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Abstract: Positron scattering by beryllium atoms in the low-energy range (≤4.0 eV) was studied
within ab initio and semiempirical frameworks. When interpreting the static dipole polarizability
and the scattering length as representative quantities of the target and positron–atom correlations,
the scattering observables obtained in the ab initio calculation were extrapolated by applying a
semiempirical approach. Our results ratify previous ones, since no Ramsauer minimum structures or
shape resonances were found in the cross sections. The presence of a (e+, Be) bound state was also
identified as a function of the dipole polarizability.
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1. Introduction

Low-energy positron scattering by atoms and molecules forms an interesting source
of information about the interaction dynamics of antielectrons with ordinary matter [1].
In particular, a considerable challenge is present in the low-energy region, where the
correlation–polarization effects are important and high-energy standard approaches, such
as the first Born approximation and its variations, are not valid.

Specifically, the positron scattering by the alkaline earth atoms has been the subject
of investigations from time to time. These chemical species are closed shell-like systems,
for which the theoretical procedures are similar to those found in calculations with noble
gas atoms.

As far as we know, the first specific calculation of low-energy positron–Be scattering
was that reported by Kurtz and Jordan [2] in the early 1980s. They applied the Harris
method [3] while considering an ad hoc polarization potential. A Ramsauer minimum at
1.6 eV was found in the s-wave phase shift, but it was obscured in the total cross section
due to the large contributions from the p and d waves near this energy. This peculiarity
was also observed in positron scattering by rare gas atoms [4]. Interestingly, a virtual state
was found from the identification of a pole in the S matrix on the imaginary k axis [2].

In 1993, Szmytkowski applied the relativistic polarized orbital method to investigate
the problem [5]. Unlike in the previous calculations of Kurtz and Jordan [2], the polarization
potential was calculated in a fully ab initio framework by solving the coupled Dirac–Hartree–
Fock equations. The large positive value that was found for the scattering length suggested
that the scattering potential could support a weakly bound state.

The existence of a bound state was theoretically established in 1998 in a fixed-core
stochastic variational method (FCSVM) calculation performed by Ryzhikh et al. [6]. Af-
terward, the weak binding energy (0.00278 Hartree) found in the FCSVM was used by
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Bromley et al. [7] to tune different semiempirical potentials and investigate low-energy
positron–Be elastic scattering.

The Ramsauer effect in electron and positron scattering by Be was examined by Reid
and Wadehra [8]. They used an energy-dependent correlation–polarization model potential,
and no Ramsauer effect was found for positrons.

More recently, Poveda et al. [9] applied an ab initio local model potential based on a
finite nuclear mass correction. They found an interesting structure in the elastic cross section
around 1 eV due to the p-wave scattering associated with a frustrated shape resonance. In
particular, the existence of a bound state was verified through a direct calculation from the
potential curve.

Therefore, one might conclude that there is a weak (e+, Be) bound state, and that the
Ramsauer minima and shape resonances are absent in the elastic cross section.

In this work, we investigated the low-energy positron–Be scattering while taking a
well-established many-body ab initio (AI) method as a reference for the positron–target
correlation. Then, by using a semiempirical (SEMP) approach, we extrapolated how the
scattering observables varied according to target polarizability.

The AI calculations were performed with the Schwinger multichannel method (SMC)
for positrons [10], which we have already applied to investigate the elastic scattering
and rotational excitation of H2 [11], Li2 [12], and N2 [13] as a result of positron impact.
Curiously, as far as we know, helium is the only atomic target that has been studied with this
method [14,15]. Since beryllium has only four electrons and a simple closed-shell electronic
structure, it is the next system in the order of complexity and an excellent candidate for AI
many-body calculations.

In the absence of any experimental data on this system,1 an AI investigation is rather
welcome. Every theoretical methodology is built from an interaction model that is com-
posed of a description of the target and the short- and long-range electron–positron corre-
lations. From an AI calculation, it is expected that the results will be as accurate as those
of the interaction model adopted. If the physics of the problem are correctly described,
such calculations are able to accurately predict what should be experimentally observed. A
field of research that illustrates this reasoning is the study of the polarizabilities of atoms,
molecules, and clusters [17].

In the particular context of positron–atom scattering, although it is possible to control
some aspects (basis set size, representation of scattering orbitals, representation of target
state, et cetera), SMC calculations provide parameter-free answers to the problem under
investigation. However, the computational cost and intrinsic complexity of a many-body
calculation prohibit a study on how the cross sections vary with relevant target properties.
Semiempirical methods, on the other hand, depend on how the model parameters are
calibrated, but, in general, they provide information regarding the relevant variables in the
description of the phenomenon, and they are mainly used to identify validation intervals
of the physical quantities involved with simple calculations.

With these arguments, the objectives of this work are to find out what the many-body
AI calculation with the SMC predicts for positron–Be scattering—more precisely, the phase
shifts, scattering length, and elastic cross section—and then develop an extrapolation
scheme based on physical grounds to investigate how the scattering observables vary
depending on the polarizability of the target.

This paper is organized as follows: In Section 2, we describe the methods and com-
putational procedures; in Section 3, we present the results obtained, with an emphasis on
the analysis of possible scattering structures. Finally, in Section 4, we state our conclusions.
Unless otherwise stated, we use atomic units throughout the text.

2. Methods and Procedures
2.1. Ab Initio Calculations

The AI calculations were performed with the SMC. The method was originally pre-
sented by Germano and Lima [10] and was applied to several molecular systems over
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time [18–21]. A complete description of the method can be found in [11,15], and in this
work, we will provide only the main methodological elements.

Taking ~x as the positron coordinate and {~rj; j = 1, 2, ..., N} as the coordinates for the
electrons, the scattering wavefunction for the positron–atom system is written as

|Ψ(+)
~ki

((~rj),~x)〉 = ∑
µ ν

a(+)
µ ν (~ki)Φµ(~rj)ϕν(~x) (1)

where Φµ(~rj)ϕν(~x) ≡ χµν(~rj; ~x) forms a trial basis set. In this equation, Φµ(~rj) denotes the
HF ground-state wavefunction of the target (µ = 0) and the excited states (µ 6= 0). The
term ϕν(~x) represents the positron scattering orbitals—in this case, these are taken as the
orbitals coming from the SCF calculation.

Considering the functional variation of the amplitude according to the Schwinger vari-
ational principle with respect to the coefficients {a(+)

µ ν (~ki)}, we get the working expression
for the body–frame scattering amplitude:

f (~k f ,~ki) = −
1

2π ∑
mn
〈S~k f
|V|χm〉(d−1)mn〈χn|V|S~ki

〉 (2)

with
dmn = 〈χm|PVP + QĤQ−VG(+)

P V|χn〉. (3)

In the equation above, S~k is a solution of the unperturbed Hamiltonian (molecular
Hamiltonian plus the kinetic energy operator for the incident positron); each Latin label
compactly denotes n = (µ, ν), and P and Q are projectors onto energetically open and
closed states of the target. The term V is the many-body electrostatic positron–target
potential, Ĥ is the total energy minus the scattering Hamiltonian, and G(+)

P = PG(+)
0 is the

projected Green function, which is written in this way in order to avoid the calculation of
the target continuum states present in the free-particle Green function G(+)

0 .
The initial input used in a standard SMC calculation is a set of Cartesian Gaussian

functions (CGFs). This set is then used to generate the atomic ground-state wavefunction
and the excited-state determinants. The drawback comes from the dependence of the cross
sections on the CGF set that is elected to represent the target and the positron scattering
orbitals [15,22].

The initial criterion for the selection of a basis set is the description of basic atomic
properties, such as the ground-state energy and dipole polarizability. For practical applica-
tions of the SMC, we additionally consider the criteria described in [11,13], which, briefly
speaking, verify if the basis is consistent with the first Born approximation and exhibit
convergence between the methods used to compute the Green function.

For this work, we chose the one listed in Table 1, which was taken from [23] and
augmented with s, p, and d functions. The energy obtained in the SCF calculation was
−14.5724462 Hartree, which presents a good agreement with the theoretical and experimen-
tal values [24,25]. For this basis set, we found the dipole polarizability of 45.60 a3

0, which
was computed with the GAMESS quantum chemistry package [26] by using a finite field
approach. This value is in agreement with those given by Maroulis and Thakkar [27], who
provided 45.622 a3

0 and 45.608 a3
0 for the two basis sets considered in their investigation at

the SCF level of approximation.
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Table 1. Basis set of Cartesian Gaussian functions (CGFs) considered to describe the ground state of
the Be atom and the positron scattering orbitals in this work. The CGF core was extracted from [23],
and functions were added to obtain 15 of each kind. All functions are uncontracted.

Type S Type P Type D

2155.379 7.334782 9.180140
320.2894 1.554565 7.180140
71.05837 0.430418 3.080140
19.48182 0.143014 1.556213
6.177410 0.050654 0.955513
2.205970 0.020871 0.758656
1.861726 0.010000 0.525648
0.173778 0.008000 0.102306
0.092853 0.006000 0.019911
0.064906 0.003000 0.003875
0.010000 0.001000 0.000754
0.008000 0.000800 0.000146
0.005866 0.000100 0.000028
0.001540 0.000050 0.000005
0.000502 0.000010 0.000001

2.2. Connecting Polarization, Correlation, and Scattering Length

It is well known that low-energy positron–atom cross sections are determined by the
balance between static repulsive interactions and the attractive correlation–polarization
ones. From perturbation theory, the asymptotic form of the potential (to the second order)
is known as [28]:

lim
r→∞

Vpol(r) ≈ −
αd
2r4 . (4)

where αd is the static dipole polarizability of the target. One concern, if not the major
problem in the field, is the description of the positron–target correlation effects. These effects
compete with the electrostatic effects when the positron gets close and penetrates the atomic
cloud.

In model potential approaches, the correlation effects are generally modeled as if
the positron distorts a gas of electrons as it superposes to the electronic cloud [29]. The
disadvantage of this approach lies in the way that the asymptotic polarization potential
(Equation (4)) is connected with the correlation potential. For practical purposes, the
correlation and polarization potentials are piecewise connected at the point at which they
cross each other for the first time [29,30]. In the SMC, the correlation–polarization effects are
treated in a full many-body AI way through virtual excitations of the target. This standard
of excellence demands its price: the scattering observables depend on the description
adopted for the target and, mainly, on how the interaction model is assumed to describe
the positron–target correlations. Once a CGF basis set is selected for the calculation (as
discussed in [11,13]), this methodology is non-functional for the study of how the scattering
observables change as the target or interaction parameters vary. This kind of investigation
is better performed by using model or semiempirical approaches.

In the SMC, the target is described by using an HF wavefunction. This implies that
the target electronic correlation is described at the SCF level. According to Table 3 of
Maroulis and Thakkar [27], when electronic correlation is taken into account, the dipole
polarizability goes to ≈37.0 a3

0, i.e., ≈19% lower in magnitude than the SCF value of 45.6 a3
0.

From the point of view of positron scattering, this means that an SCF polarization such as
that considered here provides an attractive asymptotic component of the potential that is
deeper than the one that should be found if the target wavefunction used for scattering
calculations considers the electronic correlation beyond, regardless of the SCF level.

At this point, the question that we wish to answer is the following: Taking the SMC
correlation as a reference, how would the scattering parameters predicted by this method
vary if a more sophisticated target electronic correlation was considered?
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From a pragmatic point of view, the target correlation manifests in the value of αd,
while the the intrinsic positron–target correlation of the SMC manifests at the scattering
at zero energy, i.e., in the value of the scattering length A. So, if the function A ≡ A(αd)
and the incorporation of the correlation is somehow known, then, this question can be
answered.

Fortunately, this problem has already been tackled by Szmytkowski [31,32]. Assuming
that the interaction potential has the form

V(r) =
{

Vs(r) r < R
− αd

2r4 r > R (5)

where Vs(r) is the short-range component of the interaction, which is taken here as the
positron–atom electrostatic potential, the scattering length A as a function of the polariz-
ability αd is given by

A = β

(
1 + β(1/R− 1/As) tan(β/R)
tan(β/R)− β(1/R− 1/As)

)
, (6)

where β =
√

αd/a0, and As is the scattering length associated with the short-range compo-
nent of the potential.

To find how A varies with αd in Equation (6), we adopted a similar procedure when
studying the same problem for positron–Ar [4]. In practice, we need to determine the
parameter R. Defining the dimensionless variables x = β/R, y = β/As, and z = β/A, we
get a transcendental equation:

tan x =
z + (x− y)

1− z(x− y)
. (7)

The input values considered were αd = 45.60 a3
0, A = 20.120 a0, and As = 1.669 a0,

which are, respectively, the dipole polarizability and the scattering lengths obtained with
the SMC with and without polarization. The numerical solution of this equation provided
x = 2.456 or R = 2.750 a0.

In what follows, we assume that:

1. R = 2.750 a0 is representative of the positron–target correlation of the SMC, and from
now on, it will be considered a fixed value;

2. αd = 45.60 a3
0 is representative of the electronic correlation of the target as considered

in the SMC.

Figure 1 shows the plot of the scattering length A as a function of αd as given by
Equation (6) in order to reproduce the scattering length obtained with the SMC. The range
of values for αd goes from 37 to 45.6 a3

0 [27], but a larger range was considered in order to
observe the change in sign of the scattering length for αd = 36.15 a3

0. Physically, this means
that a virtual state turns into a bound state for αd > 36.15 a3

0, which, interestingly, is slightly
below the lowest value for αd foreseen in the calculations of Maroulis and Thakkar [27].

2.3. Semiempirical Approach

Once the variation of A with αd is determined, we investigate the variation of the
scattering observables for positron–Be by applying a semiempirical model [4,33–35]. The
positron–atom scattering problem is treated by using the following single-body Hamiltonian:

H = −1
2
∇2 + Vst(r) + Vpol(r). (8)
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where the first term represents the kinetic energy of the positron, Vst(r) represents the
electrostatic positron–atom interaction that was calculated from the same CGFs as those
considered in the SMC calculations, and the polarization potential, in turn, is taken as

Vpol(r) = −
αd
2r4

[
1− e−(r/ρ)6

]
(9)

where ρ is an adjustable parameter. As expected, the values of ρ were adjusted to reproduce
the scattering lengths as a function of αd, as predicted from Equation (6). These values are
shown in Table 2 for representative values of αd.

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

α
d
 (a

0

3
)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

A
 (

a
0
)

R=2.750 a
0

Figure 1. Scattering length A as a function of the dipole polarizability αd according to Equation (6).
The curve was obtained with R = 2.750 a0 in order to reproduce the scattering length obtained
with the SMC.

Table 2. Table for the polarizabilities and scattering lengths for the semiempirical calculations.

αd/a3
0 A/a0 ρ/a0

45.6 20.1 3.1069
43.0 26.9 3.1117
41.0 36.8 3.1137
39.0 60.4 3.1154
37.0 191.6 3.1156
35.0 −255.5 3.0818

In order to visualize the confidence level of the model, in Figure 2, we show the
phase shifts computed from the scattering amplitude of the SMC (Equation (2)) and those
obtained from the semiempirical calculation (αd = 45.6 a3

0; ρ = 3.1069 a0). As we can see,
some small discrepancies are seen in the p (δ1) and d (δ2) waves for energies above 1 eV,
while the s wave (δ0) is very well described. There is nothing surprising in the quality of
this fitting because the criterion for fixing the parameter ρ was defined to privilege s-wave
scattering, which is dominant at low energies. In spite of these small discrepancies in the
p and d waves, we proceed in the exploration of the results because, as we can see, the
model managed to capture the essence of the physics in question. The effects of the p and d
deviations in the elastic cross section will be discussed in Figure 4.

2.4. A Final Remark

As a final remark to close this section, over the last few years, we have studied how
polarization terms of an order higher than αd affect positron–atom [36] and positron–
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molecule [37] scattering by using semiempirical [34] and model potentials [38]. Recently,
in an investigation on positron scattering by F2 molecules [39], we showed that the SMC
provides similar cross sections to those calculated with model correlations when only the
αd term is considered. Consequently, in this work, we focus on the study of cross sections
while considering exclusively the effect of the αd polarization. Hyperpolarization effects
will be addressed in a future article.

0 1 2 3 4
Energy (eV)

0

1

2

3

P
h
as

e 
sh

if
ts

 (
ra

d
)

SMC - δ
0

SEMP - δ
0

SMC - δ
1

SEMP - δ
1

SMC - δ
2

SEMP - δ
2

Figure 2. Phase shifts in radians as a function of the impact energy in eV computed with the SMC
and the semiempirical model (SEMP) according to the SMC reference data: A = 20.1 a0, αd = 45.6
a3

0, and ρ = 3.1069 a0 (see the first line of Table 2). δ0, δ1, and δ2 denote the s-, p-, and d-wave phase
shifts, respectively. Some small discrepancies are seen for the p and d waves for energies above 1 eV,
while the s wave is well described, as expected.

3. Results and Discussion

With the methodology defined in the previous section, we now proceed to the analysis
of the results. The first set of scattering observables to be analyzed are the phase shifts.
These are plotted in Figures 3 and 4 for the s and p waves, respectively, for the set of
polarizabilities in Table 2 as a function of the impact energy in eV.

In Figure 3, we see that for αd = 35 a3
0, δ0 starts from zero and quickly grows with the

energy, indicating that the potential is on the verge of forming an s-wave bound state. For
αd > 37 a3

0, the scattering length changes sign (see Figure 1 and Table 2), and the bound
state is formed. It is interesting to observe that according to the correlation model adopted
here, a measure of αd would indicate whether a (e+, Be) bound state exists. According to
Levinson’s theorem, at zero energy, we shall find δ0 = π. It is interesting to observe that δ0
crosses the zero value for energies next to 4 eV. In practice, this means that no noticeable
Ramsauer minimum structure will appear in the elastic cross section, since, at this energy,
the other partial waves fill the background. The graph of the p-wave phase shift in Figure 4,
on the other hand, shows no bound-state structure or any sign of shape resonance.

Now that the phase shifts have been shown, we look at the cross sections in Figure 5.
In the upper panel, we can visualize how the cross sections vary with αd. Clearly, the cross
sections exhibit the typical energy dependence observed in other atomic systems, such
as those of Ar, Kr, and Xe [34], and they grow in magnitude with the value of αd for a
fixed energy. When analyzing these graphs, it is important to be aware that the ionization
potential of Be is 9.3 eV [40], which implies a threshold for positronium formation of
2.5 eV. In addition, the threshold for the electronic excitation 1s22s2 (1S)→ 1s22s2p (1P0) is
2.7 eV [41]. Therefore, the scattering is genuinely elastic for impact energies below ≈2.5 eV.
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Figure 3. S-wave phase shifts for positron–Be as a function of the dipole polarizability αd. The values
of αd are given in a3

0. A yellow line marks δ0 = 0 in order to identify the suppression of the s-wave
cross section.
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Figure 4. The same as Figure 3, but for the p wave. Note that no shape resonance is found for any
value of αd. The legends are the same.

In the bottom panel, we see how the cross sections computed in this work compare
to the previous ones reported in the literature. For the sake of completeness, in Table 3,
we show the respective polarizabilities and scattering lengths. We first pay attention to
the model calculation of Kurtz and Jordan [2]. These authors worked with a correlation–
polarization potential similar to that found in Equation (5), but with a criterion for defining
R associated with the angular momentum barrier. Thus, a different R was adopted for
each partial wave. As we can see, their results are very similar to those computed in the
static (ST) approximation, which suggests that the polarization that they considered was
underestimated. The results obtained within the semiempirical approach for αd = 37 a3

0
(SEMP (37.0)) and αd = 45.6 a3

0 (SEMP (45.6)) are shown, in addition to the results directly
produced by the SMC. A small discrepancy is seen between the SMC and SEMP (45.6) for
energies above 1 eV, as expected from the phase shifts in Figure 2.
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The AI results that Szmytkowski [5] obtained with the relativistic polarized orbital
method are quite close to ours for αd = 37 a3

0 in the range of 0.25 to 4.0 eV. Nevertheless,
there is no agreement in the values for the scattering lengths, which indicates that our
s-wave phase shift is appreciably different from his. This is expected because the potentials
are distinct. The semiempirical and model potential results of Bromley et al. [7] and
Reid and Wadehra [8] are practically equal and coincide with our semiempirical ones for
αd = 45.6 a3

0. Finally, the AI cross section of Poveda et al. [9] clearly shows the higher
magnitude when compared to all other results.

0

200

400

600

800

1000

C
ro

ss
 S

ec
ti

o
n
 (

a 0

2
)

35.0

37.0

39.0

41.0

43.0

45.6

0 1 2 3 4

Energy (eV)

0

200

400

600

800

C
ro

ss
 s

ec
ti

o
n
 (

a 0

2
)

ST

SEMP (37.0)

SEMP (45.6)

SMC

Kurtz (1981)

Szmytkowski (1993)

Bromley (1998)

Reid (2014)

Poveda (2016)

Figure 5. Elastic integral cross sections for positron–Be. Upper panel: cross sections as a function of
αd given in a3

0. Bottom panel: this work compared to previous ones. (Refs. [2,5,7–9]).

Table 3. Scattering lengths A and dipole polarizabilities αd considered for positron–Be according to
previous works. All values are in atomic units.

Reference αd/a3
0 A/a0

SMC (present)-AI 45.60 21.12
Poveda (2016) et al. [9]-AI 37.8 13.3
Reid (2014) et al. [8]-MP 37.8 13.8

Bromley et al. (1998) [7]-SEMP 38.0 16.2
Szmytkowski (1993) [5]-AI 45.62 67.6

Kurtz and Jordan (1981) [2]-MP 37.8 not reported
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4. Conclusions

Low-energy positron scattering by beryllium was primarily studied in the ab initio
context. Specifically, the calculations were performed with the Schwinger multichannel
method, a variational treatment that incorporates the many-body character of the problem.
In order to understand how the scattering observables vary with the inherent correlation
schemes incorporated in this method, we took the static dipole polarizability αd and
the scattering length A as the main parameters that carry information on the target and
positron–atom correlations. Through the calculation of A as a function of αd based on
Szmytkowski’s theory, we extrapolated the scattering observables predicted in the ab initio
calculation by applying a semiempirical approach. According to the correlation model
adopted here, a measure of αd would indicate whether a (e+, Be) bound state exists.

Our results corroborate the findings of previous investigations, i.e., a (e+, Be) bound
state was found for αd > 36.10 a3

0, and no Ramsauer minimum or shape resonances were
present in the cross sections. Phase shifts and elastic cross sections were reported as a
function of αd in the range of values discussed in the work of Maroulis and Thakkar [27].

Future perspectives are the extension of this investigation to study the effect of higher-
order polarization effects in the low-energy cross sections—a point that still needs to be
better understood in the context of alkaline earth metals—and to improve the description
of the correlation effects within the SMC.
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Abbreviations
The following abbreviations are used in this manuscript:

HF Hartree–Fock
SMC Schwinger multichannel method
CGF Cartesian Gaussian functions
FCSVM Fixed-core stochastic variational method
ST Static
AI Ab initio
SEMP Semiempirical
MP Model potential
SCF Self-consistent field
GAMESS General atomic and molecular electronic structure system
ICS Integral cross section

Note
1 With regard to experimental data for alkaline earth atoms, total cross section data are available for Mg [16].
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