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Abstract: Vortices are structures known in our daily lives and observed in a wide variety of systems,
from cosmic to microscopic scales. Relatively recent studies showed that vortices could also appear
in simple quantum systems. For instance, they were observed experimentally and theoretically as
isolated zeros in the differential cross section in atomic ionization processes by the impact of charged
particles. In this work, we show that the appearance of these quantum vortices as point structures was
not due to any intrinsic property of them, but to the use of restrictive geometries in their visualization.
In particular, we show that by studying the fully differential cross section for hydrogen ionization
by positron impact, these vortex points are actually a manifestation of a more complex and hitherto
unexplored structure, a 3D “vortex surface”.
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1. Introduction

This article is about vortices. We have all experienced them in our daily lives; for
example, when we stir the coffee in our cup during breakfast. And we also have a pretty
precise idea of how to define a vortex as a fluid rotating around an axis.

This is a ubiquitous effect not only in classical physics, but also in other areas, most
notably quantum physics. In all these cases, it is associated with many-body systems,
describable by means of a fluid–dynamic theory. However, as we will see in this article, it
can also occur in simple quantum systems, in fact, as simple as those composed of only
two or three bodies. Naturally, this raises an obvious question: if vortices are effects that,
as far as our common knowledge dictates, occur in a fluid, how can vortices exist in the
absence of a fluid?

As if this were not enough, we will also see that, vortices, which we usually associate
with a rotational movement around a point or a line, can occur around a surface. The very
existence of vortex surfaces seems to go against intuition, since there would not be enough
“space” (i.e., spatial dimensions) to trace closed flow circuits around them.

If we wanted to condense the content of this article in a single and brief sentence,
which also puts in focus the two apparent paradoxes that we have just mentioned, we
would say neither more nor less than “we will study the formation of vortex surfaces in a
three-body quantum system”.

In the next section, we will describe the background of this work, both in the broader
contexts of fluid physics and many-body quantum mechanics, to arrive at simple few-body
quantum systems, in which we are interested. In this area, we will focus in more detail on
the existing results, as well as their various findings and future hypotheses.

Next, we will review the concept of a quantum vortex, and its intimate relationship
with the geometry of the problem under study, thus providing the conceptual basis for
understanding the existence of vortex surfaces in simple quantum systems.
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We will also give a description of the theoretical model used to calculate the fully
differential cross section (FDCS) in the simple ionization of atoms by positron impact of
energies in the range of tens of electron volts.

Finally, we will show the results obtained, which constitute the first complete calcula-
tion made so far of a vortex surface in a three-body quantum system. We will show that,
when analyzed in the framework of restricted geometries, this vortex surface gives rise to
lines or rings in a 3D space or isolated point vortices in a 2D space, such as those observed
by other authors in previous works.

2. A World of Vortices

Vortices are well-known and thoughtfully studied structures in fluid physics. Also,
we all know from experience that these flows are in rotation around an axis, since they can
be found frequently and naturally in the most diverse systems. For instance, vortices are
well-known and frequent effects on atmospheric and aquatic dynamics, in the form of dust
devils, tornadoes, waterspouts, mesocyclones, hurricanes, and cyclones. On a smaller scale,
we can mention the smoke rings that smokers can create, or the bubble rings blown by
divers and cetaceans.

At the planetary level, we can highlight the intermittent Dark Spot of Neptune, the
polar vortices of Mars, Earth, Venus, Jupiter, and Titan, and the strange hexagonal vortex in
the north pole of Saturn.

The eddies that usually appear in rivers and the sea are easily recognizable, and in
some cases have given rise to mythical narratives and artistic representations.

In classical physics, we recognize examples such as the Taylor–Couette flow, and those
generated with airfoils and electromagnetic fields.

Vortices are also ubiquitous structures in many-body quantum systems. For example,
Nobel laureates Lars Onsager in 1949 [1] and Alexei Alexeyevich Abrikosov [2] in 1957
predicted their presence in superfluids, and type-II superconductors, respectively.

2.1. Vortex Atom

In 1858, Hermann von Helmholtz made the first mathematical study of vortex rings [3].
A few years later, William Thomson read before the Royal Society of Edinburgh a work
entitled “Vortex Atoms” [4], postulating that “Helmholtz’s rings are the only true atoms”.
This model was further developed by Joseph John Thomson [5]. On discovering the electron
in 1897, J. J. Thomson himself initiated the abandonment of this model [6]. However, as we
will see below, more than a century later, we know that quantum vortices are ubiquitous in
atomic physics. Nevertheless, the concepts we now know as atoms and (quantum) vortices
had to evolve significantly to establish that link.

2.2. Vortices in Quantum Few-Body Systems

Let us consider one of the simplest quantum systems, such as the stationary bound
state of a hydrogenic atom of reduced mass µ, and of principal, angular, and magnetic
quantum numbers n, `, and m, respectively, and with wave function, ψn`m(r, θ, ϕ) As we
will see later, it can be shown that this very basic quantum system has a vortex around the
quantization axis with circulation Γ = h m/µ . This simple example shows that it is not
necessary to resort to highly complex or many-body quantum systems to observe vortices.
In fact, they appear even in a two-body system, reducible to the problem of a particle of
reduced mass µ in the presence of a central potential, as is the case of the hydrogen atom.

However, despite their ubiquity, even in the simplest quantum systems, vortices are
not only not treated but not even mentioned in quantum physics textbooks. Except for
error or omission, an exhaustive search in more than fifty of the best-known books used in
academic courses, from the most basic to the most advanced, shows that the words vortex
or vortices do not even appear in the alphabetical indexes. Only two books [7,8] make
a presentation of this concept, although not exhaustively. However, it should be noted
that both books, being based on either the de Broglie–Bohm pilot wave or the Madelung
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Hydrodynamics interpretations, respectively, were not intended for their use in quantum
physics courses.

To find a complete analysis of these structures, it is necessary to turn to, for example,
the following articles by Białynicki-Birula et al. [9,10]. Furthermore, a review of their
citations might serve to put into context the impact that this initially marginal topic is
having on the study of various few-body processes such as, for example, the simple
ionization of atoms, as we will see in this article.

3. Quantum Vortex

Let us consider a quantum system characterized by a wave function, ψ(r, t). For
simplicity in what follows, we will consider the case of a single particle, although the
calculation and its conclusions can easily be generalized to systems of more particles. We
define the amplitude A and the action S, real quantities that verify

ψ(r, t) = A(r, t)exp[
i
}S(r, t)

]
, (1)

from which we obtain the probability density and the velocity field,

ρ(r, t) = A(r, t)2, (2)

u(r, t) = ∇S(r, t)/µ. (3)

These two “fields” verify the continuity equation [11] (pp. 26–27),

∂ρ

∂t
+∇ · ρu = 0. (4)

Now, since the velocity is defined from a gradient according to Equation (3), then
its rotor is zero, and therefore we obtain a vorticity equal to zero regardless of position
and time,

ω(r, t) = ∇× u = 0. (5)

In this sense, we see that the concept of a vortex system may not be associated with the
wave function of a pure quantum system, when interpreted in hydrodynamic terms [8,12].
However, this is not the case. Let us consider, for example, the state ψn`m(r, θ, ϕ) of a
hydrogenic atom. We write its wave function as

ψn`m(r, θ, ϕ) = Rn`(r) N`m Pm
` (cos θ) eimϕ, (6)

where Rn`(r) is a radial function, Pm
` are the associated functions of Legendre, and N`m is a

constant of normalization [11], all real quantities. We see that

u(r, t) =
}m
µ
∇ϕ =

}m
µ

1
rsin θ

ϕ̂. (7)

and, therefore, the circulation through any circuit around the axis ẑ is equal to

Γ =
h
µ

m. (8)

We see that the circulation around the quantization axis is nonzero (except for m = 0).
This makes sense, since the action S must be well defined, except for an integer multiple of
2π. In addition, the velocity diverges as 1/rsin θ, and the only way this is not absurd is that
ρ(r, t) is zero on that axis, which indeed happens. But the most important conclusion of this
example is that there can indeed be vortices associated with pure quantum systems, where
the vorticity is zero along any closed contour that does not contain the zone where the



Atoms 2023, 11, 147 4 of 14

probability density is canceled and around which the circulation is nonzero and quantized.
Unlike the vortices typically found in macroscopic systems, called “rotational” vortices (see
Figure 1, left), these types of vortices, which we have described here, are called “irrotational
or free” vortices (see Figure 1, right).
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Figure 1. In a rotational vortex (left), each fluid element rotates on itself, like what happens in a rigid
body. In an irrotational or free vortex (right), each fluid element maintains its direction fixed in space.

The previous calculation was restricted to a reduced quantum (three-dimensional)
system of one particle but can be extended to systems of more particles and therefore of
greater dimension. In such a case, since the quantum vortex is characterized by the locus
where the probability density cancels out (that is, where the real and imaginary parts of
the wave function are zero simultaneously), it must have a dimension twice as small as the
dimension of the system. It is said, then, that quantum vortices have codimension 2.

4. Quantum Vortex in Atomic Collisions

Studies based on the numerical resolution of the time-dependent Schrödinger equation
(TDSE) for the evolution of the wave function of a hydrogen atom subject to interaction
with charged protons [13–15] or antiprotons [16] following classical rectilinear and uniform
motion show that quantum vortices can appear, evolve in different ways, and even disap-
pear in time. More specifically, these theoretical studies analyzed the temporal evolution of
the wave function,

ψ
(
rp, rn, re, t

)
, (9)

where rp, rn, and re represent the positions of the projectile, and of the nucleus and electron,
of the target atom (of masses mp, mn, and me), respectively. In addition, an impact parameter
approximation was applied to the motion of the projectile, which was classically described
by means of the equation rp = vt + b, with v being the velocity and b being the impact
parameter. While convincingly demonstrating the emergence and evolution of quantum
vortices in collision processes, and even that some of these vortices can stabilize and remain
even at very large times and macroscopic distances, these studies did not indicate how it
would be possible to detect their presence in the corresponding cross sections. To establish
this link, we must apply the following theorem.

4.1. Imaging Theorem

Let us consider a simple ionization process, where a projectile p ionizes an atom that
separates into a residual nucleus n and an electron e. From a theorem proved by John
Dollard in 1971 [17], we have that, in the asymptotic limit,

lim
t→∞

∣∣ψ(rp, rn, re, t
)∣∣2 drpdrndre ∝

∣∣T(kp, kn, ke
)∣∣2 dkpdkndke (10)
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here kj = mjrj/t are the momentum of the particles j = p, n, and e in the three-body final
state. Here, T

(
kp, kn, ke

)
is the transition matrix element, which is related to the fully

differential cross section (FDCS) by means of the following equation:

dσ
dkpdkndke

= (2π)4

v

∣∣T(kp, kn, ke
)∣∣2

×δ
(
kp + kn + ke −mpv

)
δ

(
k2

p
2mp

+ k2
n

2mn
+ k2

e
2me
− 1

2 mpv2 + ε

)
.

(11)

Here, ε is the single ionization energy of the atom in its initial state. In the above
equation and in the rest of this article, we will use Hartree’s atomic units [18]; that is,
the mass and unit charge of the electron are taken as equal to one, as is Planck’s reduced
constant, } = 1, and the Bohr radius (i.e., the average radius of the orbit of the fundamental
state of the hydrogen atom).

Finally, it should be mentioned that although in this section we have been studying a
collision process characterized by a three-body final state, the conclusions obtained are not
limited to this system, and can be extended to other collision processes with ease.

4.2. Reduction in the Number of Variables with Conservation and Symmetry Laws

The Dirac deltas due to the conservation of linear momentum and energy allow for
reducing the dependence of the cross section on the nine components of kp kn y ke to
only five. Furthermore, due to the rotation symmetry around the collision axis determined
with v, it is possible to eliminate one more variable, and be left with only four. Therefore,
we write

dσ

dq1dq2dq3dq4
= N |T(q1, q2, q3, q4)|2, (12)

where N is a normalization factor that depends on the set of variables chosen. There is
complete freedom in the choice of these four variables, and different authors have chosen
different sets to represent their results, with the only requirement that any of these choices
should be complete, in the sense that any other set of four independent variables can be
written in terms of them.

4.2.1. Rochester Geometry

One of the most used options is the so-called Rochester geometry [19], which chooses
the polar angles of two particles (usually the projectile and the electron), their relative
azimuthal angle, and the energy of one of them (see Figure 2).
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Figure 2. The Rochester geometry uses the polar angles θp y θe of two particles, the azimuthal angle
φ between them, and one energy, Ep = k2

p/2mp or Ee = k2
e /2me, as the four variables necessary to

fully represent the final state of the three-body system, attending to the conditions of conservation
and symmetry of the collision process.

4.2.2. Harvard Geometry

Unlike the previous geometry, in the so-called Harvard geometry [19], the “gun angle”
θ between the initial direction of the projectile and the plane formed with the particles p



Atoms 2023, 11, 147 6 of 14

and e, the relative angles on that plane, as shown in Figure 3, and the energy of one of them
are chosen as relevant variables.
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4.3. Restrictive Geometries

Naturally, since the FDCS in a simple ionization process depends on four variables,
there is an inherent difficulty in its visualization, since this would require a reduction in at
least one variable to be represented graphically in our three-dimensional world. It is for
this reason that restrictive geometries are usually used, where one or more conditions are
imposed on the four variables chosen.

5. Vortex Points in Simple Impact Ionization of Charged Particles
5.1. Electron Impact

One of the first experimental pieces of evidence of the presence of vortices in a simple
quantum system was obtained by Murray and Read in 1993 [20,21] in the single ionization
of helium by an electron impact of 64.6 eV. It appeared in the form of a deep minimum in
the FDCS in a “symmetric” variant of Harvard geometry [22], where it is imposed that the
angles ξp y ξe should be equal (i.e., ξp = ξe = ξ), which reduces the number of variables by
one. Plotting the FDCS as a function of the scattering angle ξ for fixed values of the Gun
Angle θ and the final energy Ep or Ee (in this case, interchangeable), the authors observed
the presence of a minimum when θ = 67.5 degrees and Ep = Ee = 20 eV, for a symmetric
scattering angle ξ equal to 70 degrees.

Initially, this minimum was attributed to the “interference between the scattering am-
plitudes for the forward- and backward-scattering processes”. Using a three-body distorted
wave (3DW) approximation, but modified to allow for three-body effects, this minimum
could theoretically be reproduced a year later [23]. In addition, it was theoretically shown
that this deep minimum was an isolated zero in the restricted FDCS, thus constituting
a novel and hitherto unknown structure. It took 16 years before Macek et al. [24] con-
cluded that this zero could be traced to the presence of an isolated quantum vortex in the
atomic wave function. Subsequent theoretical studies also observed the presence of an
isolated vortex point in the restricted FDCS for (e,2e) collisions with other targets. For
example, with (K-shell) carbon [25] in a Coulomb–Born (CB1) approximation, oriented
molecular hydrogen [3,26] by means of a time-dependent close-coupling (TDCC) approach,
and atomic hydrogen [22,27,28] using 3DW TDCC, and different types of modified-CB1
approximations [22].

5.2. Positron Impact

In 1991, 2 years before the Murray and Read experiment, Braunner and Briggs [29],
using a 3DW approximation, theoretically discovered a minimum in the TDCS for atomic
hydrogen ionization by a positron impact of 10 and 100 keV.



Atoms 2023, 11, 147 7 of 14

Using a collinear geometry, which can be achieved either by fixing φ = 0 and
θp = θe = θ in Rochester geometry or ξp = ξe = 0 in Harvard geometry, they observed that
for θ = 45 degrees, a deep minimum was generated when Ee ≈ 4.76 keV and Ee ≈ 49 keV,
for impact energies of 10 keV and 100 keV, respectively.

The appearance of this minimum at an emission angle of 45 degrees was initially
attributed to some kind of interference between two Thomas double-binary scattering
mechanisms.

In 2003, it was demonstrated [30] that, using the same collinear geometry, an isolated
zero was also observed at impact energies of the order of 100 eV, that is, in a plausible
range of experimental study, well below the excessively high energies analyzed by Brauner
and Briggs. This zero was at an emission angle of about 22.5 degrees and was therefore
associated with a saddle-point mechanism.

Later it was found that, as the impact energy increased, two other zeros at 45 degrees
also began to be observed [31], as shown in Figure 4. These zeros are compatible with the
minimum reported years earlier by Brauner and Briggs [29], this being the first evidence of
the coexistence of more than one isolated zero in the doubly restricted FDCS corresponding
to the same collision.
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degrees had opposite vorticities. This was compatible with one of the mechanisms for 
vortex appearance identified by Białynicki-Birula et al. [9,10]. 

Moreover, it was observed that the vortex at 22.5 degrees could exist at impact ener-
gies of a few tens of eV [33], being therefore accessible to experimental observation. Alt-
hough in 2015 a technique was proposed [34] to facilitate the identification of vortices in 
positron impact ionization experiments, an experimental confirmation such as the one that 
has existed for three decades in the case of processes (e,2e) has not yet been achieved. 

Figure 4. Square modulus of the transition matrix |T|2, for the ionization of atomic hydrogen by the
impact of positrons of 275 eV. A collinear geometry is used, where the electron and positron exit in
the same direction. k‖ y k⊥ are their momentum components parallel and perpendicular to the initial
velocity of positron v, respectively. Both components are normalized by means of the maximum value
kmax =

√
m2

e v2 − 2ε, which can reach the electron in an ionization process. The arrows represent the
directions of the generalized velocity field u = Im∇kln T.

Finally, in 2013, as shown in Figure 4, these isolated zeros were shown to be mani-
festations of quantum vortices [32]. In particular, the two zeros observed at an angle of
45 degrees had opposite vorticities. This was compatible with one of the mechanisms for
vortex appearance identified by Białynicki-Birula et al. [9,10].

Moreover, it was observed that the vortex at 22.5 degrees could exist at impact energies
of a few tens of eV [33], being therefore accessible to experimental observation. Although
in 2015 a technique was proposed [34] to facilitate the identification of vortices in positron
impact ionization experiments, an experimental confirmation such as the one that has
existed for three decades in the case of processes (e,2e) has not yet been achieved.

6. Vortex Lines

In 2017, it was discovered that the three isolated vortices shown in Figure 4 for the
ionization of atomic hydrogen by the impact of positrons of 275 eV were part of a single
structure, a vortex line [35]. This can be clearly seen in Figure 5, corresponding to a
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Rochester geometry with φ = 0 where the vortex line cuts the plane of collinear geometry
three times, thus forming the three vortex points observed in Figure 4.

Atoms 2023, 11, x FOR PEER REVIEW 8 of 14 
 

6. Vortex Lines 
In 2017, it was discovered that the three isolated vortices shown in Figure 4 for the 

ionization of atomic hydrogen by the impact of positrons of 275 eV were part of a single 
structure, a vortex line [35]. This can be clearly seen in Figure 5, corresponding to a Roch-
ester geometry with 𝜙 = 0  where the vortex line cuts the plane of collinear geometry 
three times, thus forming the three vortex points observed in Figure 4. 

 
Figure 5. Vortex line for the ionization of atomic hydrogen by positron impact of 275 eV [36]. A 
coplanar geometry is used, where the initial velocity of the projectile and the final moments of the 
electron and positron are in the same plane. This corresponds to fixing 𝜙 = 0 in Rochester geome-
try. As in the figure above, 𝑘∥ y 𝑘ୄ are the components of the momentum of the electron parallel 
and perpendicular to the initial velocity of the positron 𝐯, respectively. Both components are nor-
malized by means of the maximum value 𝑘୫ୟ୶ = ඥ𝑚௘ଶvଶ − 2𝜀, which can reach the electron in an 
ionization process. The vertical axis represents the relative angle 𝜃௣ − 𝜃௘ between the exit direc-
tions of the positron and the electron, expressed in radians. In the plane corresponding to 𝜃௣ = 𝜃௘, 
the square modulus of the transition matrix |𝑇|ଶ shown in Figure 4 is displayed. 

That the presence of this structure was not previously observed was due to simple 
reasons; basically, with a few exceptions, FDCSs are usually represented in 2D restricted 
geometries. Therefore, since vortices are codimension 2 structures, they can only appear 
as isolated points. When moving to 3D constrained geometry, vortices become visible as 
one-dimensional structures, that is, as vortex lines. 

7. Vortex Rings 
A subsequent study [36] showed that, by using an appropriate set of coordinates (in 

this case, Cartesian), but without departing from the restrictive geometry described in the 
previous section, the vortex line shown in Figure 5 closes on itself, constituting a vortex 
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Figure 5. Vortex line for the ionization of atomic hydrogen by positron impact of 275 eV [36]. A
coplanar geometry is used, where the initial velocity of the projectile and the final moments of the
electron and positron are in the same plane. This corresponds to fixing φ = 0 in Rochester geometry.
As in the figure above, k‖ y k⊥ are the components of the momentum of the electron parallel and
perpendicular to the initial velocity of the positron v, respectively. Both components are normalized
by means of the maximum value kmax =

√
m2

e v2 − 2ε, which can reach the electron in an ionization
process. The vertical axis represents the relative angle θp − θe between the exit directions of the
positron and the electron, expressed in radians. In the plane corresponding to θp = θe, the square
modulus of the transition matrix |T|2 shown in Figure 4 is displayed.

That the presence of this structure was not previously observed was due to simple
reasons; basically, with a few exceptions, FDCSs are usually represented in 2D restricted
geometries. Therefore, since vortices are codimension 2 structures, they can only appear
as isolated points. When moving to 3D constrained geometry, vortices become visible as
one-dimensional structures, that is, as vortex lines.

7. Vortex Rings

A subsequent study [36] showed that, by using an appropriate set of coordinates (in
this case, Cartesian), but without departing from the restrictive geometry described in the
previous section, the vortex line shown in Figure 5 closes on itself, constituting a vortex
ring, as it is seen in Figure 6.
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8. Vortex Surface

In all the previous examples, some kind of constraint is used on the four variables that
define the final state of the three-body system. The question naturally arises as to what
would happen if we calculated the FDCS completely and without any restriction, that is,
for all kinematically accessible values in a four-dimensional space. As mentioned in the
introduction, this is precisely the central objective of this article.

We will use the same C3 model used in the previous calculations, where the final state
in the ionization of atomic hydrogen by positron impact is described with the following
correlated wave function [32]:

ψ = ϕ−1
(
kp, rp

)
× ϕ1(ke, re)× ϕ1/2

(
ke − kp, re − rp

)
× (2π)3/2exp(ik · r), (13)

where

ϕα(k, r) = (2π)−3/2Γ
(

1 + i
α

k

)
exp

(πα

2k
+ ik · r

)
1F1

(
−i

α

k
, 1;−i(kr + k · r)

)
, (14)

is the continuum state for a two-body system of relative position r and momentum k,
unit reduced mass, and interacting by means of a Coulomb potential, V(r) = −α/r. The
reader can refer to article [32] to find a detailed description of this theory, its advantages,
limitations, and previous applications.

If we look at Figures 5 and 6, it is obvious that the geometries used so far do not seem
to be adequate for the representation of vortex structures. Obviously, the intricate aspect
of the vortex ring will also be observed in the vortex surface (of which the above is a cut
for a fixed value of the perpendicular component of the positron’s final moment). This
will not only make it very difficult to represent the vortex surface, but also to identify its
fundamental characteristics. To avoid this conundrum, we will use a different geometry
than those used or referred to so far in this article and by other authors. In what follows, we
will represent the FDCS without any restrictions whatsoever, using as its four representative
variables the three Cartesian components of the electron momentum and the exit angle θ of
the positron with respect to its initial velocity v.
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It should be mentioned that these calculations are very time-consuming, since to locate
the vortices, it is necessary to explore the entire variable space of the FDCS looking for
those points where both the real part and the imaginary part of the transition matrix are
simultaneously equal to zero, namely ImT = ReT = 0. The technique to do so consists of
tracking the regions where the imaginary and real parts of T cancel out separately, and then
where they cross, as described in detail in article [32]. Each point on the following figures
represents a match, ImT = ReT = 0. The set of these points will thus define the vortex
lines. For calculating each point of a vortex ring, we calculate FDCS on a grid equally
spaced in the modulus of momentum (50 points) and final angle of the electron (180 points).
The crossings of the real and imaginary lines are estimated using the bisection. Each ring
in the end is composed of 90 points (by symmetry considerations, only 45 are calculated),
then implies the calculation of 405,000 cross sections.

In Figure 7, we see that for θ = 0, two vortex rings (of opposite vorticity) are observed
around v, which we take as axis z. The symmetry of rotation around this axis is reflected in
the circular shape of both vortices.
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Figure 7. Vortex rings in the FDCS for the ionization of atomic hydrogen by impact of positrons of
100 eV in the space of the momentum k of the electron (in atomic units), when the positron does not
vary its direction of movement (θ = 0).

In Figure 8 below, the positron is deflected at an angle of 5 degrees, which produces
several effects on the vortex structures. First, the rotational symmetry is broken around
the z-axis, but a reflection symmetry remains with respect to the collision plane (ky = 0)
formed with the initial and final directions of motion of the projectile. On the other hand,
the lower vortex ring has been deformed in the direction of the exit of the positron. Finally,
the top vortex ring has been opened into a vortex line that starts and ends at the kinematic
limit. This boundary forms a sphere of radius kmax =

√
v2 − 2ε around k = 0, which,

for simplicity, is not shown in the figure. Here, it is worth highlighting that reaching the
kinematic limit in momentum space is equivalent to reaching infinity in coordinate space,
because the distance between an electron escaping with the maximum allowed kinetic
energy and any other with a smaller speed grows linearly with time.
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into a line and a ring, as shown in Figure 10 for 𝜃 = 120௢. 

Figure 8. Vortex lines in the FDCS for the ionization of atomic hydrogen by impact of positrons of
100 eV in the space of momentum of the emitted electron (in atomic units). The positron is deflected
at an angle of θ = 5◦ in the plane ky = 0.

As the deflection angle θ of the positron increases, the ends of both vortices get closer
together, until they join to form a single line as shown in the Figure 9, in one of the forms of
vortex evolution studied by Białynicki-Birula [9,10].
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Figure 9. As in Figure 8 for θ = 18◦ (left) y θ = 20◦ (right).

If the deflection angle of the positron continues to increase, this vortex line is deformed
until, in an inverse process to that observed in the previous figure, it separates into a line
and a ring, as shown in Figure 10 for θ = 120◦.
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Figure 10. As in Figure 8 for θ = 120◦.

Finally, by continuing to increase θ, the vortex ring closes on itself, while the vortex
line vanishes over the kinematic limit, thus closing the vortex surface of which the lines
shown in Figures 7–10 are only cuts for certain values of θ. Indeed, plotting together the set
of these different cuts gives a representation of the vortex surface itself. For simplicity, we
only show a fragment of this surface (Figure 11), limited to the range 0◦ ≤ θ ≤ 25◦.
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Figure 11. Vortex surface in the FDCS for the ionization of atomic hydrogen by impact of positrons
of 100 eV in the space of momentum of the emitted electron. The positron is dispersed in the plane
ky = 0. Each figure shows a view of the vortex rotated approximately 45 degrees clockwise from
the previous one, starting with the top-left figure, and every line represents a cut of the surface
corresponding to a value other than the angle θ of deviation of the projectile. For simplicity, only a
surface vortex fragment corresponding to the range is displayed, 0◦ ≤ θ ≤ 25◦.

9. Conclusions

In this work, we have made a complete calculation of the vortex surface for a process
of atomic ionization by impact of positrons. We showed not only that the vortex points
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observed previously in the FDCS by different authors and in different ionization processes
using restrictive 2D geometries seem to correspond to a single vortex line when one of the
variables is relaxed, i.e., moving to a 3D geometry, but that these vortex lines are only cuts
of a single vortex surface in the complete FDCS with no geometric restrictions.

From an exhaustive bibliographic search, we believe our study might be relevant to
explore this type of structures in other fields of physics where vortices arise. Moreover, it
is important to highlight again that these vortex surfaces appear in an extremely simple
quantum process, characterized by a final three-body state consisting of an electron, a
positron, and a proton. Preliminary calculations seem to indicate that a similar structure
would exist in ion impact ionization processes.
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