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Abstract: Criegee intermediates, which are the products of the ozonolysis of alkenes, play a key role
in many chemical and physical processes in the atmosphere. Their reactions with other atmospheric
compounds are responsible for the formation of hydroxyl, methyl, hydrogen radicals, nitric and
sulfuric acids, and others. Methane is an active greenhouse gas whose concentration has increased
rapidly in the last several decades. In this work, we consider the interaction between these two
important atmospheric compounds. We choose the three simple Criegee intermediate (CI) molecules:
formaldehyde oxide (CH2OO), acetaldehyde oxide (CH3CHOO), and acetone oxide ((CH3)2COO).
Some reactions between methane and these Cis have been studied earlier as possible pathways for
deactivating methane as well as a source of methanol formation due to molecular collisions in the
atmosphere. In the present study, we extend the consideration to the case when an intermediate
energetically stable complex is formed after collision. We found that this complex could easily
decompose to form an OH radical and another unstable fragment, which can quickly dissociate into
CH3 radicals, atomic hydrogen, acetone, acetaldehyde, propaldehyde, methyl alcohol, water, and
others, depending on the type of CI being reacted with. These compounds can actively interact with
other atmospheric components and change their physical and chemical properties. In addition, CI
with a methyl substituent is shown to have increased energy in transition states and minima, resulting
in slower reaction rates.

Keywords: Criegee intermediate; collisional dissociation; CH2OO; CH3CHOO; (CH3)2COO; methane;
OH and CH3 radicals; acetone; formaldehyde; acetaldehyde; isomerization; dissociation

1. Introduction

Methane (CH4), along with many other volatile components of the Earth’s atmosphere
(carbon dioxide (CO2), water vapor, ozone (O3), nitrous oxide (N2O), etc.), is a potent
greenhouse gas that traps part of the infrared terrestrial radiation and contributes to
global warming. The greenhouse potential of methane is extremely high and far exceeds
that of carbon dioxide [1]. At the same time, reports from the World Meteorological
Organization (WMO) indicate that CH4 concentration in the atmosphere has already
significantly surpassed preindustrial levels. Thus, methane can have a great impact on
atmospheric chemistry and the climate of the Earth.

CH4 emissions into the atmosphere can be from either anthropogenic activity such
as agriculture, biogas release at waste disposal sites, coal mining, etc., or natural sources.
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Among the important natural sources are permafrost and gas hydrates on the seabed, both
of which are being destroyed by releasing their methane into the atmosphere due to global
warming. The impact of methane and other greenhouse gases on the Earth’s climate is not
limited to the troposphere but also the stratosphere, mesosphere, and even ionosphere due
to the upward transport of these gases. This means that the mechanisms of mixing volatile
atmosphere compounds between these layers and chemical interactions occurring in the
lower and upper atmospheres are of great scientific importance.

Methane can penetrate into the stratosphere via turbulent diffusion from the tropo-
sphere to the stratosphere and sequentially to the mesosphere and ionosphere during
tropical hurricanes, thunderstorms, and volcanic eruptions [2,3]. This transport process
can be significantly enhanced by the propagation of internal and acoustic gravity waves
(IGWs and AGWs) [4–6]. In the polar latitudes, troposphere gases can also be transported
to the upper atmospheric layers through the polar vortex [7]. Since the polar region is
also the largest reservoir of methane, this polar vortex transport is believed to have signifi-
cantly contributed to the increase in methane concentration in the stratosphere in the last
few decades.

We shall now describe another key class of atmospheric pollutants, namely volatile
organic compounds (VOCs). These are the various unsaturated molecules, such as alkenes
and polyaromatic unsaturated hydrocarbons (PAHs). They are abundantly emitted into
the troposphere from biogenic and anthropogenic sources. Terrestrial vegetation is the
dominant source of atmospheric VOCs (up to 90% of total emissions, depending on re-
gions) [8,9]. VOCs are also abundantly produced by the combustion of organic fuel in
internal combustion engines and by the operation of chemical and other heavy industries.
Isoprene is the most prominent non-methane volatile unsaturated hydrocarbon and is a
significant source of formaldehyde oxide, one of the CIs under consideration. PAHs are
the main components of soot particles. Once formed in the lower atmosphere, they can
be transported into the upper atmosphere layers through the same mechanisms described
above for methane. Their major degradation pathways are reactions initiated with OH, O3,
NO3, and halogens [10,11].

CIs form during the ozonolysis of alkenes, and their role in the atmosphere was
first studied by Rudolf Criegee in the early 1950s [12]. Because of their extremely high
instability [13,14], it is only recently that CIs have been studied by direct experimental
methods. Their high chemical activity is due to the presence of the biradical >C-O-O
group, which readily interacts with various substances present in the atmosphere, such as
water [13,15–18] and many other chemical compounds [19–25]. Their reactions with SO2
and NO2 molecules produce sulfuric and nitric acids [26–28].

The formation of CIs results in a significant energy release of about 40–50 kcal/mol [29].
Some of this energy can be converted into the internal vibrational energy of the molecule,
causing its further decomposition with the formation of methane, atomic oxygen, OH,
vinoxy (CH2CHO), CH3, and HCO radicals, CO, CO2, H2, acetic acid (CH3COOH), and
other fragments [30–37]. In dense atmospheric layers, i.e., the troposphere and lower
stratosphere, this energy could quickly dissipate through collisions, and, as a result, the
CI molecules would become thermodynamically stable and then react with water or other
atmospheric compounds. On the other hand, if the available internal energy remains
high enough, they can decompose to form OH radicals and other fragments. Part of the
energy obtained during the synthesis of CIs might also be converted into the vibrational,
translational, and rotational energy of other fragments that arise as a result of the reaction.

In the upper stratosphere and mesosphere, however, the air density is very low and the
concentration of molecules is rather small; intermolecular collisions are rare, and therefore
CI molecules could retain a significant part of the internal energy obtained during the
formation. Moreover, many molecules in the upper atmosphere can be electronically excited
or ionized by the absorption of ultraviolet (UV) photons, which are present abundantly
at high altitudes, and this certainly applies to CI and methane molecules. The electronic
spectroscopy and photochemistry of simple CIs like formaldehyde oxide, acetaldehyde
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oxide, and acetone oxide have been studied in the last two decades in detail by several
research groups [38–45]. It was found that these CIs have strong transitions in the UV
wavelength range of 300–400 nm, with a maximum at 320–340 nm depending on the
specific molecule. The appropriate absorption cross section for most of the studied CIs
exceeds the value of 10−17 cm2 molecule−1). Electronic excitations by UV photons are
usually accompanied by a nonadiabatic transition to the underlying electronic state. The
transition occurs through the conical intersection of electronic terms with simultaneous
excitation of intramolecular vibrations, as described in detail in [46–48]. Ions could also
be recombined into highly excited neutral atoms and molecules through recombination
with slow electrons [49]. The internal vibrational energy of these molecules can then be
transferred into their kinetic energy through intermolecular collisions [50].

The reactions of CIs with other air compounds in the stratosphere and mesosphere
produce a great variety of secondary products, such as acetaldehyde, formaldehyde, vinyl
alcohol, acetone, acetic acid, etc. [25,51,52]. They are likely to contribute to the formation of
high-altitude clouds.

In this work, we investigate the chemical interaction between CIs and methane induced
by their collision. We choose three simple CI molecules, i.e., formaldehyde oxide CH2OO,
acetaldehyde oxide CH3CHOO, and acetone oxide (CH3)2COO. They differ from each
other in the replacement of hydrogen atoms with one or two methyl groups. The properties
of some of these molecules have been studied earlier [53–55]. It was found [53] that the
interaction of CH2OO molecules with various greenhouse gases leads to the formation of the
van der Waals complex, which, in the case of methane, is likely to be unstable. The collision
of CH2OO with methane at medium kinetic energy initiates the reaction that produces
methanol [54]. This reaction was found to be energetically more preferable than the
formation of a stable molecular complex. But the probability of collisional reactions depends
strongly on the initial mutual orientation of molecules. In order to assess the chance
of reactions occurring more reliably, molecular dynamics or other dynamics simulation
methods are required. And even in that case, the reaction probability will depend on the
total kinetic energy of the colliding molecules.

In the last decade, processes related to the excited states of CIs have attracted great
interest. A series of works dedicated to highly excited electronic states of CIs, especially the
transitions between different electronic states through conical intersections and even the
transitions to triplet states, were published recently [56–58]. These reactions are also of great
interest to the study of photochemical and physical processes in the upper atmosphere
and ionosphere. However, in our present work, we consider methane and Cis in the
ground state as the initial reagents of the reaction. Nevertheless, the possibility of electronic
excitation of the intermediate complex was taken into account. In view of the potential
future importance of excited states, we carried out calculations of the reaction product
yields in the 100–250 kcal/mol energy range.

The case of the direct formation of methanol during collisions of CI and methane has
been described in [54] and hence will not be considered here. In our figures, we also omit
several small van der Waals minima, which arise during the process of bringing molecules
together [53,54]. These minima are small (less than 2.5 kcal/mol), their depth depends on
the relative orientation of the molecules, and, due to their shallow depth, do not affect the
kinetics of the reactions that we are considering. In this work, we shall study in detail the
mechanism of chemical reactions between Cis and methane through the formation of stable
intermediate complexes. We will extend previous investigations by studying three similar
CIs, which differ from each other by the number of substituting methyl groups. Finally, we
will draw some conclusions about the methylation effect on the chemical activity of the
simplest CI.

2. Calculation Method

The geometries of all intermediates, transition states, initial reactants, and reaction
products were optimized using the density functional B3LYP method [59–62] with the
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aug-cc-pVTZ basis set. The intrinsic reaction coordinate (IRC) calculations have been
performed to confirm the connection between transition states and the corresponding local
minima. Energies of intermediates, transition states, reagents, and products at B3LYP/aug-
cc-pVTZ optimized geometries were calculated using the ab initio UCCSD(T)/aug-cc-pVTZ
method. Zero-point energy (ZPE) corrections using B3LYP/aug-cc-pVTZ frequencies were
applied for the correction of the UCCSD(T) energy. All calculations were performed using
the GAUSSIAN 09 package [63]. RRKM and microcanonical variational transition state
theories [64–66] have been applied to compute the rate constants for individual reaction
steps. UCCSD(T)/aug-cc-pVTZ energies and B3LYP/aug-cc-pVTZ frequencies have been
used to perform the RRKM calculations. Relative product yields (branching ratios) were
determined using the steady-state approach. The OH-elimination reaction occurs without
distinct transition states. In this case, variational transition state theory (VTST) [66] was
applied. To perform VTST calculations, UCCSD(T)/aug-cc-pVTZ energies calculated at the
B3LYP/aug-cc-pVTZ optimized geometries were used. Additional computational details
of this ab initio/RRKM/VTST approach have been described earlier [67].

3. Results and Discussion
3.1. CH2OO + CH4 Reaction

The potential energy surface (PES) along possible reaction pathways of the chemical
reaction between CH2OO Criegee intermediate and methane is presented in Figure 1. As
mentioned above, we will not discuss the direct transformation of the reagents to methanol
and formaldehyde. Instead, we shall concentrate on the second possible reaction path:
through the formation of the relatively stable complex CH3CH2OOH (designated as 1). In
order to create this complex, the reagents need to cross the barrier TS1 with an energy of
26.6 kcal/mol, which is rather high. However, as mentioned above, the synthesis of CIs
provides a high release of energy. Part of this energy can be transformed into the kinetic
energy of fragments. We also note that these reactions occur in the upper atmosphere,
where the environment is not in thermodynamic equilibrium. Under the intense irradiation
of UV photons as well as the recombination of positively charged molecular ions with
electrons, electronic excitation of molecules leads to the accumulation of a large amount of
energy, which can then transform into vibrational energy [46–48]. If this energy is below the
dissociation limit of the molecule, then it can transform into kinetic energy due to collisions
with other molecules in the medium [50].

After crossing the barrier TS1, a relatively deep minimum with an energy of−44.6 kcal/mol
appears. Due to the negligible probability of a backward reaction from complex 1 to the
initial reagents via TS1 throughout the entire energy range of interest (see Figure 2 and
discussion below), we assume for simplicity here and for the other two CI molecules that
the reaction starts from isomer 1, and the backward reaction through TS1 is one of the
possible reaction pathways.

Table 1. RRKM and VTST unimolecular rate constants (s−1) and reaction path degeneracies of
dissociation initiated by collision of CH2OO and methane. Energy values are measured from the
energy of isomer 1 (CH3CH2OOH).

Transition
State Reaction

Reaction Path
Degeneracy

Internal Energies, kcal/mol
100 125 150 175 200 225 250

TS1 1 → 2 1 1.1·106 6.0·107 6.6·108 3.4·109 1.1·1010 2.9·1010 6.1·1010

TS2 1 → 3 2 7.6·109 5.2·1010 2.0·1011 4.7·1011 9.7·1011 1.6·1012 2.6·1012

TS3 1 → 3 3 9.9·108 1.3·1010 7.1·1010 2.3·1011 5.6·1011 1.1·1012 2.0·1012

VTS4 1 → 4 1 3.9·1011 1.2·1012 2.5·1012 4.3·1012 6.6·1012 8.8·1012 1.0·1013

TS5 1 → 5 1 8.1·106 6.8·108 9.0·109 5.1·1010 1.8·1011 4.9·1011 1.1·1012



Atoms 2023, 11, 157 5 of 16Atoms 2023, 11, x FOR PEER REVIEW 5 of 17 
 

 
Figure 1. PESs of dissociation reactions initiated by collision of CH2OO and methane. Blue num-
bers denote energies of transition states, intermediates, and reaction products (in kcal/mol). Red 
numbers denote numbering of isomers used in the table of rate constants and in figures of the re-
action product yields. Italic numbers are the masses of molecules and fragments (in atomic units). 

After crossing the barrier TS1, a relatively deep minimum with an energy of −44.6 
kcal/mol appears. Due to the negligible probability of a backward reaction from complex 
1 to the initial reagents via TS1 throughout the entire energy range of interest (see Fig-
ure 2 and discussion below), we assume for simplicity here and for the other two CI 
molecules that the reaction starts from isomer 1, and the backward reaction through TS1 
is one of the possible reaction pathways. 

Figure 1. PESs of dissociation reactions initiated by collision of CH2OO and methane. Blue numbers
denote energies of transition states, intermediates, and reaction products (in kcal/mol). Red numbers
denote numbering of isomers used in the table of rate constants and in figures of the reaction product
yields. Italic numbers are the masses of molecules and fragments (in atomic units).

We can see that the lowest dissociation channel leads to the formation of two radicals,
i.e., OH and CH3CH2O (designated as 4 in Figure 1; the virtual transition state of this
reaction is designated as VTS4). This reaction occurs without a distinct transition state.
In order to calculate the rate constant corresponding to this channel, we need to use
the variational transition state approach [66], as described above and also in an earlier
publication [67]. The rate constants related to the reactions presented in Figure 1 are
calculated for different values of the vibrational internal energy of intermediate 1, as given
in Table 1. Note that in this work we have limited ourselves to the 100–250 kcal/mol
energy range.

The relative product yields of the dissociation are shown in Figure 2. In this figure, the
energy values are counted from isomer 1. We see that the dominant dissociation channel
over the entire energy range is channel 4 (formation of OH and CH3CH2O radicals). The
two simultaneous reaction channels passing through barriers TS2 and TS3 lead to the same
reaction product 3 (formation of acetaldehyde and H2O) with substantial yield at high
internal energy values. The third significant reaction path is the formation of formaldehyde
and methanol (5), passing through the barrier TS5. But the branching ratio of this channel is
relatively small and reaches a value of approximately 15% only on the right side of the plot.
Channel 2, which is the path providing the initial reagents CH2OO + CH4, is negligible, as
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it was mentioned above. This means that for this collisional reaction, the reverse reaction
leading to the formation of the initial reagents can be neglected.
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It should be mentioned that according to Figure 1, products 3 and 5 have high energy
release. Usually, it means that a significant amount of the released energy will be converted
into the translational energy of products. So, these reactions could produce molecules with
high translational energy, which may play an important role in the chemistry and physics
of the upper atmosphere.

Considering the fact that in order to pass through barrier TS1, molecules have a kinetic
energy no less than the barrier height (26.6 kcal/mol), and this energy will be transformed
into the internal energy of the intermediate CH3CH2OOH. If there are no other sources of
quick dissipation of the internal molecular energy at this altitude, it is sufficient for the OH
group loss.

Products 4 (OH and CH3CH2O radicals) are formed without a distinct barrier. Nu-
merous experiments with reactions in molecular beams show that during the barrierless
cleavage of a single covalent bond, the fraction of energy converted into the kinetic energy
of fragments is small and turns predominantly to vibrational energy. Therefore, we can
assume that almost all the kinetic energy of the initial reagents, minus the value required
to carry out the decomposition reaction through channel VTS4, will be converted into
the internal energy of the products. It can be quite enough for secondary dissociation. In
Figure 3, the secondary dissociation reaction of the CH3CH2O radical is shown. We do not
know precisely which part of overall internal energy will be accumulated in this fragment,
but for simplicity, we use the same 100–250 kcal/mol energy range. At low values of
internal energy, the main dissociation products are formaldehyde and CH3 radicals, with
acetaldehyde and hydrogen atoms as minor products. The potential curves intersect at
approximately 120 kcal/mol. According to these data, we conclude that formaldehyde and
methyl radical will be the main products of the CH2OO and CH4 reactions at low energy
collisions. At the same time, acetaldehyde, water, and hydrogen atoms will be the main
reaction products at high energies.
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3.2. CH3CHOO + CH4 Reaction

The next collisional reaction that we shall discuss in this work is the reaction between
methane and Criegee intermediate CH3CHOO. This intermediate exists in two possible
forms: syn-CH3CHOO and anti-CH3CHOO (see Figure 4), which differ in the spatial
orientation of the COO group. The energy barrier of the rotation of this group around
the C–O axis is about 34 kcal/mol, which is rather high and significantly exceeds the
barrier for the OH group elimination reaction, i.e., 16.5 kcal/mol and 31.2 kcal/mol for
syn- and anti-isomers, respectively. It is also higher than that of decomposition into other
fragments. Their values range from 18.3 kcal/mol to 23.8 kcal/mol [30,31]. Therefore, these
two isomers are considered, in general, to be different substances.

The anti-isomer reacts easily with water [15,16] and destroys it immediately near the
earth’s surface. Therefore, this isomer is not considered when describing processes occur-
ring in the lower atmosphere. On the contrary, in rarefied upper atmospheric conditions,
both isomers exist in comparable proportions [48] Supplementary Material.

The PES along possible routes of the collisional-induced chemical reactions between
methane and CH3CHOO are presented in Figure 4. As was mentioned above, in this work
we do not discuss the direct formation of methanol due to collisions of the reagents. As
in the previous part, we concentrate our attention on the formation of energetically stable
single fragments, which then dissociate with the creation of various reaction products.

The entrance barrier for the collision-induced fusion reaction between methane and
anti-CH3CHOO (27.9 kcal/mol) or syn-CH3CHOO (30.8 kcal/mol) is relatively high. How-
ever, as in the previous section, we believe that the total kinetic energy of reagents and
the energy obtained during the synthesis of carbonyl oxide are sufficient to overcome the
barrier. In the upper atmosphere, the energy obtained during the relaxation of excited
states could also be added to this value.
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The result of this reaction is a large energy release (38.5 kcal/mol relative to the
syn-CH3CHOO + CH4 level), which is finally transformed into the internal energy of the
molecular complex (CH3)2CHOOH (denoted by 1). For convenience, as in the previous
section, we will consider this isomer as the starting point for all subsequent reactions.

As can be seen from Figure 4, the OH fragment is detached from the parent intermedi-
ate through VTS4 without a distinct transition state, providing the formation of products 5,
i.e., OH and (CH3)2CHO radicals. Similar to the case discussed in the previous section, it
implies that almost all the kinetic energy of the initial reagents, minus the value required to
carry out the decomposition reaction through channel VTS4, will be transformed into the
internal energy of the fragments. It can also be adequate for secondary dissociation.

The relative product yields of (CH3)2CHOOH isomer dissociation is shown in Figure 5.
The rate constants used to prepare this figure are given in Table 2. One can see that the
reaction with the formation of products 5 (OH and (CH3)2CHO radicals) dominates over
the entire energy range. Reaction through TS5 (with a barrier height of 30.5 kcal/mol),
which provides the formation of acetaldehyde and methanol (product 6), has a noticeable
impact (up to 15% of the total amount of products) at high values of available internal
energy. This reaction occurs through the shift of a weakly bonded OH fragment to one of
the two available CH3 groups. Therefore, the degeneracy of the reaction part is equal to 2.
Usually, the barrier cross-section profile of this type of reaction is quite wide, which leads
to an increase in the reaction rate constants.
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Table 2. RRKM and VTST unimolecular rate constants (s−1) and reaction path degeneracies of
dissociation initiated by collision of syn-CH3CHOO and anti-CH3CHOO CIs with methane. Energy
values are measured from the energy of isomer 1 ((CH3)2CHOOH). Channels 2 and 3 are combined
for simplicity.

Transition
State Reaction

Reaction Path
Degeneracy

Internal Energies, kcal/mol
100 125 150 175 200 225 250

TS1 1 → 2 2 3.6·105 2.3·107 3.2·108 2.0·109 7.6·109 2.2·1010 5.6·1010

TS2 1 → 3 2 7.0·104 6.5·106 1.1·108 7.3·108 3.0·109 9.4·109 2.3·1010

TS3 1 → 4 1 2.1·108 2.5·109 1.3·1010 4.2·1010 1.0·1011 2.1·1011 3.8·1011

VTS4 1 → 5 1 1.0·1011 5.2·1011 1.6·1012 3.3·1012 5.5·1012 6.9·1012 8.3·1012

TS5 1 → 6 2 2.3·106 2.6·108 4.4·109 3.2·1010 1.4·1011 4.2·1011 1.0·1012

TS6 1 → 7 6 4.4·107 1.1·109 9.3·109 4.2·1010 1.3·1011 3.2·1011 6.5·1011

The path providing the formation of products 7 (propaldehyde and water) through
the transition state TS6 with a barrier of 18.6 kcal/mol is a minor channel. The reaction
occurs through the shift of the OH fragment to one of the CH3 groups, followed by the
rearrangement of molecular geometry. The symmetry factor of this reaction is six because
the parent molecule 1 has two CH3 groups, and each of them has three equivalent hydrogen
atoms. On the other hand, the C–H bond cleavage typically occurs through a barrier with a
narrow cross-sectional profile, which usually decreases the rate constant and hence reduces
the overall branching ratio.

The last reaction pathway (denoted as 4) is the formation of acetone and water through
TS3 (with a barrier height of 9.7 kcal/mol). Despite its relatively low barrier height, the
symmetry factor of this channel is equal to one, which reduces its contribution to the
dissociation of initial isomer 1 and makes it a minor channel.

Thus, all the reactions except the pathway through VTS4 have distinct barriers and are
accompanied by significant energy releases. As noted above, a significant part of this energy
can be transformed into the kinetic energy of products. Therefore, under certain conditions,
these reactions could be a source of molecules with high kinetic energy. Backward reactions
to the initial reagents (denoted as 2 + 3 in Figure 4) are negligible.

The results of branching ratio calculations performed for the secondary dissociation
reaction of fragment (CH3)2CHO are presented in Figure 6. As in the previous section,
our consideration here is performed in the same energy range of 100–250 kcal/mol. One
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can see that the major reaction products, especially at low energy values, are acetaldehyde
and methyl radical (denoted as 8). The minor decomposition channel producing acetone
and hydrogen atoms (denoted as 9 in Figure 6) has a significant branching ratio (up to
25%) only at high internal energy values. Therefore, this reaction can be a source of methyl
radicals and hydrogen atoms, which are chemically active substances that can participate
in many reactions, especially in the middle and upper atmosphere.
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Based on the results presented in this section, it can also be noted that the heights of
barriers, minima positions, and the final energy of the products have increased after replac-
ing one hydrogen atom with a methyl group. Summarizing the results, we can conclude
that chemical reactions caused by collisions between methane and Criegee intermediate
CH3CHOO can produce OH and CH3 radicals, atomic hydrogen, methanol, acetaldehyde,
water, and acetone. The exact product composition depends strongly on the initial internal
and kinetic energy of the reagents.

3.3. (CH3)2COO + CH4 Reaction

(CH3)2COO molecules differ from the previously discussed CIs by the number of
methyl groups. In this section, we will study the chemical reaction between this CI and
methane. The overall potential energy surface of this reaction along the main pathways
is presented in Figure 7. Similar to the case with CH2OO and CH3CHOO molecules, the
reaction passes through the formation of a stable intermediate complex. In this case, the
corresponding intermediate is (CH3)3COOH (denoted as 1). In order to achieve it, the
reactants should overcome the entrance barrier TS1 with a height of 31.2 kcal/mol. This
value is higher than the corresponding ones for CH2OO and CH3CHOO molecules. The
minimum depth of 1 (−34.7 kcal/mol) is also significantly higher than in the two previous
cases. The energy of OH elimination channel 4 occurring through the variational transition
state VTS3 without a distinct barrier is 8.1 kcal/mol, which is also noticeably higher than
in the previous two cases. We can conclude for these three reactions that the methylation
effect is expressed in an increase in barrier heights, minima energies, and the quantity of
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reaction products. It is also evident from the data presented in Tables 1–3 that the reaction
rates decrease with an increase in the number of methyl groups.
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Table 3. RRKM and VTST unimolecular rate constants (s−1) and reaction path degeneracies of
dissociation initiated by collision of (CH3)3COO with methane. Energy values are measured from the
energy of isomer 1 ((CH3)3COOH).

Transition
State Reaction

Reaction Path
Degeneracy

Internal Energies, kcal/mol
100 125 150 175 200 225 250

TS1 1 → 2 3 3.0·104 3.3·106 6.2·107 5.1·108 2.4·109 8.3·109 2.2·1010

TS2 1 → 3 6 2.7·106 1.1·108 1.2·109 6.7·109 2.4·1010 6.9·1010 2.6·1011

VTS3 1 → 4 1 9.2·109 6.1·1010 2.3·1011 5.3·1011 9.7·1011 1.6·1012 2.4·1012

TS4 1 → 5 3 3.5·103 1.5·106 5.5·107 6.5·108 4.0·109 1.7·1010 5.2·1012

As in previous cases, we assume that almost the entire internal and kinetic energy of
reactants transfers to the internal vibrational energy of intermediate 1, i.e., it is at least higher
than the depth of minimum 1 plus the height of the barrier TS1. It means that the internal
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energy of the (CH3)3COOH isomer is at least higher than 65.9 kcal/mol (31.2 + 34.7). The
energy necessary to lose the OH group is equal to 42.8 kcal/mol (34.7 + 8.1). As it was
mentioned above, the kinetic energy of fragments after dissociation without a barrier is
small, so after the OH elimination, the complimentary fragment (CH3)3CO could still have
enough internal energy for a secondary reaction through barrier TS5 (22.4 kcal/mol). The
resulting products of this reaction will be acetone and methyl radicals.

The relative product yields of (CH3)3COOH isomer dissociation are shown in Figure 8.
The rate constants used to prepare this figure are given in Table 3. One can see that the major
dissociation channel of isomer 1 in all energy ranges is the OH elimination reaction, which
has been discussed already. The second possible reaction is the formation of 2-butanone (3)
and water, which occurs through passing the barrier TS2 (22.1 kcal/mol). The branching
ratio of this reaction does not reach the value of 5% even at the highest values of internal
energy. Reactions through TS4 (38.2 kcal/mol), leading to the formation of acetone and
methanol (5), as well as the backward reaction of the formation of initial reagents (2) via
TS1, are negligible.
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Summarizing the results for this section, we conclude that collision-induced chem-
ical reactions between methane and (CH3)2COO most probably produce acetone, OH,
(CH3)3CO, and CH3 radicals. Other fragments could be produced in insignificant amounts.
The methylation effect is obviously presented in the case of this CI.

4. Conclusions

In this work, the chemical interaction between methane molecules and simple Criegee
intermediates CH2OO, syn-CH3CHOO, anti-CH3CHOO, and (CH3)2COO, initiated by
collision, was studied. It has been shown that this interaction in the Earth’s atmosphere,
particularly in the upper atmosphere, leads to various chemical reactions, which result
in the formation of many radicals such as OH, CH3, ethoxy, methyletoxy, and others,
as well as atomic hydrogen, methanol, acetone, water, and various aldehydes. CIs are
extremely chemically active, and their presence in the atmosphere can initiate a large
number of reactions. Methane is a major greenhouse gas that plays an important role in
global warming. Our study has shown that both methane and CIs are destroyed during
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their collision. This implies that this reaction should be considered as one of the ways to
remove them from the atmosphere.

Many previous studies have shown that OH radicals are important “cleansers” of the
atmosphere that remove air pollutants. They also participate in a large number of physical
and chemical processes in the Earth’s atmosphere, triggering cascades of cyclic secondary
reactions, including the formation of atomic oxygen, HO2, NO2, hydrogen peroxide, etc.
This work suggests a new possible source of hydroxyl radical formation.

The processes studied in this work also indicate probable new sources of atomic
hydrogen, methanol, acetone, and water creation in the mesosphere and ionosphere. They
may modify the chemical physics of these layers and initiate the creation of high-altitude
stratospheric and noctilucent clouds. In addition, we have shown that methylation of
this class of molecules increases reaction barriers and generally slows down the rates of
chemical processes.

The high values of the entrance barriers of the collisional-induced reactions between
methane and the simple CIs suggest that these reactions are most likely to occur in the
rarefied layers of the upper atmosphere, where thermodynamic equilibrium is often dis-
turbed and molecules with high kinetic energy are likely to be frequent. The processes
leading to this conclusion are discussed above. There is also a high probability of the
formation of electronically excited molecules in the upper atmosphere, for some of which
the energy of electronic excitations then can be transformed into internal vibrational en-
ergy. Our calculations performed for a wide energy range of 100–250 kcal/mol should
be useful for future studies of physicochemical processes in the upper atmosphere and
ionosphere. Some questions concerning the probability and exact mechanisms of the forma-
tion of energetically cold and stable molecular complexes mentioned in this work require
additional consideration. Photochemical processes occurring with the participation of
electronically excited CIs and their molecular complexes are also very important. That is
why the presented results may be useful in future studies of processes involving excited
states of CIs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atoms11120157/s1, File S1: Optimized B3LYP/aug-cc-pVTZ geometries,
CCSD(T)/aug-cc-pVTZ energies CH2OO + CH4 reaction.
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