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Abstract: In multiconfiguration Dirac–Hartree–Fock (MCDHF) calculations, there is a strong coupling
between the localization of the orbital set and the configuration state function (CSF) expansion used
to determine it. Furthermore, it is well known that an orbital set resulting from calculations, including
CSFs describing core–core correlation and other effects, which aims to lower the weighted energies of
a number of targeted states as much as possible, may be inadequate for building CSFs that account
for correlation effects that are energetically unimportant but decisive for computed properties, e.g.,
hyperfine structures or transition rates. This inadequacy can be traced in irregular or oscillating
convergence patterns of the computed properties as functions of the increasing orbital set. In order
to alleviate the above problems, we propose a procedure in which the orbital set is obtained by
merging several separately optimized, and mutually non-orthogonal, orbital sets. This computational
strategy preserves the advantages of capturing electron correlation on the total energy through the
variational MCDHF method and allows to target efficiently the correlation effects on the considered
property. The orbital sets that are merged are successively orthogonalized against each other to retain
orthonormality. The merged orbital set is used to build CSFs that efficiently lower the energy and
also adequately account for the correlation effects that are important for the property. We apply
the procedure to compute the hyperfine structure constants for the 1s22s 2S1/2 and 1s22p 2P o

1/2, 3/2
states in 7Li and show that it leads to considerably improved convergence patterns with respect to
the increasing orbital set compared to standard calculations based on a single orbital set, energy-
optimized in the variational procedure. The perspectives of the new procedure are discussed in a
broader context in the summary.

Keywords: variational methods; multiconfiguration Dirac–Hartree–Fock; atomic properties; targeted
orbitals; non-orthogonal orbital sets; orthogonalization; convergence

1. Introduction

The fully relativistic multiconfiguration Dirac–Hartree–Fock (MCDHF) method, as
implemented in the General Relativistic Atomic Structure Package (GRASP) [1], has for
many years been used to provide a broad user community with crucial atomic data. In
astrophysics, the computed transition energies and transition data for many elements and
various ionization stages have been used for abundance analysis and plasma diagnostics.
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In some cases, the computed transition energies are of spectroscopic accuracy, which
renders them useful for the unambiguous identification of lines in recorded spectra [2–5].
Computed broadening parameters, such as hyperfine structures and isotope shifts, have
been used for detailed line modeling, revealing isotopic ratios and giving clues to nuclear
synthesis [6]. Further, Landé gJ-factors and magnetically induced transitions have been
used to infer knowledge about the magnetic fields of the Sun’s atmosphere [7]. Calculated
hyperfine interaction constants, field shifts, and mass isotope shifts [8,9], related to detailed
electron–nucleus interactions [10], have been combined with high-precision measurements
to extract nuclear information, such as magnetic dipole, electric quadrupole [11] and
magnetic octupole [12] moments, changes in nuclear radii along isotopic chains [13], and
nuclear deformations [14,15].

Multiconfiguration methods are conceptually simple: expand the wave functions
for atomic fine-structure states in a limited basis of configuration state functions (CSFs)
constructed from antisymmetrized and jj-coupled products of relativistic orbitals and apply
the variational principle on a weighted energy average of the states to derive equations for
the radial parts of the relativistic orbitals. Solve the equations iteratively in the so-called
self-consistent field (SCF) procedure to obtain a radial orbital basis. In the subsequent
configuration interaction (CI) calculations, expand the wave functions in a larger basis
of CSFs and determine the expansion coefficients by diagonalizing the corresponding
Hamiltonian matrix. Given the approximate wave functions, measurable properties, such
as hyperfine structures, isotope shifts, and transition rates, are evaluated using the first-
order perturbation theory as the expectation values or amplitudes of operators describing
the properties [16]. Guided by rules based on the Z-dependent perturbation theory, the
CSF bases and the orbitals used for their constructions are systematically increased to
account for valence–valence, core–valence, core–core electron correlation, as well as spin
and orbital polarizations and radial correlation of importance for both the total energy and
the computed properties [16,17].

The spatial locations of the orbitals depend on the weighted energy average of the
CSFs used in the SCF procedure; the challenge is to determine an orbital basis that saturates
all of the above correlation effects, some of which are energetically unimportant but more
important for a computed property. Failure to determine an orbital basis that is adequate
for describing important correlation effects for the property at hand may lead to slow and
irregular convergence as the orbital basis is enlarged or even convergence to an incorrect
limit [10,18,19].

In this work, we analyze the situation and propose an efficient and computationally
cheap procedure to deal with the problems above. The new computational methodology
can be used to generate an orbital basis that is suitable for describing the correlation
effects that are important for a property and, at the same time, suitable to account for the
energetically important correlation effects. We use the procedure to compute the hyperfine
constants for the 1s22s 2S1/2 and 1s22p 2P o

1/2, 3/2 states in 7Li and to demonstrate better
convergence properties with respect to the increasing orbital basis, compared with standard
calculations.

2. Variational Calculations
2.1. The MCDHF Method

In the multiconfiguration Dirac–Hartree–Fock (MCDHF) method, the atomic state
function (ASF) for an atomic state ΓJMJπ is a linear combination of configuration state
functions (CSFs)

Ψ(ΓJMJπ) =
NCSF

∑
α=1

cΓJ
α Φ(γα JMJπ), (1)
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where γα specifies the orbital occupancies and spin-angular coupling tree quantum num-
bers of each CSF. The CSFs are antisymmetrized and symmetry-adapted many-electron
functions, built from relativistic single electron Dirac central field orbitals,

ψnκm(r, θ, ϕ) =
1
r

(
Pnκ(r) Ωκm(θ, ϕ)

i Qnκ(r) Ω−κm(θ, ϕ)

)
, (2)

where Pnκ(r) and Qnκ(r) are the large and small components of the radial wave function,
and Ω(θ, ϕ) is the angular wave function for each component. Pnκ(r) and Qnκ(r) are
represented on a logarithmic grid and are required to be orthonormal within each symmetry.

The MCDHF method is energy-driven and may simultaneously target several states
Γi Ji, i = 1, . . . , NASF. The radial orthonormality condition is introduced as

Cab ≡
∫
[Pnaκ(r)Pnbκ(r) + Qnaκ(r)Qnbκ(r)] dr− δna ,nb = 0, (3)

for the orbitals with the same κ-value (κa = κb = κ), and applying the variational principle
to the statistically weighted energy functional of the targeted states

F ({c}, {P}, {Q}) = ∑NASF
i=1

√
2Ji + 1〈Γi Ji||HDC||Γi Ji〉
∑NASF

i=1 (2Ji + 1)
+ ∑

ab
δκaκb λab Cab , (4)

where the Lagrange multipliers λab are introduced to ensure the orthonormality of the
orbitals. We obtain a set of equations (see [20,21]) of the form

wa


V(a; r) −c

[
d
dr
−

κa

r

]

c

[
d
dr

+
κa

r

]
V(a; r)− 2c2


[

Pnaκa(r)

Qnaκa(r)

]
= ∑

b
εabδκa ,κb

[
Pnaκa(r)

Qnaκa(r)

]
. (5)

The potential V(a; r) consists of three terms

V(a; r) = Vnuc(r) + Y(a; r) + X(a; r), (6)

where Vnuc(r) is the nuclear potential. Y(a; r), the direct potential, and X(a; r), the exchange
potential, result from the variations of integrals associated with the Dirac–Coulomb Hamil-
tonian matrix elements 〈Γi Ji||HDC||Γi Ji〉 between the ASFs. Here, wa is the generalized
occupation number of orbital a, and εab are the energy parameters related to the Lagrange
multipliers. In the MCDHF program, as implemented in GRASP [1], the orbital variational
equations, together with the accompanying boundary conditions for the radial functions,
are solved numerically using finite difference methods through an iterative process, until
the self-consistent field (SCF) is obtained. This SCF procedure is coupled with the eigen-
value problem that provides the CSF mixing coefficients {cΓJ

α } of the NASF atomic states
considered—see [16,20,22] for details.

2.2. Localization of the Radial Orbitals and Their Dependence on the Energy Functional

The radial functions resulting from solving the variational equations strongly depend
on the energy functional and thus the CSF expansion. This fact can be used to our advantage
to capture some specific correlation effects that are important for a property but can also
bring undesirable distortions of the wave function for the property of interest (see [23] for
an in-depth discussion). As an example, we consider the ground state 1s22s2 1S0 in Be I.
To account for valence–valence (VV) correlation, we start with a set of radial orbitals (to
be determined) {1s, 2s, 2p-, 2p, 3s, 3p-, 3p, 3d-, 3d, . . . , } and allow double (D) substitutions
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from the outer (2s) orbital of the 1s22s2 reference configuration to the set of correlation
orbitals, which eventually form an expansion

ΨVV(1s22s2 1S0) = c0Φ(1s22s2 1S0) + ∑
nκ,n′κ′

cnκ,n′κ′Φ(1s2nκn′κ′ 1S0). (7)

To account for core–valence (CV) correlation, we allow D substitutions from the reference
configuration in which one substitution is from the outer orbital, and one is from the inner
orbital to a set of correlation orbitals to yield

ΨCV(1s22s2 1S0) = c0Φ(1s22s2 1S0) + ∑
nκ,n′κ′

cnκ,n′κ′Φ(1s2snκn′κ′ 1S0). (8)

Finally, to account for core–core (CC) correlation, we allow D substitutions from the inner
orbital of the reference configuration to the set of radial orbitals which yields

ΨCC(1s22s2 1S0) = c0Φ(1s22s2 1S0) + ∑
nκ,n′κ′

cnκ,n′κ′Φ(2s2nκn′κ′ 1S0). (9)

The radial orbitals with principal quantum numbers up to n = 4, resulting from indepen-
dent MCDHF calculations based on the above expansions, are shown in Figure 1.

0 1 2 3 4
r(a.u.)

−2

−1

0

1

2

P(
r)

Valence-valence correlation

0 1 2 3 4
r(a.u.)

−2

−1

0

1

2

P(
r)

Core–valence correlation

0 1 2 3 4
r(a.u.)

−2

−1

0

1

2

P(
r)

Core-core correlation

Figure 1. Contraction of the correlation orbitals when going from valence–valence through
core–valence to core–core correlation MCDHF calculations of 1s22s2 1S0 state of Be. The two thick
lines correspond to the 1s (red, no node) and 2s (blue, one node) orbitals. Other lines represent the
radial distributions of the correlation orbitals with n up to 4.

Not surprisingly, the correlation orbitals used to build CSFs that account for valence–
valence electron correlation strongly overlap the outer 2s orbital. The orbitals generated
to build CSFs that account for core–core electron correlation strongly overlap the inner 1s
orbital. The orbitals used to build CSFs that account for core–valence electron correlation
effects overlay the region in space in which the probability distributions of both 1s and 2s
overlap. Although we only show a subset of correlation orbitals, it is clear from Figure 1
that orbitals from a core–core calculation are inefficient at accounting for valence–valence
correlation and vice versa.

3. Computed Properties and Their Dependence on Correlation Effects

In this section, we discuss computed properties and their dependencies on correlation
effects. For simplicity, we restrict ourselves to a hyperfine structure with the 1s22s 2S1/2
and 1s22p 2P o

1/2, 3/2 states in 7Li as specific examples.
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3.1. Hyperfine Structure

The hyperfine structure of an atomic energy level is caused by the interaction between
the electrons and the electromagnetic multipole moments of the nucleus. The Hamiltonian
for the interaction may be represented as a multipole expansion [24]

Hh f s = ∑
k≥1

T(k) ·M(k), (10)

where T(k) and M(k) are spherical tensor operators of rank k in the electronic and nuclear
spaces, respectively [25]. The k = 1 term represents the magnetic dipole interaction and the
k = 2 term represents the electric quadrupole interaction. Higher-order terms are much
smaller and can often be neglected. For an N-electron atom, the electronic tensor operators
are, in atomic units,

T(1) =
N

∑
j=1

t(1)(j) =
N

∑
j=1
−i
√

2α r−2
j

(
αj C(1)(θj, ϕj)

)(1)
(11)

T(2) =
N

∑
j=1

t(2)(j) =
N

∑
j=1
−r−3

j C(2)(θj, ϕj). (12)

In the formulas above, α is the fine-structure constant, α is the Dirac matrix, and C(k) is the
renormalized spherical harmonic, a spherical tensor operator of rank k. The splitting of
atomic fine-structure levels due to the hyperfine interaction is often given in terms of the
interaction constants A and B

AΓJ =
µI
I

1
[J(J + 1)(2J + 1)]1/2 〈ΓJ ‖ T(1) ‖ ΓJ〉, (13)

BΓJ = 2QI

[
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)

]1/2

〈ΓJ ‖ T(2) ‖ ΓJ〉, (14)

where I is the nuclear spin, µI is the nuclear magnetic dipole moment, and QI is the nuclear
electric quadrupole moment.

3.2. Polarization Effects

The most important correlation effect for the hyperfine structure is the polarization of
the atomic core due to the Coulomb interaction with the valence electrons. Of particular
importance is the spin polarization of the closed s shells. If the two s-electrons in the same
subshell have different spin densities at the nucleus, a contact interaction is induced in the
non-relativistic limit. Since inner s-electrons have high, but canceling, spin densities at the
nucleus, a very small imbalance due to the interactions with the outer electrons is sufficient
to cause a contribution to the A constant comparable to that of an open valence shell. A
schematic illustration is shown in Figure 2. The Coulomb exchange interaction reduces the
repulsion between core and valence electrons with the same spin orientation, pulling the
core electron towards the valence subshell and causing an imbalance.

For example, consider the 1s22s 2S1/2 and 1s22p 2P o
1/2, 3/2 states in 7Li. In the mul-

ticonfiguration method, adhering to the non-relativistic notation, spin polarization (SP)
can be described by adding a CSFs of the form Φ(1s1s2(

3S)2s 2S) and Φ(1s1s2(
3S)2p 2P o),

respectively, to yield

ΨSP(1s22s 2S) = c1Φ(1s22s 2S) + c2Φ(1s1s2(
3S)2s 2S) (15)

and
ΨSP(1s22p 2P o) = c1Φ(1s22p 2P o) + c2Φ(1s1s2(

3S)2p 2P o), (16)
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where 1s2 is allowed to be non-orthogonal to 1s and 2s. For 1s22p 2P o, there is also an
orbital polarization (OP), which is due to the interaction of the core with the non-spherical
charge distribution of the valence orbital. This interaction distorts the spherical symmetry
of the core, leading to additional contributions, in the non-relativistic limit, to the orbital,
spin-dipolar, and quadrupole terms. In the multiconfiguration method, orbital polarization
can be described by adding CSFs of the forms Φ(1s3d3(

3D)2p 2P o) and Φ(1s3d4(
1D)2p 2P o)

to finally yield

ΨSP+OP(1s22p 2P o) = c1Φ(1s22p 2P o) + c2Φ(1s1s2(
3S)2p 2P o) (17)

+c3Φ(1s3d3(
3D)2p 2P o) + c4Φ(1s3d4(

1D)2p 2P o),

where 3d3 and 3d4 are non-orthogonal [17].

Core electrons Valence electronExchange force

Electron spin

Direct force

Core electrons Valence electron

Electron spin

Direct force

Figure 2. Spin polarization of a closed subshell in the core due to the Coulomb interaction with an
open valence subshell (cf. Figure 7 in Lindgren’s paper [26]).

3.3. Localization of the Polarization Orbitals

The efficiency of the above representation relies on the assumption that the correlation
orbitals are optimally localized to describe the polarization effects [18]. In relativistic
MCDHF calculations, which require the orbitals to be orthonormal in the current version of
GRASP, such an orbital basis, optimally localized for describing SP and OP, can be obtained
as follows:

1. Perform a weighted average Dirac–Fock calculation for 1s22s 2S1/2 and 1s22p 2P o
1/2, 3/2;

2. Keep 1s, 2s, 2p-, 2p frozen and perform weighted average MCDHF calculations for
1s22s 2S1/2 and 1s22p 2P o

1/2, 3/2 based on the CSF expansions formed by allowing S’s
substitution from the reference configuration to a set of s, d-, d orbitals;

3. Compute the hyperfine interaction constants and monitor the convergence as the set
of s, d-, d orbitals is increased;

4. Stop when the hyperfine interaction constants are not changing anymore.

In Table 1, we report the computed hyperfine interaction constants in MHz as functions
of the increasing set of s, d-, d orbitals. As can be seen from the table, these small calculations
(the calculations based on orbitals with a value of n up to 6 include only 96 CSFs distributed
over the three states) already capture the bulk of the correlation effects. Most notable is
the hyperfine constant for 1s22p 2P o

3/2, which changes sign when the polarization effects
are added.
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Table 1. Hyperfine interaction constants (in MHz) for the 1s22s 2S1/2 and 1s22p 2P o
1/2, 3/2 states in 7Li

from weighted average DF calculations and weighted average MCDHF calculations including spin
and orbital polarization effects with four layers of s, d-, d orbitals, i.e., orbitals set up to {6s, 6d-, 6d}.
The nuclear parameters for 7Li are I = 3/2, µI = 3.256424µN , and Q = −0.0406 barn.

A(2S1/2) A(2P o
1/2) A(2P o

3/2) B(2P o
3/2)

DF 290.249 32.356 −6.469 −0.2235
{3s, 3d-, 3d} 374.047 44.741 −4.910 −0.2238
{4s, 4d-, 4d} 380.692 42.461 −2.619 −0.1968
{5s, 5d-, 5d} 380.341 42.610 −2.766 −0.1968
{6s, 6d-, 6d} 380.342 42.611 −2.766 −0.1968

Exp. 401.752043 a 45.914(25) b −3.055(14) b

a Ref. [27], b Ref. [28].

The radial orbitals resulting from the polarization calculations are shown on the left
panel in Figure 3, together with the corresponding spectroscopic 1s, 2s, 2p-, and 2p orbitals.
The polarization orbitals are localized in a region between core electrons and valence
electrons to account for the exchange force. For comparison, radial orbitals resulting from
an energy-driven calculation, further described in Section 4.1, that include CSFs obtained
from SDT substitutions are shown on the right panel in Figure 3. The correlation orbitals
from the energy-driven calculation are more contracted, compared with the polarization
orbitals, reflecting the fact that the bulk of the correlation energy comes from the interactions
within the atomic core. We infer that the orbitals from the energy-driven calculation are
unsuited to capture the important polarization effects.

0 2 4 6 8 10
r(a.u.)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P(
r)

0 2 4 6 8 10
r(a.u.)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P(
r)

Figure 3. Left: orbitals from a calculation including CSFs describing polarization effects. Right:
orbitals from an energy-driven calculation, including CSFs obtained from SDT substitutions. The
three thick lines correspond to the spectroscopic 1s (red, no node), 2s (blue, one node), and 2p (green,
no node) orbitals.

4. Hyperfine Interaction Constants in Different Orbital Bases
4.1. Orbital Basis from Energy-Driven Calculations

We start with weighted average MCDHF calculations for the 1s22s 2S1/2 and 1s22p 2P o
1/2, 3/2

states in 7Li, based on the expansions obtained by allowing single (S), double (D), and triple
(T) substitutions from the {1s22s, 1s22p} reference configurations to an active set of orbitals.
The set is increased layer-by-layer (see [16] §3.5) up to {13s, 13p, 13d, 13 f , 13g}. The number
of CSFs in the final even and odd state expansions are, respectively, 92 015 and 255 892.
These calculations are energy-driven. They include all CSFs that can be generated from
the orbital basis, and the orbitals are localized in space by the variational principle, which
promotes those correlation effects that maximally lower the weighted energy. In Figure 4,
we display, in red squares, the resulting hyperfine interaction constants A and B, in MHz,
as functions of the increasing orbital set. The constants were computed using I = 3/2,
µI = 3.256424 µN , and Q = −0.0406 barn. The behavior for the 1s22s 2S1/2 is irregular,
whereas for other states, it is oscillating, making it difficult to establish an accurate final
value (cf. Figure 2 in [10]).
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Figure 4. Convergence of hyperfine constants (a) A(1s22s 2S1/2), (b) A(1s22p 2P o
1/2), (c) A(1s22p 2P o

3/2)
and (d) B(1s22p 2P o

3/2) of 7Li (all in MHz) from the energy-driven layer-by-layer calculations (red
squares), from the energy-driven fully variational calculations using the MCDFGME code (green
circles), and from calculations with merged polarization orbitals (blue crosses). The difference in
the convergence patterns between the energy-driven layer-by-layer GRASP calculations and the
energy-driven fully variational calculations with MCDFGME is probably due to the fact that the
former were performed by simultaneously optimizing the three states in the extended optimal level
(EOL) approach, whereas in the latter case, each state was separately optimized (OL).

The expansions include the CSFs that describe the important polarization effects
(single substitutions from the atomic core). However, the orbitals building the CSFs are not
spatially localized in the correct region, as seen in Figure 3. The correlation orbitals overlap
mainly the 1s orbital with a tendency for each layer to be either a little more contracted or a
little more diffuse each time to lower the weighted energy as much as possible with the
resulting oscillations of the hyperfine constants. At the same time, we observe an overall
increase in the absolute values of the magnetic dipole hyperfine constants A of the J = 1/2
states, compared with the respective absolute DF values (cf. Table 1). This is consistent
with the fact that correlation effects break up the closed atomic core, inducing contributions
similar to those from open shells.

It should be noted that the observed oscillations in the hyperfine constants do not
result from the layer-by-layer methodology [16] used in this work. A fully variational
calculation performed with the MCDFGME code [29,30] for Li-like Be+, Ne7+, and Cl14+

manifested similar oscillatory behavior, although, in the fully variational calculation, the
oscillations are slightly more damped than in the layer-by-layer case. The MCDFGME code
has also been used to provide fully relaxed, larger-scale calculations for 7Li, as compared to
the calculations from Ref. [31]. The resulting hyperfine constants are displayed as green
circles in Figure 4. The wavefunctions include all SDT substitutions to orbitals with n up to
5, i.e., {5s, 5p, 5d, 5 f , 5g}, and are fully relaxed. The single substitutions include also those
relevant to the Brillouin theorem [32]. This leads to 1463, 1454, and 2478 configurations for
the 2S1/2, 2P o

1/2, and 2P o
3/2 states, respectively. It should be pointed out that it is increasingly

difficult to obtain convergence in fully variational calculations when increasing the number
of orbital layers, and we were unable to go beyond n = 5. We have included orbitals up to
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g in both cases and thus should have comparable convergence in the angular correlation
contribution. However, full relaxation of all orbitals corresponds to more correlation
than in the case whereby the lower orbital layers are kept frozen. Strong oscillations are
indeed observed, where most of the differences with the layer-by-layer calculations can
be attributed to the fact that the fully relaxed calculations are performed separately for
each state in the Optimal Level (OL) approach, whereas the layer-by-layer calculations are
performed in the Extended Optimal Level (EOL) approach [33,34].

Oscillatory behavior has also been observed in earlier calculations of hyperfine struc-
tures for Sn, Zn, At, Cd, Ra, Au, Hg, Sc, Br, I, Bi, Be+, Fe6+, Ti, Y, Sc+, and Y+. Thus, we
can conclude that the observed oscillations are inherent to the variational method that
prioritizes the energy functional over the targeted atomic property. The latter observation
can be understood from the time-independent perturbation theory by looking at the order-
by-order expansion of the targeted observable (other than the energy). The terms of this
expansion involve matrix elements coupling the zeroeth-order unperturbed states through
not only the Hamiltonian but also the relevant (here, hyperfine) operators (cf. Equation (30)
in [35]). Many of them do not appear in the energy functional on which the variational
principle is applied to derive the MCDHF equations.

4.2. Polarization Orbitals Augmented to the Orbital Basis from Energy-Driven Calculations

Polarization orbitals need to be included in energy-driven layer-by-layer calculations,
in order to better describe the correlation effects that are important for the hyperfine con-
stants. However, due to the orthogonality restrictions, separately optimized and optimally
localized polarization orbitals can not be directly augmented to the orbital basis from
energy-driven layer-by-layer calculations. To overcome the orthogonality constraints, we
use the rwfnrelabel program in GRASP to relabel (change the principal quantum num-
ber that serves as the orbital identifier) the polarization orbitals so that they appear after
the orbitals from the energy-driven layer-by-layer calculation. The relabeled polarization
orbitals are then, using the rwfnestimate program in GRASP, orthogonalized against the
orbitals from the energy-driven layer-by-layer calculation and finally augmented. Then,
we perform CI calculations with the CSFs obtained by allowing SDT substitutions from the
{1s22s, 1s22p} reference configurations to orbitals optimized in the energy-driven calculation.
To these CSFs, which mainly describe correlation effects that are important for lowering
the energy and, to a lesser extent, the effects that are important for the hyperfine structure,
we add the CSFs obtained by S substitutions from the atomic core to the augmented, or-
thogonalized polarization orbitals. For energy-optimized orbital bases with n < 10, four
layers of orthogonalized polarization orbitals were augmented. For energy-optimized
orbital bases with n ≥ 10, due to linear dependencies in the orbital basis, only two po-
larization layers were augmented. The number of CSFs in the final even and odd state
expansions are, respectively, 92,541 and 258,432, i.e., only negligibly larger than those from
the energy-driven calculation. In Figure 4, we display, in blue crosses, the resulting hyper-
fine interaction constants A and B in MHz, as functions of the increasing energy-driven
orbital set (to which two or four layers of polarization orbitals have been added). Now,
the oscillations are almost completely damped out, and the final values of the interaction
constants can already be accurately established from a limited, n = 9, energy-driven orbital
set merged with the polarization orbitals. The CPU times of the n = 13 CI calculations are
20m42s in energy-driven calculations and 25m5s for energy-driven orbitals merged with
the polarization orbitals’ calculation for the 1s22s 2S1/2 state, using 64 nodes on a cluster
with the AMD EPYC 7542 32-Core Processor. The bulk of the CPU time is spent on the
calculations for energy-driven orbital sets. The interaction constants, on the other hand,
can be accurately established at n = 10 during the calculation of the energy-driven orbital
set merged with the polarization orbitals, for which the CPU time of the CI calculation is
6m30s on the 1s22s 2S1/2 state. That means that the efficiency can be improved by using
a smaller orbital set compared with energy-driven calculations. The use of separately
optimized polarization orbitals merged with energy-driven orbital sets represents a great
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improvement in both efficiency (the time-consuming parts are the calculations for large
energy-driven orbital sets) and accuracy. To provide the final values of the interaction
constants, the effects from the neglected orbitals with a higher l, as well as from the Breit
interaction, QED, and nuclear recoil, have to be added [31,36,37]. This is, however, outside
the scope of the present paper.

5. Summary and Conclusions

Orbitals resulting from MCDHF calculations strongly depend on the employed CSF
expansion. Expansions describing, e.g., core–core correlation and other effects aiming at
lowering the weighted energy of the targeted states as much as possible may yield an
orbital basis that is inadequate for building CSFs that account for correlation effects that are
important for other properties. An example is provided by hyperfine interaction constants.
These constants are affected by spin and orbital polarizations, described by the CSFs ob-
tained by allowing single substitutions from the atomic core to an orbital basis localized
in the region of space between the core electrons and the valence electron(s). This region
is energetically unimportant and not well described by the orbitals from energy-driven
calculations. The orbitals from energy-driven calculations tend to overlap the orbitals of
closed shells; at times they are a little more contracted, and, at other times, they are a little
more expanded—a behavior that may lead to oscillations for properties other than the
energy. To capture both the energetically important effects as well as the important effects
for the hyperfine structure, we propose a procedure in which the polarization orbitals that
are optimally localized to describe the polarization effects are relabeled and orthogonal-
ized against orbitals from energy-driven calculations. The procedure is computationally
efficient and dramatically improves the convergence properties of the computed hyperfine
interaction constants as functions of the increasing orbital set.

The proposed procedure is general and can be applied to compute accurate values of
other properties weakly coupled to the energy, as well as energy differences. Applied to
the transition parameters from high Rydberg states, it can be used to accurately describe
the outer part of the wave function that is important for the length form of the transition
operator but energetically unimportant [19]. Applied to energy differences, separate
calculations may be performed, targeting core–core, core–valence, and valence–valence
electron correlations. The two latter orbital sets are relabeled and orthogonalized against
the first one and against each other and then augmented to the first one. In the final CI
calculation, the CSFs that account for core–core correlation are built from the core–core
orbital set, and the CSFs that account for core–valence correlation are built from the core–
core orbital set to which the core–valence orbitals were augmented. Finally, the CSFs
that account for valence–valence correlation are built from the full orbital set, including
the core–core, core–valence, and valence–valence orbitals. This is similar to the method
described in [38], but it uses a merged and orthogonalized orbital basis. It should, in this
context, be emphasized that calculations of a specific atomic property require accurate
descriptions of effects that are of direct importance for that property, as well as the effects
that are important for the total energy, as can be seen from the crossed second-order terms
in the perturbative expression for a property (see [35] §7).

Although simple and readily available with the current tools in GRASP, rwfnrelabel,
and rwfnestimate [22], the present procedure has the drawback that it requires CSFs that
are important for the property, or, in the case of energy separations, core–valence, and
valence–valence correlation, to be built on merged orbital sets, which implies a certain
overhead. An alternate and more general solution circumventing the problems above
would be to employ different and mutually non-orthogonal orbital sets and deal with the
non-orthogonalities by bi-orthogonal orbital transformations, as in [35,38]. This work is in
progress based on the new concept of configuration state function generators (CSFGs) [39].
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Comput. Phys. Commun. 2019, 235, 433–446. [CrossRef]
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