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Abstract: The Fock expansion, which describes the properties of two-electron atoms near the nucleus,
is studied. The angular Fock coefficients ψk,p(α, θ) with the maximum possible value of subscript p are
calculated on examples of the coefficients with 5 ≤ k ≤ 10. The presented technique makes it possible
to calculate such angular coefficients for any arbitrarily large k. The mentioned coefficients being
leading in the logarithmic power series representing the Fock expansion, they may be indispensable
for the development of simple methods for calculating the helium-like electronic structure. The
theoretical results obtained are verified by other suitable methods. The Wolfram Mathematica is used
extensively.
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1. Introduction

The properties of a two-electron atomic (helium-like) system with an infinitely massive
nucleus of charge Z and nonrelativistic energy E are defined by the wave function (WF)
Ψ(r1, r2, r12), where r1 and r2 are the electron–nucleus distances, and r12 is the distance
between the electrons. The behavior of the ground state WF in the vicinity of the nucleus
located at the origin is determined by the Fock expansion [1]

Ψ̄(r1, r2, r12) ≡ Ψ(R, α, θ) =
∞

∑
k=0

Rk
[k/2]

∑
p=0

ψk,p(α, θ) lnp R, (1)

where the hyperspherical coordinates R, α and θ are defined by the relations:

R =
√

r2
1 + r2

2, α = 2 arctan
(

r2

r1

)
, θ = arccos

(
r2

1 + r2
2 − r2

12
2r1r2

)
. (2)

The convergence of expansion (1) was proven in Ref. [2]. The angular Fock coefficients
(AFC) ψk,p satisfy the Fock recurrence relation (FRR)[

Λ2 − k(k + 4)
]
ψk,p(α, θ) = hk,p(α, θ) (3)

with the RHS of the form [3,4]:

hk,p = 2(k + 2)(p + 1)ψk,p+1 + (p + 1)(p + 2)ψk,p+2 − 2Vψk−1,p + 2Eψk−2,p. (4)

The dimensionless Coulomb potential representing the electron–electron and electron–
nucleus interactions is

V ≡ R
r12
− Z

(
R
r1

+
R
r2

)
=

1
ξ
− 2Zη

sin α
, (5)

where we have introduced the important (in what follows) angular quantities:

ξ =
√

1− sin α cos θ, η =
√

1 + sin α. (6)
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The hyperspherical angular momentum operator, projected on S states, is defined as

Λ2 = −4
[

∂2

∂α2 + 2 cot α
∂

∂α
+

1
sin2 α

(
∂2

∂θ2 + cot θ
∂

∂θ

)]
. (7)

It is clear that all circumnuclear features of the two-electron atoms (ions) are defined by
the Fock expansion (1). There are a large number of methods for calculating the electronic
structure of the two-electron atomic systems. An excellent review on this topic can be
found in Refs. [3,5–8]. However, we know only one technique that correctly represents the
WF Ψ(r1, r2, r12) near the nucleus. It is the so-called correlation function hyperspherical
harmonic method (CFHHM) [9–11]. The expansion in hyperspherical harmonics (HHs)
provides the correct representation of the AFCs. However, the HH expansion is known to
converge very slowly. Although this method makes it possible to increase the convergence
of the HH expansion, a sufficiently good accuracy requires a large HHs’ basis size, which,
in turn, creates great computational difficulties.

Thus, it would be extremely useful to develop a much simpler method for calculating
the WF with correct behavior near the nucleus. In this regard, we would like to emphasize
the following important peculiarities of the Fock expansion (FE). It follows from definition
(1) that the FE can be split into individual power series (lines) associated with definite
power of lnR. In other words, the FE can be represented in the form:

Ψ = (ln R)0
(

ψ0,0 + Rψ1,0 + R2ψ2,0 + ...
)

+(ln R)1R2
(

ψ2,1 + Rψ3,1 + R2ψ4,1 + ...
)

+(ln R)2R4
(

ψ4,2 + Rψ5,2 + R2ψ6,2 + ...
)

(8)

+(ln R)3R6
(

ψ6,3 + Rψ7,3 + R2ψ8,3 + ...
)

+(ln R)4R8
(

ψ8,4 + Rψ9,4 + R2ψ10,4 + ...
)
+ ...

It is seen that the leading term of each line represents the product (ln R)k/2Rkψk,k/2(α, θ)
with even k. The first AFCs (ψ0,0 = 1) corresponding to k = 0, 2, 4 are well-known (see,
e.g., [3,4]):

ψ1,0 =
1
2

ξ − Zη, (9)

ψ2,1 = −Z(π − 2)
3π

(1− ξ2), (10)

ψ3,1 =
Z(π − 2)

36π

[
6Zη(1− ξ2) + ξ(5ξ2 − 6)

]
, (11)

ψ4,2 =
Z2(π − 2)(5π − 14)

540
√

π

[
Y40(α, θ) +

√
2 Y42(α, θ)

]
. (12)

The normalized HHs are

Y40(α, θ) = π−3/2(4 cos2 α− 1), Y42(α, θ) = 2
√

2π−3/2 sin2 αP2(cos θ), (13)

where the Pn(x) denote the Legendre polynomials.
In this paper, we present the theoretical calculations of the AFCs ψ5,2(α, θ), ψ6,3(α, θ),

ψ7,3(α, θ), ψ8,4(α, θ) and ψ9,4(α, θ) included into the k = 4, k = 6 and k = 8 “lines” of the
expansion (8), and also the AFC ψ10,5(α, θ) representing the leading term of the k = 10
“line”. It is important to note that all mentioned angular coefficients represent the AFCs
ψk,p with the maximum possible p for a given k.
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2. Derivation of the Angular Fock Coefficient ψ5,2(α, θ)

The FRR (3) and (4) for k = 5 and p = 2 reduce to the form(
Λ2 − 45

)
ψ5,2(α, θ) = h5,2(α, θ), (14)

where

h5,2(α, θ) = −2Vψ4,2(α, θ). (15)

Using Equations (5), (6), (12) and (13), it is convenient to represent the RHS of Equation (14)
in the form

h5,2(α, θ) = −Z2(π − 2)(5π − 14)
270
√

π

[
3π−3/2(2h1 + h2)− 2Z(h3 +

√
2h4)

]
, (16)

where

h1 =
(1− ξ2)2

ξ
, h2 =

cos(2α)

ξ
, h3 =

ηY40(α, θ)

sin α
, h4 =

ηY42(α, θ)

sin α
. (17)

Accordingly, we obtain the solution of Equation (14) in the identical form

ψ5,2(α, θ) = −Z2(π − 2)(5π − 14)
270
√

π

[
3π−3/2(2 f1 + f2)− 2Z( f3 +

√
2 f4)

]
, (18)

where the AFC-components fi satisfy the individual Fock recurrence relations (IFRRs)(
Λ2 − 45

)
fi = hi. (i = 1, 2, 3, 4) (19)

We sequentially find solutions to each of the IFRRs (19) using various methods presented
in Ref. [4].

2.1. Solution of the IFRR (Λ2 − 45) f3 = ηY40/ sin α

Moving from simpler to more complex solutions, let us start with IFRR(
Λ2 − 45

)
f3 = h3. (20)

The RHS h3 ≡ h3(α) represents the function of only one angle variable α. It was shown [4]
that the solution of the corresponding IFRR (20) reduces to the solution g(ρ) = f3(α) of the
inhomogeneous differential equation

(ρ2 + 1)2g′′(ρ) + 2ρ−1(ρ2 + 1)g′(ρ) + 45g(ρ) = −h(ρ), (21)

where ρ = tan(α/2), and

h(ρ) ≡ h3(α) =
(4 cos2 α− 1)

√
1 + sin α

π3/2 sin α
=

(ρ + 1)(3ρ4 − 10ρ2 + 3)
2π3/2ρ(ρ2 + 1)3/2 . (22)

For convenience, we solve the Equation (21) with the RHS h(ρ) not containing the multiplier
π−3/2. The final solution f3 will be multiplied by this factor.

Using the method of variation of parameters, one obtains [4] the particular solution of
Equation (21) in the form

g(p)(ρ) = v50(ρ)
∫ u50(ρ)h(ρ)dρ

(ρ2 + 1)2W0(ρ)
− u50(ρ)

∫ v50(ρ)h(ρ)dρ

(ρ2 + 1)2W0(ρ)
, (23)

where

W0(ρ) = −(ρ2 + 1)/ρ2. (24)

The independent solutions of the homogeneous equation associated with Equation (21)
are [4]:
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u50(ρ) =
(ρ2 + 1)9/2

ρ
2F1

(
4,

7
2

;
1
2

;−ρ2
)
=

1− 7ρ2(3− 5ρ2 + ρ4)

ρ(ρ2 + 1)5/2 , (25)

v50(ρ) = (ρ2 + 1)9/2
2F1

(
4,

9
2

;
3
2

;−ρ2
)
=

1− 35ρ2 + 21ρ4 − ρ6

7(ρ2 + 1)5/2 , (26)

where 2F1(...) is the Gaussian hypergeometric function. The substitution of Equations (24)–(26)
into the general representation (23) yields

g(p)(ρ) =
−7ρ{ρ[5ρ(3ρ− 4)(3ρ + 5)− 24] + 23} − 23

420ρ(ρ2 + 1)5/2 . (27)

The general solution of the inhomogeneous equation can be expressed as the sum of
the general solution of the associated homogeneous (complementary) equation and the
particular solution of the inhomogeneous equation, whence

g(ρ) = g(p)(ρ) + cuu50(ρ) + cvv50(ρ), (28)

where the coefficients cu and cv are currently undetermined. To choose these coefficients, it
is necessary to determine the behavior of all independent solutions on the boundaries of
the domain [0, ∞]. We easily obtain:

g(p)(ρ) =
ρ→0
− 23

420ρ
− 23

60
+

451ρ

840
+ O(ρ2), (29)

g(p)(ρ) =
ρ→∞

− 3
4ρ
− 1

4ρ2 +
85

24ρ3 + O(ρ−4), (30)

u50(ρ) =
ρ→0

1
ρ
− 47ρ

2
+ O(ρ3), (31)

u50(ρ) =
ρ→∞

−7 +
105
2ρ2 + O(ρ−4), (32)

v50(ρ) =
ρ→0

1− 15ρ2

2
+ O(ρ4), (33)

v50(ρ) =
ρ→∞

−ρ

7
+

47
14ρ

+ O(ρ−3). (34)

It is seen that the particular solution g(p)(ρ) is divergent at ρ = 0, whereas the solutions of
the homogeneous equation associated with Equation (21) are divergent, at ρ = 0 and ρ = ∞
for u50(ρ) and v50(ρ), respectively. Thus, to avoid the divergence on the whole range of
definition, one should set cu = 23/420 and cv = 0 in the general solution (28). Then, the
final physical solution becomes

f3(α) = −
(ρ + 1)(23ρ4 + 22ρ3 − 122ρ2 + 22ρ + 23)

60π3/2(ρ2 + 1)5/2 =

= − 1
60π3/2 [11 sin α + 21 cos(2α) + 2]

√
1 + sin α. (35)

2.2. Solution of the IFRR (Λ2 − 45) f4 = ηY42/sinα

It was shown in Ref. [4] that the solution f4 ≡ f4(α, θ) of the IFRR(
Λ2 − 45

)
f4 = 2π−3/2η

√
2 sin αP2(cos θ) (36)

can be found in the form
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f4 = 2
√

2 π−3/2 sin2 αP2(cos θ)g4(ρ), (37)

where the function g4(ρ) satisfies the equation

(ρ2 + 1)2g′′4 (ρ) + 2ρ−1[1 + ρ2 + 2(1− ρ4)]g′4(ρ) + 13g4(ρ) = −h4(ρ), (38)

with

h4(ρ) =
η

sin α
=

(ρ + 1)
√

ρ2 + 1
2ρ

. (39)

Using the method of variation of parameters, one obtains [4] the particular solution of
Equation (38) in the form

g(p)
4 (ρ) = v52(ρ)

∫ u52(ρ)h4(ρ)dρ

(ρ2 + 1)2W2(ρ)
− u52(ρ)

∫ v52(ρ)h4(ρ)dρ

(ρ2 + 1)2W2(ρ)
, (40)

where

W2(ρ) = −
5
ρ

(
ρ2 + 1

ρ

)5

. (41)

The independent solutions of the homogeneous equation associated with Equation (38) are:

u52(ρ) =
(ρ2 + 1)13/2

ρ5 2F1

(
4,

3
2

;−3
2

;−ρ2
)
=

1 + 11ρ2 + 99ρ4 − 231ρ6

ρ5
√

ρ2 + 1
, (42)

v52(ρ) = (ρ2 + 1)13/2
2F1

(
4,

13
2

;
7
2

;−ρ2
)
=

231− 99ρ2 − 11ρ4 − ρ6

231
√

ρ2 + 1
. (43)

Thus, the particular solution (40) reduces to the form:

g(p)
4 (ρ) = −11(21ρ5 + 9ρ4 + ρ2) + 1

2772ρ5
√

ρ2 + 1
. (44)

Considering the series expansions for g(p)
4 (ρ), u52(ρ) and v52(ρ) on the boundaries of the

range of definition (ρ ∈ [0, ∞]), it can be shown that function

g(p)
4 (ρ) +

1
2772

u52(ρ) = −
ρ + 1

12
√

ρ2 + 1
= − 1

12

√
1 + sin α (45)

represents the physical (finite) solution of Equation (38), and hence we finally obtain:

f4(α, θ) = −
√

2
6π3/2 (sin α)2

√
1 + sin α P2(cos θ). (46)

2.3. Solution of the IFRR (Λ2 − 45) f1 = (1− ξ2)2/ξ

It is important to note that the RHS h1 (see Equation (17)) of the IFRR(
Λ2 − 45

)
f1 = h1(ξ) (47)

is a function of ξ (only) defined by Equation (6). For this case [4,12], the solution of
Equation (47) coincides with the solution of the inhomogeneous differential equation

(ξ2 − 2) f ′′1 (ξ) + ξ−1(5ξ2 − 4) f ′1(ξ)− 45 f1(ξ) = h1(ξ). (48)

A particular solution of Equation (48) can be found by the method of variation of parameters
in the form [12]

f (p)
1 (ξ) =

1
7
√

2

[
u5(ξ)

∫
v5(ξ)w(ξ)dξ − v5(ξ)

∫
u5(ξ)w(ξ)dξ

]
, (49)

where
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w(ξ) = h1(ξ)ξ
2
√

2− ξ2. (50)

The linearly independent solutions of the homogeneous equation associated with Equa-
tion (48) are defined by the relations

u5(ξ) =
P1/2

13/2(ξ/
√

2)

ξ 4
√

2− ξ2
=

21/4(8ξ6 − 28ξ4 + 28ξ2 − 7)√
π(2− ξ2)

, (51)

v5(ξ) =
Q1/2

13/2(ξ/
√

2)

ξ 4
√

2− ξ2
=

√
π(−8ξ6 + 20ξ4 − 12ξ2 + 1)

23/4ξ
. (52)

where Pµ
ν (x) and Qµ

ν (x) are the associated Legendre functions of the first and second kind,
respectively. A substitution of the representations (50)–(52) into (49) yields the particular
solution:

f (p)
1 (ξ) = − 1

60
ξ(13ξ4 − 30ξ2 + 15). (53)

It can be verified that the particular solution f (p)
1 (ξ) is finite on the whole range of defi-

nition (ξ ∈ [0,
√

2]), whereas the solutions of the homogeneous equation associated with
Equation (48) are divergent at ξ =

√
2 (α = π/2, θ = π) and ξ = 0 (α = π/2, θ = 0) for

u5(ξ) and v5(ξ), respectively. Thus, we can conclude that the final physical solution of the
IFFR (47) coincides with the particular solution (53), whence

f1 = − 1
60

ξ(13ξ4 − 30ξ2 + 15) = − 1
60

√
1− sin α cos θ[sin α cos θ(4 + 13 sin α cos θ)− 2]. (54)

2.4. Solution of the IFRR (Λ2 − 45) f2 = cos(2α)/ξ

To solve the IFRR (
Λ2 − 45

)
f2 = h2, (55)

with the RHS h2 defined by Equation (17), first of all, it is necessary to recall Sack’s
representation [13] (see also [3,4]) for ξν with ν = −1:

ξ−1 =
∞

∑
l=0

Pl(cos θ)

(
sin α

2

)l
Fl(ρ), (56)

where

Fl(ρ) = 2F1

(
l
2
+

1
4

,
l
2
+

3
4

; l +
3
2

;
4ρ2

(ρ2 + 1)2

)
=

{
Fl(ρ) 0 ≤ ρ ≤ 1
Fl(1/ρ) ρ ≥ 1

(57)

with

Fl(ρ) = (ρ2 + 1)l+ 1
2 . (58)

This enables us to present the RHS of Equation (55) in the form

h2 ≡
cos(2α)

ξ
=

∞

∑
l=0

Pl(cos θ)(sin α)lhl(ρ), (59)

where

hl(ρ) = 2−l Fl(ρ) cos(2α) = 2−l Fl(ρ)

[
1− 8ρ2

(ρ2 + 1)2

]
. (60)

In turn, it was shown in Ref. [4] that in the case where the RHS is determined by Equa-
tion (59), the solution of the corresponding IFRR (55) can be found in the form



Atoms 2022, 10, 135 7 of 22

f2(α, θ) =
∞

∑
l=0

Pl(cos θ)(sin α)lσl(ρ), (61)

where the function σl(ρ) satisfies the inhomogeneous differential equation

(ρ2 + 1)2σ′′l (ρ) + 2ρ−1[1 + ρ2 + l(1− ρ4)]σ′l (ρ) + (5− 2l)(9 + 2l)σl(ρ) = −hl(ρ). (62)

The linearly independent solutions of the homogeneous equation associated with Equa-
tion (62) are:

u5l(ρ) =
(ρ2 + 1)l+9/2

ρ2l+1 2F1

(
4,

7
2
− l;

1
2
− l;−ρ2

)
=

(ρ2 + 1)l−5/2

ρ2l+1 ×[
ρ6
(

1 +
120

2l − 5
− 120

2l − 3
+

24
2l − 1

)
+ 3ρ4

(
1 +

40
2l − 3

− 24
2l − 1

)
+ 3ρ2

(
1 +

8
2l − 1

)
+ 1
]

, (63)

v5l(ρ) = (ρ2 + 1)l+9/2
2F1

(
4,

9
2
+ l;

3
2
+ l;−ρ2

)
= (ρ2 + 1)l−5/2 ×[

ρ6
(

1− 24
2l + 3

+
120

2l + 5
− 120

2l + 7

)
+ 3ρ4

(
1 +

24
2l + 3

− 40
2l + 5

)
+ 3ρ2

(
1− 8

2l + 3

)
+ 1
]

. (64)

The method of variation of parameters enables us to obtain the particular solution of the
inhomogeneous differential Equation (62) in the form

σ
(p)
l (ρ) = v5l(ρ)

∫ u5l(ρ)hl(ρ)dρ

(ρ2 + 1)2Wl(ρ)
− u5l(ρ)

∫ v5l(ρ)hl(ρ)dρ

(ρ2 + 1)2Wl(ρ)
, (65)

where

Wl(ρ) = −
2l + 1

ρ

(
ρ2 + 1

ρ

)2l+1

. (66)

Note that due to different representations for the function Fl(ρ) (see Equation (57)) at values
of ρ less and greater than 1, we obtain special representations for a particular solution in
these two regions:

σ
(0)
l (ρ) =

(ρ2 + 1)l−5/2

2l+1(2l − 1)(2l − 3)

[
(2l − 3)ρ4 − 4(l − 2)ρ2 − 4l2 + 4l − 27

3(2l − 5)

]
, 0 ≤ ρ ≤ 1 (67)

σ
(1)
l (ρ) =

ρ−2l−1(ρ2 + 1)l−5/2

2l+1(2l + 3)(2l + 5)

[
4l2 + 4l − 27

3(2l + 7)
+ 4(l + 3)ρ2 − (2l + 5)ρ4

]
. ρ ≥ 1 (68)

It can be verified that both functions (67) and (68) have no singularities on their domains
of definition. On the other hand, function u5l(ρ) is singular at ρ = 0, whereas v5l(ρ) is
singular at ρ = ∞. This means that one should search the general solution of Equation (62)
in the form:

σl(ρ) = σ
(0)
l (ρ) + c(v)5l v5l(ρ), 0 ≤ ρ ≤ 1 (69)

σl(ρ) = σ
(1)
l (ρ) + c(u)5l u5l(ρ). ρ ≥ 1 (70)

Note that two coefficients c(v)5l and c(u)5l are presently undetermined. To calculate them, we
need to find two equations relating these coefficients. The first equation is quite obvious.
It follows from the condition that the representations (69) and (70) are coincident at the
common point ρ = 1, that is
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σ
(0)
l (1) + c(v)5l v5l(1) = σ

(1)
l (1) + c(u)5l u5l(1). (71)

This relationship reduces to the first desired equation:

c(u)5l (2l + 3)(2l + 5)(2l + 7) = c(v)5l (2l − 5)(2l − 3)(2l − 1) +
27− 4l − 4l2

3× 2l+1 . (72)

It can be verified that hl(0) = hl(∞) = 2−l . It follows from these relations that σ
(0)
l (0) +

c(v)5l v5l(0) = σ
(1)
l (∞) + c(u)5l u5l(∞). It can be assumed that the last equation represents the

second desired equation. However, this assumption turns out to be false, because it again
leads to Equation (72).

We propose the following method to find the second desired equation. Recall that
any suitable function of the angles α and θ may be expanded into HHs since they form a
complete set:

f (α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

fn,lYn,l(α, θ), (73)

where (see, e.g., [3])

fn,l =
∫

f (α, θ)Yn,l(α, θ)dΩ (74)

with

dΩ = π2 sin2 α sin θdαdθ. α ∈ [0, π], θ ∈ [0, π] (75)

For the function f (α, θ) = f2(α, θ) represented by Equation (61), the expansion coefficient
with n = 2l becomes

f2l,l = π2
∫ π

0

∫ π

0
f2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ =

2π2N2l,l

2l + 1

[
K0(l) + c(v)l Kv(l) + c(u)l Ku(l)

]
, (76)

where

K0(l) =
∫ π/2

0
(sin α)2l+2σ

(0)
l (ρ)dα +

∫ π

π/2
(sin α)2l+2σ

(∞)
l (ρ)dα =

=

√
2
(
−24l3 − 100l2 + 198l + 249

)
(2l − 5)(2l − 3)(2l + 3)(2l + 5)(2l + 7)(2l + 9)

, (77)

Kv(l) =
∫ π/2

0
(sin α)2l+2v5l(ρ)dα =

2l+3/2(2l − 1)
(2l + 5)(2l + 9)

, (78)

Ku(l) =
∫ π

π/2
(sin α)2l+2u5l(ρ)dα =

2l+3/2(2l + 3)(2l + 7)
(2l − 5)(2l − 3)(2l + 9)

. (79)

To derive the results (76)–(79), we use the representation Y2l,l(α, θ) = N2l,l sinl αPl(cos θ) for
the particular case of the HHs, and the orthogonality property for the Legendre polynomials.
It should be noted that the explicit form of the normalization constant N2l,l is not required.

On the other hand, expanding f2(α, θ) in HHs, and inserting this expansion into the
LHS of the IFRR (55), we obtain(

Λ2 − 45
)

f2(α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

fn,l [n(n + 4)− 45]Yn,l(α, θ). (80)

To derive the last equation, we use the fact that Yn,l(α, θ) is an eigenfunction of the operator
Λ2 with an eigenvalue equal to n(n + 4), that is
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Λ2Yn,l(α, θ) = n(n + 4)Yn,l(α, θ). (81)

The HH expansion of the RHS of Equation (55) is

h2(α, θ) =
∞

∑
n=0(2)

n/2

∑
l=0

hn,lYn,l(α, θ). (82)

Hence,

f2l,l =
h2l,l

4l(l + 2)− 45
. (83)

Using again Sack’s representation (56) and (57) and Equation (74), we obtain the expansion
coefficient h2l,l in explicit form:

h2l,l = π2
∫ π

0

∫ π

0
h2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ = −

27/2π2N2l,l(4l2 + 24l + 19)
(2l + 1)(2l + 3)(2l + 5)(2l + 7)

. (84)

Thus, inserting (84) into the RHS of Equation (83) and equating the result to the RHS of
Equation (76) we obtain the desired second equation in the form:

c(u)5l (2l + 3)(2l + 5)(2l + 7) = −c(v)5l (2l − 5)(2l − 3)(2l − 1)− 2−l−1(2l + 1). (85)

Solving the system of two linear Equations (72) and (85) gives the desired coefficients:

c(u)5l = − 2−l−1(l + 4)(2l − 3)
3(2l + 3)(2l + 5)(2l + 7)

, c(v)5l =
2−l−1(l − 3)(2l + 5)

3(2l − 5)(2l − 3)(2l − 1)
. (86)

It should be noted that the method described above for calculating the coefficients c(u)5l and

c(v)5l is very reliable, but quite complex. A much simpler method is based on the statement
that the point ρ = 1 represents the match point for the functions defined by Equations (69)
and (70). This means that not only these functions, but also their first (at least) derivatives
must coincide at this point. Thus, the second required equation relating the coefficients c(u)5l

and c(v)5l is:

dσ
(0)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ)

dρ

∣∣∣
ρ=1

=
dσ

(1)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(u)5l
du5l(ρ)

dρ

∣∣∣
ρ=1

. (87)

The solution of the system of two Equations (72) and (87) again gives the coefficients defined
by Equation (86). Substituting these coefficients into the representations (69) and (70), we
finally obtain:

f2(α, θ) =
1
6

∞

∑
l=0

ζl(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
, (88)

where

ζl(ρ) =

{
χl(ρ), 0 ≤ ρ ≤ 1
χl(1/ρ), ρ ≥ 1

(89)

with

χl(ρ) =
ρl

(ρ2 + 1)5/2

[
(l − 3)(2l − 1)ρ6

2l + 7
+ 9lρ4 − 9(l + 1)ρ2 − (l + 4)(2l + 3)

2l − 5

]
. (90)

It is clear that only the function (69) is required for calculating the function χl(ρ). Thus,
in fact, we need to calculate only one coefficient c(v)5l to define this function. In this regard,
it is important to emphasize that the representation (89) reflects the fact that the WF of a
two-electron atomic system must preserve its parity when interchanging the electrons. For
the singlet S-states (which include the ground state) this means that the AFC and/or its
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component preserves its form (including the sign) under the transformation α � π − α.
For the AFC-component f2(α, θ), represented by the series expansion (61), this property
corresponds (in terms of variable ρ) to the relationship:

σ
(0)
l (ρ−1) + c(v)5l v5l(ρ

−1) = σ
(1)
l (ρ) + c(u)5l u5l(ρ). (91)

The elimination of the RHSs between Equations (71) and (91) for ρ = 1 yields the identity,
whereas the use of Equation (87) instead of Equation (71) yields the required equation:

dσ
(0)
l (ρ)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ)

dρ

∣∣∣
ρ=1

=
dσ

(0)
l (ρ−1)

dρ

∣∣∣
ρ=1

+ c(v)5l
dv5l(ρ

−1)

dρ

∣∣∣
ρ=1

. (92)

The solution of the last equation gives the coefficients c(v)5l presented by Equation (86). Note

that the coefficient c(u)5l can then be calculated by the use of Equation (71) if needed.
In the general case, we cannot sum the infinite series (88) to obtain the function f2(α, θ)

in an explicit closed form. However, this can be done for some special angles α and/or
θ. For example, it is worth noting that the angles θ = 0, π correspond to the collinear
configuration [14] of the two-electron atomic system in question. For these cases we obtain

f2(α, 0) = ± (ρ− 1)(12ρ4 − 13ρ3 − 88ρ2 − 13ρ + 12)
90(ρ2 + 1)5/2 , (93)

f2(α, π) = − (ρ + 1)(12ρ4 + 13ρ3 − 88ρ2 + 13ρ + 12)
90(ρ2 + 1)5/2 . (94)

Sign “+” in Equation (93) corresponds to 0 ≤ α ≤ π/2 (0 ≤ ρ ≤ 1), whereas “−” to
π/2 ≤ α ≤ π (ρ ≥ 1). The list of special θ-angles can be supplemented with an intermediate
angle θ = π/2:

f2

(
α,

π

2

)
= −2(ρ4 − 3ρ2 + 1)

15(ρ2 + 1)2 . (95)

It is worth noting that for the important cases of the nucleus–electron and electron–electron
coalescence, Equation (88), respectively, reduces to:

f2(0, θ) = − 2
15

, f2

(π

2
, 0
)
= 0. (96)

To derive the results (93)–(96) we used the relationships:

Pn(0) =
√

πΓ−1
(

1− n
2

)
Γ−1

(n
2
+ 1
)

, Pn(1) = 1, Pn(−1) = (−1)n, (97)

where Γ(x) is the gamma function.

3. Derivation of the Angular Fock Coefficient ψ6,3(α, θ)

We start this section by considering the FRR (3) and (4) for k = 6 and p = 2:(
Λ2 − 60

)
ψ6,2 = 48ψ6,3 − 2Vψ5,2 + 2Eψ4,2. (98)

Next, let us expand each function in Equation (98) into HHs, using Equation (73). This gives

ψk,p =
∞

∑
n=0(2)

n/2

∑
l=0

c(kp)
nl Yn,l(α, θ), (99)

with {k, p} = {6, 3}, {6, 2}, {4, 2} and

Vψ5,2 =
∞

∑
n=0(2)

n/2

∑
l=0

fnlYn,l(α, θ), (100)
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where the dimensionless potential V is defined by Equation (5), whereas the expansion
coefficient fnl can be calculated by the formula

fnl =
∫

Vψ5,2Yn,l(α, θ)dΩ, (101)

according to Equation (74).
It follows from Equation (4) that hk,k/2 = 0 for even k. Using additionally Equation (81),

we can conclude that the AFC ψk,k/2 (with even k) represents the linear combination of the
HHs, Yk,l(α, θ). Hence,

c(63)
nl = 0 f or n 6= 6, (102)

c(42)
nl = 0 f or n 6= 4. (103)

Equating the coefficients for the HHs, Y6,l(α, θ) in both sides of Equation (98), we obtain:

0 = 48c(63)
6l − 2f6l . (104)

Hence, (using additionally Equation (101)),

c(63)
6l =

1
24

∫
Vψ5,2Y6,l(α, θ)dΩ. (105)

Note that the LHS of Equation (104) equals zero, because (∆2 − 60)Y6,l = 0 as follows from
Equation (81).

Thus, according to Equations (99) and (102), the AFC ψ6,3(α, θ) represents a linear
combination of four HHs, Y6,l(α, θ) with l = 0, 1, 2, 3. The contribution of each HH is

determined by the coefficient c(63)
6l given by Equation (105). However, it is easy to prove

that only the coefficients with odd values of l are nonzero for ψ6,3(α, θ). Indeed, this
has already been mentioned in Section 2.4 that the WF of a two-electron atom/ion must
preserve its parity when interchanging the electrons. For the singlet S-states this means
that only the HHs, which preserve the sign under transformation α � π − α, differ from
zero in the expansion of the WF, and hence in the expansion of any AFC. In turn, it is easy
to show that only Yn,l(α, θ) with even values of (n/2− l) satisfy the above property. Hence,
the AFC in question, becomes

ψ6,3(α, θ) = a61Y6,1(α, θ) + a63Y6,3(α, θ), (106)

where we denoted a6l ≡ c(63)
6l (l = 1, 3) for convenience and simplicity, and where the

normalized HHs are

Y6,1(α, θ) =
2[sin α + 3 sin(3α)] cos θ

π3/2
√

5
, Y6,3(α, θ) =

8 sin3 αP3(cos θ)

π3/2
√

5
. (107)

Using Formula (105) and taking into account the representations (5) and (18) for the
dimensionless potential V and the AFC ψ5,2, respectively, we can represent the desired
coefficients in the form

a6l = −
(π − 2)(5π − 14)

6480

(
Il,4Z4 + Il,3Z3 + Il,2Z2

)
, (l = 1, 3) (108)

where

Il,4 = 4π3/2
∫ π

0

∫ π

0

[
f3(α, θ) +

√
2 f4(α, θ)

]
ηY6,l(α, θ) sin α sin θdαdθ, (109)

Il,3 = −2
∫ π

0

∫ π

0

3η[2 f1(α, θ) + f2(α, θ)]

sin α
+

π3/2
[

f3(α, θ) +
√

2 f4(α, θ)
]

ξ

×
×Y6,l(α, θ) sin2 α sin θdαdθ, (110)
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Il,2 = 3
∫ π

0

∫ π

0
[2 f1(α, θ) + f2(α, θ)]ξ−1Y6,l(α, θ) sin2 α sin θdαdθ. (111)

To calculate the integral (110), it is useful to separate the contributions which include the
functions f1, f3 and f4, represented by the explicit closed expressions, and the function f2,
represented by the infinite series (88). We obtain:

Il,3 = I(134)
l,3 − 6I(2)l,3 , (112)

where

I(134)
l,3 = −2

∫ π

0

∫ π

0

6η f1(α, θ)

sin α
+

π3/2
[

f3(α, θ) +
√

2 f4(α, θ)
]

ξ

Y6,l(α, θ) sin2 α sin θdαdθ, (113)

I(2)l,3 =
∫ π

0

∫ π

0
f2(α, θ)ηY6,l(α, θ) sin α sin θdαdθ. (114)

The integrals (113) can be taken in an explicit (closed) form that gives:

I(134)
1,3 =

3(45π − 122)
35π3/2

√
5

, I(134)
3,3 =

245π − 816
70π3/2

√
5

. (115)

The problem of calculating the integrals (114) is that the corresponding integrands contain
the function f2(α, θ) represented by the infinite series (88). Fortunately, using the orthogo-
nality relationship for the Legendre polynomials, we can get these integrals also in explicit
form. Changing the order of summation and integration, we easily obtain:

I(2)1,3 =
π−3/2

3
√

5

∞

∑
l=0

∫ π

0
[sin α + 3 sin(3α)] η

[
ζl(ρ)

(2l − 1)(2l + 3)

]
sin αdα

∫ π

0
Pl(cos θ) cos θ sin θdθ

=
2π−3/2

45
√

5

∫ π

0
[sin α + 3 sin(3α)] η ζ1(ρ) sin αdα =

7π + 22
210π3/2

√
5

, (116)

I(2)3,3 =
4π−3/2

3
√

5

∞

∑
l=0

∫ π

0
η

[
ζl(ρ)

(2l − 1)(2l + 3)

]
sin4 α dα

∫ π

0
Pl(cos θ)P3(cos θ) sin θdθ

=
8π−3/2

945
√

5

∫ π

0
η ζ3(ρ) sin4 α dα =

3π − 32
180π3/2

√
5

. (117)

Recall that η ≡ η(α) is defined by Equation (6) and ρ = tan(α/2).
It can be shown (using fairly long nontrivial derivations) that the integrals Il,2 and Il,4

vanish both for l = 1 and l = 3. This means that (according to the representations (106) and
(108)) the AFC, ψ6,3(α, θ) is proportional to the third power of the nucleus charge Z (only),
which is in full agreement with Formula (13) from Ref. [4].

Thus, combining the results of this section, we obtain the nonzero coefficients a6,l in
the simple final form:

a61 = − (π − 2)(5π − 14)(32π − 97)
56700π3/2

√
5

Z3, (118)

a63 = − (π − 2)(5π − 14)(357π − 1112)
680400π3/2

√
5

Z3. (119)

4. Derivation of the Angular Fock Coefficients ψ7,3(α, θ) and ψ8,4(α, θ)

In Sections 2 and 3 we detailed the derivation of the AFCs ψ5,2(α, θ) and ψ6,3(α, θ),
respectively. Therefore, for the AFCs ψ7,3(α, θ) and ψ8,4(α, θ), we give only abbreviated
derivations, and include extended explanations only in case of significant differences.
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4.1. The AFC ψ7,3(α, θ)

The FRR (3) and (4) for k = 7 and p = 3 reduces to the form(
Λ2 − 77

)
ψ7,3(α, θ) = h7,3(α, θ), (120)

where

h7,3(α, θ) = −2Vψ6,3(α, θ). (121)

Using Equations (106), (107) and (5) the RHS of Equation (120) can be represented in
the form:

h7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
h̄1 + h̄2√

5π3/2
− 2Z

[
12(32π − 97)h̄3 + (357π − 1112)h̄4

]}
, (122)

where

h̄1 = 20ξ−1
[
12(32π − 97)(1− ξ2) + (357π − 1112)(1− ξ2)3

]
, (123)

h̄2 = 60(688− 255π)ξ−1 sin3 α cos θ, (124)

h̄3 = η(sin α)−1Y6,1(α, θ), h̄4 = η(sin α)−1Y6,3(α, θ). (125)

Accordingly, the solution of the FRR (120) can be found in the form:

ψ7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
f̄1 + f̄2√

5π3/2
− 2Z

[
12(32π − 97) f̄3 + (357π − 1112) f̄4

]}
, (126)

where the AFC components f̄i satisfy the IFRRs(
Λ2 − 77

)
f̄i = h̄i. (i = 1, 2, 3, 4) (127)

Note that the components h̄i of the RHS h7,3 of the FRR (120) for the AFC ψ7,3 are reasonably
close to the components hi of the RHS h5,2 of the FRR (14). Therefore, we only briefly dwell
on the conclusions of the corresponding results, as we noted earlier.

It is seen from Equation (123) that the RHS h̄1 is a function of a single variable ξ defined
by Equation (6). The solution of the corresponding IFRR was described in Section IV of
Ref. [4] (see also Section II of Ref. [12]) and illustrated (among others) in Section 2.3 of the
current article. Thus, following the technique mentioned above, we obtain:

f̄1 =

(
41437π

12
− 74342

7

)
ξ7 +

(
36476− 35588π

3

)
ξ5 +

+
5
2
(4931π − 15156)ξ3 + 5(2276− 741π)ξ. (128)

It can be verified that the RHSs h̄3 and h̄4 represent functions of the form f (α)Pl(cos θ)
with l equals 1 and 3, respectively. The solution of the corresponding IFRR was described
in Section V of Ref. [4] and illustrated in Sections 2.1 and 2.2 of the current article. This
enables us to obtain:

f̄3 = −ρ(1 + ρ)(29 + ρ{16 + ρ[ρ(16 + 29ρ)− 114]}) cos θ

9
√

5 π3/2(ρ2 + 1)7/2
, (129)

f̄4 = − sin3 α
√

1 + sin α

2
√

5 π3/2
P3(cos θ). (130)

Recall that the ρ variable was defined previously in Section 2.1.
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The RHS h̄2 represented by Equation (124) is slightly more complicated than h2 dis-
cussed in Section 2.4. In this regard, it would be useful to clarify two points.

First, using representation (56) for ξ−1, we can rewrite Equation (124) in the form:

h̄2 = 60(688− 225π)h̃2 (131)

where

h̃2 =
∞

∑
l=0

2−l(sin α)l+3Fl(ρ) cos θPl(cos θ), (132)

and where Fl(ρ) is defined by Equations (57) and (58). In order to apply the solution of the
corresponding IFRR by the method described in Section 2.4 (see also [4]), the θ-dependent
l-component in the series expansion of h̃2 must be pure Pl(cos θ). To solve the problem,
one could use the general formula representing the Clebsch–Gordan series for a product
of two spherical harmonics. However, in our simple case, it is easier to use the recurrence
relation for the Legendre polynomials

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0, (133)

which enables us to represent h̃2 in the desired form:

h̃2 =
∞

∑
l=0

h̄l(ρ)(sin α)l Pl(cos θ), (134)

where

h̄l(ρ) =
l

2l−1(2l − 1)
sin2 αFl−1(ρ) +

l + 1
2l+1(2l + 3)

sin4 αFl+1(ρ). (135)

The second point is related to the calculation of the coefficient

h̃2l,l = π2
∫ π

0

∫ π

0
h̃2(α, θ)Y2l,l(α, θ) sin2 α sin θdαdθ (136)

in the HH expansion of h̃2 (see the corresponding Equation (84) for calculation of ψ5,2(α, θ)).
Of course, we can use representation (134) and (135) and then apply the orthogonality
condition for the Legendre polynomials. However, the simpler way is to use the original
representation (132) taking into account that cos θ ≡ P1(cos θ). In this case, we can apply
the well-known formula for the integral of three Legendre polynomials∫ 1

−1
Pl(x)PL(x)Pl′(x)dx = 2

(
l L l′

0 0 0

)2

, (137)

where the RHS represents twice the square of the Wigner 3-j symbol.
Thus, applying the methodologies outlined in Section 2.4, and given the above features,

one obtains

f̄2 =
1

48

∞

∑
l=0

ζ̄l(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
, (138)

where

ζ̄l(ρ) =

{
χ̄l(ρ), 0 ≤ ρ ≤ 1
χ̄l(1/ρ), ρ ≥ 1

(139)

with

χ̄l(ρ) = −
ρl

(ρ2 + 1)7/2

{ (32l2 + 26l − 25)ρ6

2l + 5

[
(2l − 1)ρ2

2l + 9
+ 4
]
+

+
1

2l − 3

[
6(84l2 + 84l − 95)ρ4

2l + 5
− (32l2 + 38l − 19)

(
2l + 3
2l − 7

+ 4ρ2
)]}

. (140)

Recall that the component f̆2 in the RHS of Equation (126) is equal to 60(688− 225π) f̄2
according to representation (131).
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As in the case of the AFC ψ5,2(α, θ), there are combinations of special hyperspherical
angles α and θ for which the component f̄2 ≡ f̄2(α, θ) of the AFC ψ7,3(α, θ) can be obtained
in closed form. In particular, one obtains:

f̄2(α, 0) = ∓ (ρ− 1)(95ρ6 + 1166ρ5 − 1879ρ4 − 8844ρ3 − 1879ρ2 + 1166ρ + 95)
5040(ρ2 + 1)7/2 , (141)

f̄2(α, π) =
(ρ + 1)(95ρ6 − 1166ρ5 − 1879ρ4 + 8844ρ3 − 1879ρ2 − 1166ρ + 95)

5040(ρ2 + 1)7/2 , (142)

f̄2(α,
π

2
) =

19ρ4 + 10ρ2 + 19
1008(ρ2 + 1)2 . (143)

Sign “−” in Equation (141) corresponds to 0 ≤ α ≤ π/2 (0 ≤ ρ ≤ 1), whereas “+”
corresponds to π/2 ≤ α ≤ π (ρ ≥ 1).

For the important cases of the nucleus–electron and electron–electron coalescence,
representation (138)–(140) is simplified to:

f̄2(0, θ) =
19

1008
, f̄2

(π

2
, 0
)
= 0. (144)

4.2. The AFC ψ8,4(α, θ)

Having at our disposal the AFC ψ7,3 ≡ ψ7,3(α, θ), we can calculate the AFC ψ8,4 ≡
ψ8,4(α, θ) using the FRR (3) and (4) for k = 8 and p = 3:(

Λ2 − 96
)

ψ8,3 = 80ψ8,4 − 2Vψ7,3 + 2Eψ6,3. (145)

It follows from Equation (81) and the FRR (3) and (4) for k = 8 and p = 4 that the AFC ψ8,4
is a linear combination of the HHs, Y8,l ≡ Y8,l(α, θ). Moreover, given that only Yn,l(α, θ)
with even values of n/2− l are suitable for singlet S-states, we obtain:

ψ8,4 = a80Y8,0 + a82Y8,2 + a84Y8,4. (146)

For further derivations, it is advisable to represent the HHs in the form

Y8,l(α, θ) = y8l(α)Pl(cos θ), (147)

where

y80(α) = π−3/2[2 cos(4α) + 2 cos(2α) + 1], (148)

y82(α) =
2

π3/2

√
10
7

sin2 α[4 cos(2α) + 3], (149)

y84(α) =
8

π3/2

√
2
7

sin4 α. (150)

It was found in Section 3 that ψ6,3 ≡ ψ6,3(α, θ) is the linear combination of the HHs Y6,l(α, θ).
Thus, expanding each function of Equation (145) in HHs, and equating the coefficients for
Y8,l , we obtain (see the corresponding result (105) for a6l)

a8l =
1

40

∫
Vψ7,3Y8,ldΩ, (151)

where the potential V is defined by Equation (5). When deriving the last equation, it was
taken into account that (∆2 − 96)Y8,l = 0, as follows from Equation (81).

A direct substitution of the representations (5), (126) and (147) into the RHS of Equa-
tion (151) yields:
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a8l =
(π − 2)(5π − 14)Z3

13608000
√

5 π3/2
×

×
∫ (1

ξ
− 2Zη

sin α

){
f̆1 + f̆2√

5π3/2
− 2Z

[
12(32π − 97) f̆3 + (357π − 1112) f̆4

]}
Y8,l(α, θ)dΩ. (152)

It follows from Equation (13) of Ref. [4] that only the coefficients at Z4 are nonzero on the
RHS of the last equation. Hence, Equation (152) reduces to the form:

a8l = −
(π − 2)(5π − 14)Z4

6804000
√

5 π3/2

[
S1l + S2l√

5π3/2
+ 12(32π − 97)S3l + (357π − 1112)S4l

]
, (153)

where

S1l = π2
∫ π

0

∫ π

0
f̆1(ξ)Y8,l(α, θ)η sin α sin θdαdθ, (154)

S2l = π2
∫ π

0

∫ π

0
f̆2(α, θ)Y8,l(α, θ)η sin α sin θdαdθ =

=
5π2(688− 225π)

(2l − 1)(2l + 1)(2l + 3)

∫ π/2

0
χ̄l(ρ)y8l(α)η sin αdα, (155)

Snl = π2
∫ π

0

∫ π

0
f̆n(α, θ)Y8,l(α, θ)ξ−1 sin2 α sin θdαdθ. (n = 3, 4) (156)

The identifiers ξ and η are defined by Equation (6), whereas functions χ̄l(ρ) can be cal-
culated by Formula (140). When deriving Equation (155), we applied the orthogonality
condition for the Legendre polynomials. Fortunately, all integrals (154)–(156) can be taken
in closed form. Thus, by collecting these results and substituting them into the RHS of
Equation (153), we finally obtain the desired coefficients in the form:

a8l =
Z4(π − 2)(5π − 14)

π5/2 b8l , (157)

with

b80 =
π(150339π − 927292) + 1430792

19289340000
, b82 =

π(751965π − 4654046) + 7200976
1928934000

√
70

,

b84 =
π(3190317π − 19828996) + 30802176

25719120000
√

14
. (158)

5. Results and Discussions

The angular Fock coefficients ψk,p ≡ ψk,p(α, θ) with the maximum possible value of
subscript p were calculated on examples of the coefficients with 5 ≤ k ≤ 10. The results
obtained in Sections 2–4 are summarized in Appendices A and B. The AFCs ψ9,4 and ψ10,5
are presented in Appendix C without derivations. To find the latter AFCs, the methods
described in the main sections were used. The presented technique makes it possible
to calculate such AFCs for any arbitrarily large k. These coefficients are leading in the
logarithmic power series representing the Fock expansion (see Equation (8)). As such,
they may be indispensable for the development of simple methods for calculating the
helium-like electronic structure.

The proposed technique, as well as the final results, are quite complex. Therefore, both
require verification. We are aware of two ways for the above-mentioned verification. The
first one is to use the Green’s function (GF) approach (see Ref. [1] and also Ref. [15], Section
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4) which enables us to calculate (at least, numerically) the AFC (or its component) by the
following integral representation:

ψk,p(α, θ) =
1

8π

∫ π

0
dα′ sin2 α′

∫ π

0
dθ′ sin θ′ hk,p(α

′, θ′)
∫ π

0

cos
[(

k
2 + 1

)
ω
]

sin ω
(1− λ)dϕ, (159)

where ω is an angle defined by the relation

cos ω = cos α cos α′ + sin α sin α′
(
cos θ cos θ′ + sin θ sin θ′ cos ϕ

)
, (160)

whereas

λ =

{
0 k odd

ω/π k even
. (161)

For even k and maximum value of p = k/2, the RHS hk,k/2 of the FRR (3) equals zero.
This implies that the GF formula (159) cannot be applied in this case. Hence, only the
AFCs ψk,p with odd values of k (and maximum p) can be verified with the GF method.
Thus, numerically calculating (for various combinations of angles α and θ) the triple
integrals (159) representing the AFCs ψ5,2(α, θ), ψ7,3(α, θ) and ψ9,4(α, θ), we verified that
the representations obtained for them in Sections 2 and 4.1 and in Appendix C were correct.

The second verification method considered, covering all possible combinations of
angles, being quite complex, is the only method known to us that correctly displays the WF
near the nucleus. This is the CFHH method mentioned in the Introduction. It is based on
decomposing the full WF into a form

ΨCFHH(r1, r2, r12) = exp[ f (r1, r2, r12)]ΦCFHH(R, α, θ), (162)

where the so-called correlation function f can be taken in a simple linear form

f (r1, r2, r12) = c1r1 + c2r2 + c12r12. (163)

The so-called “cusp parametrization”

c1 = c2 = −Z, c12 = 1/2 (164)

is used as a rule. For a small enough hyperspherical radius R, the function Φ is repre-
sented as

ΦCFHH(R, α, θ) =
1

d0,0(α, θ)

K

∑
k=0

(2κR)k
[k/2]

∑
p=0

dk,p(α, θ) lnp(2κR), (165)

where κ =
√
−2E, and functions dk,p(α, θ) are expanded in N (basis size) HHs. It follows

from representation (165) that the AFCs ψk,p(α, θ) can be expressed in terms of the functions
dk′ ,p′(α, θ) calculated by the CFHHM. For example, for the AFCs in question, one obtains:

ψCFHH
k,k/2 (α, θ) =

(2κ)kdk,k/2(α, θ)

d0,0(α, θ)
. (166)

We calculated all AFCs discussed in this article using CFHHM with K = 18 and N = 1600.
The angles 0 ≤ α ≤ π and 0 ≤ θ ≤ π with step π/6 were considered. The relative
difference |1− ψk,p(α, θ)/ψCFHH

k,p (α, θ)| was less than 10−7 for all examined cases, including
1 ≤ Z ≤ 5. This indicates that all our theoretical calculations were correct.
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Appendix A

Summarizing the results of Section 2, one obtains.

ψ5,2(α, θ) = −Z2(π − 2)(5π − 14)
270
√

π

[
3π−3/2(2 f1 + f2)− 2Z( f3 +

√
2 f4)

]
, (A1)

where

f1 = − 1
60

√
1− sin α cos θ[sin α cos θ(4 + 13 sin α cos θ)− 2], (A2)

f3(α) = −
1

60π3/2 [11 sin α + 21 cos(2α) + 2]
√

1 + sin α, (A3)

f4(α, θ) = −
√

2
6π3/2 (sin α)2

√
1 + sin α P2(cos θ), (A4)

f2(α, θ) =
1
6

∞

∑
l=0

ζl(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
. (A5)

The ζ function is defined as follows:

ζl(ρ) =

{
χl(ρ), 0 ≤ ρ ≤ 1
χl(1/ρ), ρ ≥ 1

(A6)

where

χl(ρ) =
ρl

(ρ2 + 1)5/2

[
(l − 3)(2l − 1)ρ6

2l + 7
+ 9lρ4 − 9(l + 1)ρ2 − (l + 4)(2l + 3)

2l − 5

]
. (A7)

Recall that ρ = tan(α/2), and special cases of the function f2 ≡ f2(α, θ), when they can be
obtained in closed form, are represented by Equations (93)–(96).

Summarizing the results of Section 3, one obtains:

ψ6,3(α, θ) =
Z3(π − 2)(5π − 14)

56700π3/2
√

5

[
(97− 32π)Y6,1(α, θ) +

(1112− 357π)

12
Y6,3(α, θ)

]
, (A8)

where Yn,l(α, θ) are the normalized hyperspherical harmonics.

Appendix B

Summarizing the results of Section 4.1, one obtains:

ψ7,3(α, θ) =
(π − 2)(5π − 14)Z3

340200
√

5π3/2

{
f̄1 + f̄2√

5π3/2
− 2Z

[
12(32π − 97) f̄3 + (357π − 1112) f̄4

]}
, (A9)
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where

f̄1 =

(
41437π

12
− 74342

7

)
ξ7 +

(
36476− 35588π

3

)
ξ5 +

+
5
2
(4931π − 15156)ξ3 + 5(2276− 741π)ξ. (A10)

f̄3 = −ρ(1 + ρ)(29 + ρ{16 + ρ[ρ(16 + 29ρ)− 114]}) cos θ

9
√

5 π3/2(ρ2 + 1)7/2
, (A11)

f̄4 = − sin3 α
√

1 + sin α

2
√

5 π3/2
P3(cos θ), (A12)

f̄2 =
1

48

∞

∑
l=0

ζ̄l(ρ)Pl(cos θ)

(2l − 1)(2l + 3)
. (A13)

The ζ̄ function is defined as follows:

ζ̄l(ρ) =

{
χ̄l(ρ), 0 ≤ ρ ≤ 1
χ̄l(1/ρ), ρ ≥ 1

, (A14)

where

χ̄l(ρ) = −
ρl

(ρ2 + 1)7/2

{ (32l2 + 26l − 25)ρ6

2l + 5

[
(2l − 1)ρ2

2l + 9
+ 4
]
+

+
1

2l − 3

[
6(84l2 + 84l − 95)ρ4

2l + 5
− (32l2 + 38l − 19)

(
2l + 3
2l − 7

+ 4ρ2
)]}

. (A15)

Recall that variable ξ is defined by Equation (6), and special cases of the function f̄2 ≡
f̄2(α, θ), when they can be obtained in closed form, are represented by Equations (141)–(144).

Summarizing the results of Section 4.2, one obtains:

ψ8,4 =
Z4(π − 2)(5π − 14)

π5/2 [b80Y8,0(α, θ) + b82Y8,2(α, θ) + b84Y8,4(α, θ)], (A16)

where

b80 =
π(150339π − 927292) + 1430792

19289340000
, b82 =

π(751965π − 4654046) + 7200976
1928934000

√
70

,

b84 =
π(3190317π − 19828996) + 30802176

25719120000
√

14
. (A17)

Appendix C

In Sections 2 and 3, the AFCs ψ5,2(α, θ) and ψ6,3(α, θ) were calculated with detailed
derivations. In Section 4, the AFCs ψ7,3(α, θ) and ψ8,4(α, θ) were presented with a very
brief derivations. The corresponding results were summarized in Appendices A and B.
The current Appendix presents the AFCs ψ9,4 ≡ ψ9,4(α, θ) and ψ10,5 ≡ ψ10,5(α, θ) without
derivations. To find the latter AFCs, the methods described in the main sections were used.

So, the first AFC under consideration can be represented as:

ψ9,4 = 2Z4[2ZX1(α, θ)− X2(α, θ)], (A18)

where

X1(α, θ) = ǎ80 f̌1 + ǎ82 f̌2 + ǎ84 f̌3, (A19)
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X2(α, θ) =
35

π3/2

√
2
7

ǎ84 f̌4 +
(π − 2)(5π − 14)
123451776000π4

[
c5 f̌5 + c6 f̌6 + c7 f̌7 + 16(c8 f̌8 + c9 f̌9)

]
. (A20)

Here, ǎ8l = Z−4a8l , where the coefficients a8l are defined by Equations (157) and (158),
whereas the other coefficients are:

c5 = π(29757524− 4780401π)− 46286848, c6 = π(9581100π − 59458928) + 92239360,

c7 = π(28060 + 10149π)− 167168, c8 = 9π(134543π − 828732) + 11488128,

c9 = π(4804833π − 29773780) + 46119680. (A21)

The functions f̌i ≡ f̌i(α, θ) are:

f̌1 = − (ρ + 1)(563ρ8 + 1012ρ7 − 8932ρ6 − 3668ρ5 + 23954ρ4 − 3668ρ3 − 8932ρ2 + 1012ρ + 563)
1260π3/2(ρ2 + 1)9/2 , (A22)

f̌2 = −
(

8
π3/2

√
10
7

)
ρ2(1 + ρ)(126 + 49ρ− 424ρ2 + 49ρ3 + 126ρ4)

300(ρ2 + 1)9/2 P2(cos θ), (A23)

f̌3 = − 2
5π3/2

√
2(1 + sin α)

7
sin4 α P2(cos θ), (A24)

f̌4 = − ξ(315− 1680ξ2 + 2814ξ4 − 1854ξ6 + 419ξ8)

1260
, (A25)

f̌5 = − ξ

60
(2ξ2 − 3)(2ξ2 − 1)(4ξ4 − 10ξ2 + 5). (A26)

The remaining f̌ functions are represented by series:

f̌ j =
(ρ2 + 1)−9/2

k j

∞

∑
l=0

ρl ζ̌ jl(ρ)

(2l − 1)(2l + 3)
Pl(cos θ), (j = 6, 7, 8, 9) (A27)

where

k6 = 6, k7 = 60, k8 = 24, k9 = 40, (A28)

and the corresponding ζ̌ functions are:

ζ̌6l(ρ) =
(2l − 15)(2l − 1)(l + 1)ρ10

(2l + 7)(2l + 11)
+

(22l2 − 5l − 12)ρ8

(2l + 7)
+

10(2l2 + 11l + 3)ρ6

2l + 7
−

−10(2l2 − 7l − 6)ρ4

2l − 5
− (22l2 + 49l + 15)ρ2

2l − 5
− l(2l + 3)(2l + 17)

(2l − 9)(2l − 5)
, (A29)

ζ̌7l(ρ) =
(2l − 1)(4l2 + 160l − 189)ρ10

(2l + 7)(2l + 11)
+

35(4l2 + 40l − 9)ρ8

(2l + 7)
− 350(4l2 + 16l + 3)ρ6

2l + 7
+

+
350(4l2 − 8l − 9)ρ4

2l − 5
− 35(4l2 − 32l − 45)ρ2

2l − 5
− (2l + 3)(4l2 − 152l − 345)

(2l − 9)(2l − 5)
, (A30)
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ζ̌8l(ρ) = −
(2l − 1)(56l3 + 250l2 + 338l + 171)ρ10

(2l + 5)(2l + 7)(2l + 11)
− (136l3 + 314l2 − 110l − 153)ρ8

(2l + 5)(2l + 7)
−

−2(80l4 + 652l3 + 566l2 − 1824l − 873)ρ6

(2l − 3)(2l + 5)(2l + 7)
+

2(80l4 − 332l3 − 910l2 + 1320l + 945)ρ4

(2l − 5)(2l − 3)(2l + 5)
+

+
(136l3 + 94l2 − 330l − 135)ρ2

(2l − 5)(2l − 3)
+

(2l + 3)(56l3 − 82l2 + 6l − 27)
(2l − 9)(2l − 5)(2l − 3)

, (A31)

ζ̌9l(ρ) =
(2l − 1)(24l3 − 150l2 − 670l − 439)ρ10

(2l + 5)(2l + 7)(2l + 11)
+

5(72l3 + 162l2 − 70l − 103)ρ8

(2l + 5)(2l + 7)
+

+
10(16l4 + 220l3 + 222l2 − 804l − 423)ρ6

(2l − 3)(2l + 5)(2l + 7)
− 10(16l4 − 156l3 − 342l2 + 652l + 399)ρ4

(2l − 5)(2l − 3)(2l + 5)
−

−5(72l3 + 54l2 − 178l − 57)ρ2

(2l − 5)(2l − 3)
− (2l + 3)(24l3 + 222l2 − 298l − 57)

(2l − 9)(2l − 5)(2l − 3)
, (A32)

It is important to emphasize that the representations (A27)–(A32) are valid only for
0 ≤ ρ ≤ 1. For values ρ > 1, one should replace ρ with 1/ρ, which is equivalent to
simply redefining ρ as cot(α/2).

The second AFC under consideration is of the form:

ψ10,5 = −Z5(π − 2)(5π − 14)
π7/2 [b10,1Y10,1(α, θ) + b10,3Y10,3(α, θ) + b10,5Y10,5(α, θ)], (A33)

where

b10,1 =
π[3π(6840010557π − 63828704998) + 595609133656]− 617517605744

401025378600000
√

105
, (A34)

b10,3 =
π[π(9194460432π − 85833963053) + 267084629592]− 277009842768

100256344650000
√

30
, (A35)

b10,5 =
π[π(622341848670π − 5812646794643) + 18095537797140]− 18776793358080

10025634465000000
√

42
, (A36)

and Y10,l(α, θ) with l = 1, 3, 5 are the normalized HHs.

References
1. Fock, V.A. On the Schrödinger Equation of the Helium Atom. Izv. Akad. Nauk SSSR Ser. Fiz. 1954, 18, 161–174.
2. Morgan, J.D., III. Convergence properties of Fock’s expansion for S-state eigenfunctions of the helium atom. Theor. Chim. Acta

1986, 69, 181–223. [CrossRef]
3. Abbott, P.C.; Maslen, E.N. Coordinate systems and analytic expansions for three-body atomic wavefunctions: I. Partial summation

for the Fock expansion in hyperspherical coordinates. J. Phys. A Math. Gen. 1987, 20, 2043–2075. [CrossRef]
4. Liverts, E.Z.; Barnea, N. Angular Fock coefficients. Refinement and further development. Phys. Rev. A 2015, 92, 042512. [CrossRef]
5. Nakashima, H.; Nakatsuji, H. Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative

complement interaction (ICI) method. J. Chem. Phys. 2007, 127, 224104. [CrossRef]
6. Rodriguez, K.V.; Gasaneo, G.; Mitnik, D.M. Accurate and simple wavefunctions for the helium isoelectronic sequence with correct

cusp conditions. J. Phys. B 2007, 40, 3923–3939. [CrossRef]
7. Forrey, R.C. Compact representation of helium wave functions in perimetric and hyperspherical coordinates. Phys. Rev. A 2004,

69, 022504. [CrossRef]
8. Drake, G.W.F. (Ed.) High Precision Calculations for Helium. In Atomic, Molecular, and Optical Physics Handbook; AIP Press: New

York, NY, USA, 1996; Section 11.

http://doi.org/10.1007/BF00526420
http://dx.doi.org/10.1088/0305-4470/20/8/023
http://dx.doi.org/10.1103/PhysRevA.92.042512
http://dx.doi.org/10.1063/1.2801981
http://dx.doi.org/10.1088/0953-4075/40/19/011
http://dx.doi.org/10.1103/PhysRevA.69.022504


Atoms 2022, 10, 135 22 of 22

9. Haftel, M.I.; Mandelzweig, V.B. Exact Solution of Coupled Equations and the Hyperspherical Formalism: Calculation of
Expectation Values and Wavefunctions of Three Coulomb-Bound Particles. Ann. Phys. 1983, 150, 48–91. [CrossRef]

10. Haftel, M.I.; Mandelzweig, V.B. Fast Convergent Hyperspherical Harmonic Expansion for Three-Body Systems. Ann. Phys. 1989,
189, 29–52. [CrossRef]

11. Haftel, M.I.; Krivec, R.; Mandelzweig, V.B. Power Series Solution of Coupled Differential Equations in One Variable. J. Comp.
Phys. 1996, 123, 149–161. [CrossRef]

12. Liverts, E.Z. Analytic calculation of the edge components of the angular Fock coefficients. Phys. Rev. A 2016, 94, 022504. [CrossRef]
13. Sack, R.A. Generalization of Laplace’s expansion to arbitrary powers and functions of the distance between two points. J. Math.

Phys. 1964, 5, 245–251. [CrossRef]
14. Liverts, E.Z.; Krivec, R.; Barnea, N. Collinear configuration of the helium atom two-electron ions. Ann. Phys. 2020, 422, 168306.

[CrossRef]
15. Liverts, E.Z. Co-spherical electronic configuration of the helium-like atomic systems. Ann. Phys. 2022, 436, 168669. [CrossRef]

http://dx.doi.org/10.1016/0003-4916(83)90004-0
http://dx.doi.org/10.1016/0003-4916(89)90076-6
http://dx.doi.org/10.1006/jcph.1996.0012
http://dx.doi.org/10.1103/PhysRevA.94.022504
http://dx.doi.org/10.1063/1.1704114
http://dx.doi.org/10.1016/j.aop.2020.168306
http://dx.doi.org/10.1016/j.aop.2021.168669

	Introduction
	Derivation of the Angular Fock Coefficient 5,2(,)
	Solution of the IFRR (2-45)f3=Y40/sin  
	Solution of the IFRR (2-45)f4=Y42/sin  
	Solution of the IFRR (2-45)f1=(1-2)2/
	Solution of the IFRR (2-45)f2=cos(2)/

	Derivation of the Angular Fock Coefficient 6,3(,)
	Derivation of the Angular Fock Coefficients 7,3(,) and 8,4(,)
	The AFC 7,3(,)
	The AFC 8,4(,)

	Results and Discussions
	
	
	
	References

