian, Equation (2), each with different
parameters µ and β. We then optimized over the average of the ensemble. In order to cover
a large area of the parameter landscape, we considered an ensemble of 1024 points, split
into 64 batches of 16 points each. Individual points were drawn randomly from a normal
distribution around β = 0 and µ = 1 with ∆β = ∆µ = 0.025. For each batch of points, we
performed an ensemble optimization with Krotov’s method [39–42,47] for 1000 iterations
before moving to the next batch. The procedure continued to loop around the batches
until convergence was reached, that is, there was no significant improvement in the fidelity
reachable within 1000 iterations, compared to the previous batch.

The sampling points µ and β for the different batches are shown in Figure 6a. We
found the chosen width of the sampling point distribution ∆β = ∆µ = 0.025 to be the
maximum width for which an average fidelity on the order of 10−3 is achievable for the
individual components of the interferometer.
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(c) optimized SWAP pulse

Figure 6. (a) Ensemble points used for the optimization. The sampling points were chosen from
a normal distribution around µ = 1 and β = 0, with a width of ∆µ = ∆β = 0.025, divided into
64 batches with 16 points per batch. The different batches are distinguished by the combination
of color and marker shape. (b) Optimized pulse amplitude, phase, and spectrum for the initial
splitting pulse |0〉 → (|0〉+ i |1〉)/

√
2. (c) Optimized pulse amplitude, phase, and spectrum for the

central swap pulse between |0〉 and |1〉. For Rb-87 and a laser wavelength of 780 nm, the two-photon
recoil frequency is ωk = 2π · 15.1 kHz. The unit of time 1/ωk corresponds to roughly 10−5 s. Thus,
the duration of the shown pulses is on the order of 150 µs.

As we wanted to explore the limits of robustness achievable via optimal control,
we did not restrict the optimized control fields to amplitudes or spectral widths that are
easily obtained with current experimental setups. At the same time, we wanted to avoid
entirely unrealistic parameter regimes. Thus, we placed a bound on the pulse amplitude at
Ωmax = 1.5 ωk, roughly a factor of six higher than the typical amplitude required for a π
Rabi pulse, and roughly twice the amplitude of the RAP pulses used for the momentum
transfer. Similarly, the spectral width was limited to 10 ωk. Both the amplitude and the
spectral width are well within an order of magnitude of the current capabilities of the
atomic fountain experimental setup.

The resulting pulses for the initial splitting (an effective π/2 pulse), and for the
swap are shown in Figure 6b,c. The effective π/2 pulse is a relatively simple pulse shape.
In particular, it does not require a time-dependent phase, i.e., the imaginary part of the
control field Ω(t). The swap is more difficult to realize, and saturates the amplitude and
spectral limits placed on the control that allow to reach the almost perfect gate fidelity.

For the optimization of the RAP pulse that amplifies and de-amplifies the momentum
state separation, we found that the optimization only added negligible corrections to the
pulse shape. This is a testament to the inherent robustness of rapid adiabatic passage.
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In fact, when combining the optimized components of the interferometer into a full scheme,
and analyzing the resulting robustness, we observed no clear advantage in using the RAP
pulses with an optimized amplitude. Thus, the full “optimized” pulse scheme uses the
pulse shown in Figure 6b as the initial and final component, and the pulse in Figure 6c as
the center swap, but analytical RAP pulses otherwise.

The full optimized scheme and the resulting dynamics in the ideal case (µ = 1, β = 0)
are shown in Figure 7. We can see that there are visible deviations from the simple analytic
schemes in Figures 2 and 3. In particular, the optimized splitting and swap pulses populate
outside the two-level subspace |0〉, |1〉, at intermediary times. The final time population in
|0〉 differs measurably from the analytical schemes, reaching 0.93 in Figure 7c. However,
since the population for a differential phase of φ = π/2 is still 0.001, this does not affect
contrast, which is still ≈1, according to Equation (6).

The contrast of the full scheme for values of µ 6= 1, and for an initial momentum drawn
from a normal distribution with ∆β > 0, is shown in Figure 4c. We observe a considerable
improvement. The limit for 50% contrast is pushed well beyond ∆β = 0.3. Even for
∆β = 0.4, the minimum contrast is still 41% or higher. Remarkably, the enhancement in
robustness extends far beyond the value of ∆β = 0.025 that was used in the ensemble
optimization. The improvement relative to the fully analytical Rabi and RAP schemes
is shown in Figure 5b,c. Within the explored parameter regime, the maximum absolute
improvements in contrast are 0.61 and 0.41, respectively. The losses marked in light gray
are |∆C| < 0.01 in both cases.
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Figure 7. (a) Momentum space dynamics for an interferometric scheme using optimized pulses
(OCT) in combination with rapid adiabatic passage (RAP). The optimized pulses are those shown in
Figure 6b,c and implement the initial splitting, the center swap, and the final recombination between
levels |0〉 and |1〉. These are combined with RAP pulses similar to the one shown in Figure 3a,
transferring population between |1〉 and |10〉. All pulse amplitudes are shown to scale at the top
of the panel. (b) The final time population in |0〉 if an instantaneous phase kick is applied to the
|10〉 component of the wave function at maximum separation to account for the free time evolution
starting at t = 206.8 /ωk and t = 605.6 /ωk (not shown). The maximum population at φ = 0 or φ = π

is 0.934 and the minimum population at φ = π
2 is 0.001.

6. Conclusions and Outlook

We have numerically analyzed the expected robustness of several complete schemes
for an atomic fountain interferometer reaching a momentum state separation of 20h̄k.
For purely analytic schemes, we found that robustness can be increased considerably by
using rapid adiabatic passage to transfer population after the initial separation. This comes
at the cost of an increase in pulse area, reaching about the limit of current experimental
capabilities. However, the use of rapid adiabatic passage fundamentally enables the
achievement of arbitrarily high momentum state separation and preserves very high
robustness, as long as the linear chirp of the laser frequency can be maintained. In fact,
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we did not find that the robustness of the RAP pulses can be substantially improved by
optimal control. In contrast, optimal control theory can significantly improve the initial
splitting and swapping of amplitudes in the middle of the interferometric scheme. Again,
this comes at the cost of an increase in pulse area. The optimized pulses presented here are
on the border of current experimental capabilities in terms of pulse amplitude and spectral
width, but well within an order of magnitude. Thus, we expect these pulses to be realizable
in the future.

Combining optimized pulses with rapid adiabatic passage into a full scheme results
in a very robust scheme, if the uncertainty of the initial momentum of the atoms in the
interferometer is >0.1 · 2h̄k. Even for relatively large uncertainties of 0.4 · 2h̄k or higher,
a contrast of 40% is maintained. Due to the combination with analytic RAP pulses, we
expect this contrast to be maintained even for much higher momentum state separation.

The optimized scheme identified here opens several avenues for future exploration.
For implementation in the laboratory, the pulse area and spectral width of the optimized
pulses would have to be reduced by at least a factor of three. As the goal here was to
identify maximally robust pulses without stringent constraints, the limits of robustness
within currently achievable constraints of a specific experimental setup have not been
fully probed. As RAP was identified here as a core component of a robust scheme with
large momentum state separation, it would be worthwhile to consider the combination of
RAP with other two-level control schemes, such as those derived from nuclear magnetic
resonance [51].

We have assumed here that the deviations in the pulse amplitude are homogeneous,
i.e., the atomic cloud is small relative to the cross section of the laser. Further, we have
assumed that there are no time-dependent fluctuations in the laser for the duration of the
pulse scheme, on the order of milliseconds. Strategies for mitigating time-dependent noise
will be considered in future work. Spatial distortions in the laser profile could be taken into
account by extending the model beyond plane waves [52].

More generally, the sensitivity of the interferometer could be enhanced by exploiting
correlation between the atoms, e.g., spin squeezing [53–56]. We have applied optimal
control to the creation of such squeezed states [57]. Going forward, we would like to
explore the use of optimal control to further enhance the robustness of correlated atoms in
atom interferometric schemes, including alternative realizations, such as lattice guided [49]
and tractor atom interferometers [58].
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