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Abstract: The theory of one-photon ionization and two-photon above-threshold ionization is formu-
lated for applications to heavy atoms in attosecond science by using Dirac–Fock formalism. A direct
comparison of Wigner–Smith–Eisenbud delays for photoionization is made with delays from the
Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBIT) method.
Photoionization by an attosecond pulse train, consisting of monochromatic fields in the extreme
ultraviolet range, is computed with many-body effects at the level of the relativistic random phase
approximation (RRPA). Subsequent absorption and emission processes of infrared laser photons in
RABBIT are evaluated by using static ionic potentials as well as asymptotic properties of relativistic
Coulomb functions. As expected, light elements, such as argon, show negligible relativistic effects,
whereas heavier elements, such a krypton and xenon, exhibit delays that depend on the fine-structure
of the ionic target. The relativistic effects are notably close to ionization thresholds and Cooper
minima with differences in fine-structure delays predicted to be as large as tens of attoseconds.
The separability of relativistic RABBIT delays into a Wigner–Smith–Eisenbud delay and a universal
continuum–continuum delay is studied with reasonable separability found for photoelectrons emitted
along the laser polarization axis in agreement with prior non-relativistic results.

Keywords: attoscience; attophysics; photoionization; above-threshold ionization; Wigner–Smith–
Eisenbud delay; Dirac–Fock; RRPA; RABBIT; krypton; xenon

1. Introduction

The study of attosecond photoionization dynamics has been made possible by coher-
ent light sources in the extreme ultraviolet (XUV) regime based on high-order harmonic
generation (HHG) [1]. Experimental techniques that were originally used for pulse charac-
terization, such as the Reconstruction of Attosecond Beating By Interference of Two-photon
Transitions (RABBIT) [2] and the attosecond streak-camera [3], have proved useful to
gain novel insights into the time it takes for electrons to escape the binding potentials of
atoms [4–16], molecules [17–21], and solid-state targets [22–24]. The main observables are
delay-dependent modulations in the photoelectron spectra that arise due a phase-locked
laser probe field in the infrared (IR) regime [25–30]. For “weak” fields, these modulations
can be understood from perturbation theory, where absorption of one XUV photon (Ω)
is followed by exchange of one IR photon (±ω). It is a rather technical task to evaluate
laser-driven continuum–continuum transitions numerically in the presence of the long-
range Coulombic potential: k′ → k [26,31,32]. Thus, analytical continuum–continuum
phase shifts φcc(k, k′), have been derived by using the Wentzel–Kramers–Brillouin (WKB)
approximation, in order to interpret the RABBIT delays at sufficiently high kinetic energy
of the photoelectrons [33]. Asymptotic theories based on the Eikonal Volkov Approxima-
tion (EVA) have also been developed [34]. The main result of these asymptotic theories
is that delays observed in RABBIT experiments can be separated into two terms: (i) a
finite-difference approximation to the Wigner–Smith–Eisenbud delay of the photoelectron
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after absorption of one XUV photon: τW [35–37], and (ii) a universal continuum–continuum
delay: τcc(k; ω), with an analytical expression that only depends on the final momentum
of the photoelectron and the frequency of the IR field. In the case of a single angular
momentum channel λ = `i + 1 with `i being the initial angular momentum, this separation
has been successfully implemented to measure the Wigner-like delay of the 2s-orbital in
neon atoms [12]. In the more general case, where multiple intermediate angular momenta
are populated, λ = `i ± 1, the probe process becomes more complicated and care must be
taken to account for the weight of all intermediate transitions, which leads to an “effective”
Wigner delay [33]. As an example, the RABBIT delay measured close to the 3p-Cooper
minimum in argon [38] is much reduced in magnitude when photoelectrons are detected
over all emission angles, rather than along the polarization axis of the fields [7]. Nonethe-
less, the asymptotic theory has been extended to interpret delays from molecules, where
contributions of multiple partial waves in the initial orbital and the orientation of the target
relative to the laser polarization, adds more complexity to the process [21,39]. Although
it has been shown that the separability of delays remains valid at high kinetic energies,
by using full two-photon matrix elements from time-independent R-matrix theory [40],
the target-specific delay in molecules τPI, cannot be interpreted as a Wigner-like delay,
due to interference effects of multiple partial waves in the two-photon transitions [39] and
various channel coupling effects [21,40]. The use of full two-photon R-matrix theory [40] is
undoubtedly an important milestone in the field of photoionization delays from molecules,
which has allowed for quantitative analysis of many recent experiments [18–21].

In the case of atoms, full two-photon matrix elements have been used for a decade
to compute delays in photoionization at various levels of Many-Body Perturbation The-
ory (MBPT) [41–44]. Although the importance of the random-phase approximation with
exchange (RPAE) for attosecond science was first realized by Kheifets [45,46], numerical
simulations of the one-photon ionization process, developed by Amusia [47], are inherently
insufficient to interpret RABBIT delays. Thus, a two-photon approach was developed,
whereby the many-body response of XUV absorption was computed at the level of RPAE,
and the IR exchange in the continuum was computed numerically by using an effective one-
body ionic potential [41,42]. This two-photon matrix approach has shown good agreement
with a range of RABBIT experiments [7,8,12,13,48]. Noble gas atoms consist of multi-
ple valence states, which implies experimentally unresolved ionic states with magnetic
quantum numbers |m| ≤ `i. However, any problem with incoherent final channels can
easily be avoided by detecting photoelectrons along the polarization axis ẑ, where only
m = 0 contributes. In this configuration, it has been shown that a numerically obtained
continuum–continuum delay, τMBPT

cc , can be accurately separated from the one-photon
Wigner delay τMBPT

W , computed for photoelectrons along the polarization axis with the
unique ionic state m = 0 [41,43]. In this way, a precise separation of delays has been
demonstrated down to 5 eV, which is much lower than the high-energy regime predicted by
the original asymptotic theory [33]. The two-photon matrix elements have also been used
to study effects beyond the asymptotic approximation. Firstly, a strong angle-dependence
of RABBIT delays from the isotropic helium atom was evidenced in experiments by Heuser
et al. [48]. Secondly, the role of universal asymmetries between absorption and emission
processes in the continuum was identified by Busto et al. [49]. Finally, a weak angular-
momentum dependence of continuum–continuum phases was measured by Fuchs et al.
in helium atoms [50]. The latter discovery was in good agreement with theoretical predic-
tions based on exact two-photon matrix elements for hydrogen, provided by Taïeb [33], as
well as full two-photon matrix elements based on MBPT [13]. Thus, several effects that
depend on the exact form of continuum states have been identified by using RABBIT delay
measurements in recent years [51].

Due to the energy spacing between the odd harmonics from HHG, ∆Ω = 2ω, the
temporal resolution in traditional RABBIT experiments is limited to probe processes that
are much shorter than 2π/∆Ω = Tω/2 ≈ 1.3 fs (assuming an IR laser system with
h̄ω = 1.55 eV). At a first glance, this seems to preclude any studies of autoionizing dynamics



Atoms 2022, 10, 80 3 of 23

in atoms or molecules, which typically unfold on a time scale of a few femtoseconds, or
more [29,52]. However, the subject of combined time–frequency non-linear metrology
is quite subtle, and it has been found that a high-energy resolution of photoelectrons in
RABBIT sidebands can be used to reconstruct autoionizing processes in time [11]. In this
case of resonant excitation, via bound Rydberg states or autoionizating states, it is useful
to consider the RABBIT scheme as a combination of one “structured” (resonant) path
and another “unstructured” (reference) path [10,11,13,16,53,54]. In this case, the phase
variation of the resonant path is typically much stronger than any continuum–continuum
(or other non-resonant) phase shift, and the phenomena can be understood by expanding
Fano’s model for autoionization to laser-assisted photoionization, within the strong-field
approximation [55], or by using approximate two-photon two-color matrix elements [56,57].
In the latter works, it was shown that finite pulses, in the time domain, can lead to non-
periodic structures in RABBIT experiments due to autoionizing states. The two-photon
Fano model has proven essential to disentangle dynamics from multiple autoionizing states
measured by the RABBIT technique [14]. Although we find that the theory development for
autoionization in RABBIT is another milestone in the field, we will not consider this class of
processes in the following work. Rather, we will focus on correlation effects in unstructured
continuum, where MBPT is a numerically efficient route to describe correlation effects and
RABBIT data can be safely assumed to be periodic.

Despite these many successes, there remained disagreement between experimental and
theoretical results for the relative RABBIT delay between the 3p and 3s orbitals in argon, first
measured by Klünder et al. in 2011 [5], which was mostly ascribed to the low signal close to
the correlated minimum in the 3s-partial photoionization cross section [6,41,42,58–60]. The
fact that this exceptionally deep minimum from 3s arises due to correlation effects, was first
showed by Amusia in 1972 by applying the RPAE method to describe photoionization from
inner atomic orbitals [61]. By using two-photon matrix elements, it has now been shown
that the position, height, and sign of the associated RABBIT delay from 3s is similarly
sensitive to correlation effects [41,42], which largely stems from the sensitivity of the one-
photon Wigner delay peak from the correlated minimum in the photoionization cross
section [62]. In order to solve this long-standing problem, a full two-photon two-color
RPAE (2P2C-RPAE) method was developed for RABBIT delays [44]. This new method
allowed for detailed examination of correlated IR exchange processes. It was found that,
apart from a rather minor discrepancy at the correlated 3s-minimum in argon, the universal
separability of the MBPT continuum–continuum delay and Wigner delay was achieved.
However, this discrepancy was still not enough to reach agreement with the experimental
results [5,6]! It was not until the argon experiment was repeated, with higher photon
energies by Alexandridi et al. in 2021 [15], that excellent agreement with 2P2C-RPAE results
was found in a broad energy range above the 3s-minimum in argon. It was also concluded
that the long-standing 3p-3s problem was caused by an “accidental” harmonic satellite,
namely the 3s23p4(1D)4p(2P) shake-up process, predicted by Wijesundera and Kelly in
1989 by using MBPT [63], which overlapped with the 3s-RABBIT sidebands. Prior to that,
the importance of “two-electron-two-hole” excitations in argon had been found by Amusia
and Kheifets by considering effects beyond RPAE in 1981 [64].

The 2P2C-RPAE method also opened up for gauge-invariance tests of the RABBIT
theory [44]. It was concluded that the so-called length-gauge formulation of light-matter
interaction was much favoured, which is in line with the gauge theory of Kobe [65,66].
In the velocity-gauge formulation of RABBIT, it was found that the interaction with the
second photon required a more detailed many-body treatment, beyond the one-body ionic
potential, with important contributions from both time-orders of the fields XUV+IR and
IR+XUV. Although it was shown that only the complete 2P2C-RPAE theory leads to gauge-
invariant results, the approximate one-body treatment of the IR-exchange was shown to be
an excellent approximation in length gauge. For this reason, we will use the length gauge,
with an effective ionic potential to describe IR exchange processes, in our current work,
which aims to quantitatively account for relativistic effects in RABBIT experiments.
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The study of relativistic effects is quite a recent development in attosecond physics. In
our view, Saha et al. have pioneered this field with calculations of relativistic one-photon
Wigner delays [62,67,68], based on the relativistic random phase approximation (RRPA).
Although RRPA theory was originally developed in the late seventies by Johnson and
Cheng to describe one-photon ionization cross sections in heavy elements [69,70], the
interest in such phenomena is revived by recent RABBIT experiments that have targeted
heavy elements. First, Jordan et al. [71] and Jain et al. [72] have compared photoelectrons
from the fine-structure split valance orbitals: 4pj and 5pj with j = 1/2 and 3/2 of krypton
and xenon atoms, respectively, and secondly, Jain et al. [73] and Zhong et al. [74], have
compared photoelectrons from inner orbitals in xenon, down to the 4d orbital. The 4d
orbital is of special interest because it is known to posses a giant collective resonance in
the photoionization cross section, as evidenced by MBPT in the early seventies by Amusia
and Wendin [75,76]. Thus, it is now possible to study the role of sizable relativistic effects,
such as the spin-orbit effect in xenon, in the time domain with RABBIT. This opens a
call for time-dependent methods to solve the Dirac equation for heavy many-electron
atoms; as an example we mention the recently developed relativistic time-dependent
configuration–interaction singles (RTDCIS) method [77], but also extend the computation
of two-color, two-photon matrix elements to the relativistic domain. Concerning the
lack of such relativistic theories, we mention that in refs. [71,73], the experiments were
accompanied by photoionization delay calculations with one-photon matrix elements at
the level of RRPA for XUV absorption, whereas various asymptotic formulas from non-
relativistic theory were used to account for IR exchange effects. Our goal here is to treat the
whole process within a relativistic framework and below we discuss the different points
where the relativistic treatment differs from that of the non-relativistic one with an effective
ionic potential for IR exchange [41–43]. We also mention that the method presented here has
already been utilized in various projects, such as [49,74], without any detailed description
of the theoretical formulation. A full development of the two-photon, two-color relativistic
random phase approximation (2P2C-RRPA) is beyond the scope of the present work, but
we expect that it would not lead to any major modification of the results presented here,
because we base our entire theory on the length gauge formulation of the light–matter
interaction, where the one-body ionic potential description of IR exchange processes is a
good approximation [44].

In Section 2 below, some basic concepts are introduced, and the relativistic scattering
phases, as well as the asymptotic form of the continuum solutions, are discussed in detail.
Section 3 discusses photoionization delay in a relativistic framework, and in Section 4
the many-body implementation is outlined, and the technique to calculate the needed
two-photon matrix elements is explained. Some results are finally shown in Section 5.

2. Theory
2.1. The Dirac Equation

The starting point for calculations in a relativistic framework is the Dirac equation. We
aim here for calculations on many-electron systems, and as a first approximation we let
the electron–electron interaction be approximated by an average potential: the relativistic
version of the Hartee–Fock (HF) potential, usually called the Dirac–Fock (DF) potential.
Each electron is then governed by the one-particle Hamiltonian:

hDF = cα · p +

(
uDF −

e2

4πε0

Z
r

)
14 + mc2β, (1)

with eigenvalues labeled by E, and where α is expressed in Pauli matrices and β has the
corresponding form

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
. (2)
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For closed shell atoms, as the rare gases treated here, the Dirac–Fock potential is
spherically symmetric, and the two-component radial part of the wave function can be
separated out and determined by the radial Hamiltonian(

hDF
κ (r)−mc2

)( fκ(r)
gκ(r)

)
=
(

E−mc2
)( fκ(r)

gκ(r)

)
= ε

(
fκ(r)
gκ(r)

)
(3)

with

(
hDF

κ (r)−mc2
)
=

 uDF(r)− e2

4πε0
Z
r −ch̄

(
d
dr −

κ
r

)
ch̄
(

d
dr +

κ
r

)
uDF(r)− e2

4πε0
Z
r − 2mc2

, (4)

where fκ is the upper, typically larger, component, and gκ the lower, typically smaller, com-
ponent. The four-component eigenfunction to the one-particle Hamiltonian in Equation (1)
can now be written as [78]

ψn`jm(r, θ, φ) =

( fn`j(r)
r χκm(θ, φ)

ign`j(r)
r χ−κm(θ, φ)

)

=

 fnj`(r)
r ∑ν,µ〈`µsν | jm〉ξνY`,µ(θ, φ)

ignj`(r)
r ∑ν,µ〈(2j− `)µsν | jm〉ξνY(2j−`),µ(θ, φ)

, (5)

where χκm(θ, φ) is a vector coupled function of a spherical harmonic and a spin function ξν.
The relativistic quantum number κ is defined by the eigenvalue equation (σ · `+ 1)χκm =
−κχκm and takes the value κ = `(`+ 1)− j(j + 1)− 1/4. When κ is negative, (j = `+ 1/2),
the spherical harmonic associated with the small component, will be one unit of orbital
angular momenta larger than that for the large component, and vice verse for positive κ
(j = `− 1/2).

The RRPA method, which is also known as the linear response within the time-
dependent Dirac–Fock (TDDF) formalism, will be used to describe the atomic response to
electromagnetic radiation. It accounts for the interaction with the electromagnetic field in
lowest order, including also corrections to the static Dirac–Fock potential by field-perturbed
orbitals [47,79]. The method is discussed further in Section 4. In the next section, we
will discuss expressions for the radial continuum wave functions at large, but not infinite
distances from the ion.

2.2. The Scattering Phase of the Photoelectron

Although the total photoionization cross section is determined by the amplitude of
the outgoing electron wave packet, its phase is crucial for its angular dependence as well
as its delayed appearance in the continuum. In the following, we discuss the difference of
the scattering phase in a relativistic formulation compared to the non-relativistic one.

We consider first an N-electron atom that absorbs a photon and subsequently ejects
a photoelectron from orbital b. The radial photoelectron wave function will in the non-
relativistic case be described by an outgoing phase-shifted Coulomb wave that asymptoti-
cally has the form

u(1)
q,Ω,b(r) ≈ −πM(1)

nrel(q, Ω, b)

√
2m

πkh̄2 ei
(

kr+ Z
ka0

ln2kr−` π
2 −σZ,k,`+δk,`

)
. (6)

Here energy normalization is assumed, and M(1)
nrel is the non-relativistic electric dipole

transition matrix element to the final continuum state q with momenta k, `, and m. Although
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M(1)
nrel can be chosen to be real in a one-electron context it will be complex when correlation

effects are considered. The Coulomb phase is

σZ,k,` = arg
[

Γ
(
`+ 1 +

iZ
ka0

)]
, (7)

for a photoelectron in the field from a point charge of Ze. Note that in Equations (6) and (7),
we use the negative Coulomb phase convention, rather than the equivalent positive sign
convention that is more commonly used: cf. Equations (1) and (2) in Ref. [44], in order
to easily relate the phase expressions to existing relativistic theory in the literature [80].
The additional phase shift δk,` comes from the short range many-body potential of the final
state. The Bohr radius is here denoted with a0. In the relativistic case, the asymptotic radial
wave function will have an upper and a lower component, cf. Equation (5), which will have
the form [80]

u( f ,1)
q,Ω,b(r) ≈ −πM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ),

u(g,1)
q,Ω,b(r) ≈ −iζπM(1)(q, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
× ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ), (8)

where the superscripts f and g indicate the large (upper) and small (lower) components
respectively and

ζ =

√
E−mc2

E + mc2 =
kh̄

2mc
1(

1 + ε
2mc2

) (9)

is the relation between the large and small component at infinity. This asymptotic relation
is given directly by Equation (4), with ε = E−mc2 being the kinetic energy at infinity. The
form of the components in Equation (8) is indeed the same as in the non-relativistic case,
but the parameters have slightly changed definition: M(1) is now the relativistic matrix
element, and k is calculated from the relativistic kinetic energy as

k =

√
E2 −m2c4

h̄c
=

√
2εm
h̄

√
1 +

ε

2mc2 . (10)

The first factor on the right-hand side of Equation (10) is identical to the non-relativistic
expression for k, which is thus only slightly adjusted as long as the kinetic energy of the
released electron is modest: ε� mc2. The constant η is given by

η = ZαE
√

1
E2 −m2c4 =

Z
a0k

( ε

mc2 + 1
)

(11)

where α is the fine structure constant, α = h̄/(a0mc). In the non-relativistic limit η will thus
tend to Z/(a0k) as expected by comparison with Equation (6). The relativistic Coulomb
phase is

σ̃Z,k,γ = arg[Γ(γ + iη)] (12)

with

γ =
√

κ2 − α2Z2 (13)
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and

ν =
1
2

arg

[
−κ + iZ

ka0

γ + iη

]
. (14)

The phase induced by the short-range part of the many-body potential for the final
state is denoted with δ̃Z,k,κ .

2.3. Phase-Shifted Relativistic Coulomb Functions at Large Distances

Calculations on many-body systems have to be done numerically. While the wave
function for the escaping photoelectron will differ from the analytically known Coulombic
ones at short distances, it will approach a combination of a phase-shifted known regular
and irregular Coulomb function outside the core of the remaining ion. Because transition
matrix elements between continuum states do not converge on a finite grid, it is convenient
to have access to continuum solutions, with a possible phase shift δ, that can be used
to continue the integration to infinity. We are here interested to find expressions for the
relativistic case, but it is illustrative to compare with the more studied non-relativistic
formulation.

The solutions to the hydrogen-like Schrödinger equation with positive energy is given
by the Coulomb functions (see e.g., [81]). The regular Coulomb function is in particular

F`(ηnrel, kr) =
1
2

e
π
2 ηnrel

|Γ(`+ 1 + iηnrel)|
(2`+ 1)!

e−ikr(2kr)`+1M(`+ 1 + iηnrel, 2`+ 2, 2ikr), (15)

where M is the confluent hypergeometric function, σ is defined in Equation (7) and ηnrel =
Z/(a0k). Non-relativistic Coulomb functions expressions, valid for large kr, are provided
in Ref. [82]:

F` = ḡ cos ∆nrel + f̄ sin ∆nrel (16)

G` = f̄ cos ∆nrel − ḡ sin ∆nrel, (17)

for the regular, F`, and irregular, G`, Coulomb functions respectively, where

∆nrel ≡ kr +
Z

ka0
ln 2kr− π

2
`− σZ,k,` + δ (18)

and f̄ and ḡ, which depend on Z, r, k , and `, can be obtained through simple recursive
formulas given in ref. [82]. When r → ∞, ḡ→ 0 and f̄ → 1 and thus the regular function
approaches a sin-function, and the irregular a cos-function, both with amplitude one. The
combination

F`(ηnrel, kr)− iG`(ηnrel, kr) (19)

will thus asymptotically approach an outgoing wave, with modulus square equal to unity.
Energy normalized continuum functions are obtained by multiplications with

√
2m/πkh̄2.

It is interesting to note that Equations (16) and (17) imply that the irregular (regular)
function can readily be obtained when the regular (irregular) one is at hand. In the former
case, the irregular solution is found as

G` =

(
dF`
dr −

F`
ḡ2+ f̄ 2

(
dḡ
dr ḡ + d f̄

dr f̄
))

k + η/r + 1
ḡ2+ f̄ 2

(
dḡ
dr f̄ − d f̄

dr ḡ
) . (20)

Turning to the relativistic Coulomb problem, we set out to find the relativistic counter-
parts to Equations (16) and (17), which to the best of our knowledge, are not available in the
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literature. The exact two-component relativistic regular, F̃γ, and irregular, G̃γ, solutions are
given in a pioneering article by Johnson and Cheng [80]. In particular the regular solution is

F̃γ(η, kr) =

√
E + mc2

2E
1
2

e
π
2 η |Γ(γ + iη)|

Γ(2γ + 1)
(−2ikr)γeikr (

−κ + iZ
ka0

)
Mγ + (γ− iη)Mγ+1

−iζ
((
−κ + iZ

ka0

)
Mγ − (γ− iη)Mγ+1

)  (21)

with ζ, γ, η and k given in Equations (9)–(11) and (13), and the short-hand notation

Mγ = M(γ− iη, 2γ + 1,−2iz)
Mγ+1 = M(γ + 1− iη, 2γ + 1,−2iz) (22)

has been used for the confluent hypergeometric functions.
An asymptotic expansion of the confluent hypergeometric function, M can be found

in ref. [83], which indeed can be used to obtain asymptotic expansions for F̃γ and G̃γ on
forms similar to Equations (16) and (17):

F̃γ =

√
E + mc2

2E

(
f̄large cos ∆− ḡlarge sin ∆

−ζ
(

ḡsmall cos ∆ + f̄small sin ∆
) ) (23)

and

G̃γ =

√
E + mc2

2E

(
−
(

ḡlarge cos ∆ + f̄large sin ∆
)

−ζ
(

f̄small cos ∆− ḡsmall sin ∆
) ) (24)

with

∆ = kr + η ln 2kr− πγ/2− σ̃Z,k,γ + ν + δ̃ (25)

with σ̃ and ν given in Equations (12) and (14). The possible extra phase shift is denoted by
δ̃. In the non-relativistic limit ∆→ ∆nrel ± π/2, for κ > 0 and κ < 0 respectively, and thus
the sin/cos—functions in Equations (16) and (17) are replaced with ∓ cos /± sin in the
upper components of Equation (23) and (24). The relativistic f̄ , ḡ functions are obtained as

f̄large/small = Re(ℵ±) (26)

ḡlarge/small = Im(ℵ±) (27)

from

ℵ± = ∑
n=0

(γ− iη)n(−γ− iη)n
n!

(2ikr)−n±

∑
n=0

(γ + 1 + iη)n(−γ + 1 + iη)n
n!

(−2ikr)−n (28)

where (a)n = a(a + 1)(a + 2) . . . (a + n− 1), (a)0 = 1. Similarly to the non-relativistic case
ḡlarge/small → 0 and f̄large/small → 1 when r → ∞. Thus the upper regular, and the lower
irregular, approach cos ∆, whereas the lower regular and the upper irregular tend to sin ∆.
The asymptotic expressions are thus

F̃γ(η, kr)→
√

E + mc2

2E

(
cos ∆
−ζ sin ∆

)
, (29)
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G̃γ(η, kr)→
√

E + mc2

2E

(
− sin ∆
−ζ cos ∆

)
, (30)

when kr → ∞, and the combination

F̃γ(η, kr)− iG̃γ(η, kr)→
√

E + mc2

2E

(
1
iζ

)
ei∆ (31)

will, in close analogy with the non-relativistic expression in Equation (19), asymptotically
approach an outgoing wave, with modulus square unity. The energy normalized functions
are again obtained by multiplication with

√
2m/πkh̄2. We note finally that Equation (20)

holds also in a relativistic framework. It provides the irregular solution, G̃γ from F̃γ, if f̄
and ḡ are just replaced with f̄large and ḡlarge or f̄small and ḡsmall for the upper and lower
components respectively.

3. Delay in Photoionization

We will here briefly discuss the calculation of delays in laser-assisted photoionization,
emphasizing the differences compared to the non-relativistic description. A detailed
account of the latter can be found in refs. [42,44].

3.1. The Wigner Delay

The concept of delay was introduced by Wigner [35], Smith [36] and Eisenbud [37]
as the derivative of the scattering phase with respect to energy. With a finite difference
approximation of the derivative ∆ω = 2ω, the Wigner contribution to the atomic delay
measured in a RABITT experiemnt is

τW =
φ> − φ<

2ω
, (32)

where φ>/< refer to the phases acquired in the XUV absorption step in the two paths where
either the higher or the lower harmonic is absorbed. Non-relativistically, and for detection
of the photoelectron in the ẑ direction, these phases are

φnrel
> = arg

(
∑
`

Mnrel
> (`)ei(−` π

2 −σZ,k> ,`+δk> ,`)Y`,0(ẑ)

)

φnrel
< = arg

(
∑
`

Mnrel
< (`)ei(−` π

2 −σZ,k< ,`+δk< ,`)Y`,0(ẑ)

)
, (33)

where the short-hand notation for the one-photon matrix elements, M>/<(`) ≡ M(1)(q>/<,
Ω>/<, b), with final photoelectron wave number k>/< and angular momentum `, after
absorption of a photon with angular frequency Ω>/<, is used. Relativistically the corre-
sponding amplitudes have two components and it is more appropriate to define the Wigner
delay as

τW =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

M<

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

(
∑
κ′

M>

(
χκ′m(ẑ)

iζχ−κ′cm(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν′+δ̃Z,k,γ′
))]

, (34)
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where the calculation of the delay of electrons emitted along the z-axis requires an incoher-
ent sum over m = ±1/2. The two incoherent contributions to the Wigner delay are due to
unresolved photoelectron spin in the final state.

3.2. The Atomic Delay

We now consider measurements that employ the RABBIT technique [2], where an
XUV comb of odd-order harmonics of a fundamental laser field with angular frequency
ω, is combined with a synchronized, weak laser field with the same angular frequency.
In RABBIT, the one-photon ionization process is assisted by an IR photon that is either
absorbed or emitted. The same final state is reached when both an XUV harmonic with
energy h̄Ω< = (2n− 1)h̄ω and an IR photon is absorbed, as when the next XUV harmonic,
h̄Ω> = (2n + 1)h̄ω, is absorbed while an IR photon is emitted. This gives rise to modulated
sidebands in the photoelectron spectrum at energies corresponding to the absorption of an
even number of IR photons. Schematically the intensity of such a sideband can be written
as [25]

S =| Aa + Ae |2=| Aa |2 + | Ae |2 +A∗e Aa + Ae A∗a
| Aa |2 + | Ae |2 +2 | Ae || Aa | cos[arg(Ae)− arg(Aa)], (35)

where Aa/e are the complex quantum amplitudes for the two-photon processes involving
absorption (a) or emission (e) of an IR photon, and leading to the same final energy. The
modulation arises from the last term in Equation (35) and can be shown to be governed
by the delay between the IR and XUV pulses, τ, the group delay of the attosecond pulses
in the train, τXUV , and by a contribution from the atomic system which is due the phase
difference between the emission and the absorption paths in the atom:

cos[arg(Ae)− arg(Aa)] = cos[2ω(τ − τXUV) + φe − φa]. (36)

The atomic contribution can be interpreted as an atomic delay: τA = (φe − φa)/2ω.
Because the delay between the two light fields is controlled in the experiments and the pulse
train group delay can be canceled through relative measurements, the atomic contribution
can be extracted. A recent review of the experimental method can be found in [84]. In the
following, we discuss the determination of φa and φe.

The outgoing radial wave function for the large component, after interaction with
two photons, will, in accordance with the one-photon situation in Equation (8), have the
asymptotic form

u( f ,2)
q,ω,Ω,b(r) ≈ −πM(2)(q, ω, Ω, b)

√
2m

πkh̄2

(
1 +

ε

2mc2

)
ei(kr+ηln2kr−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ), (37)

where the important difference compared to the one-photon case lies in the presence of the
two-photon transition element M(2), which connects the initial state b to the continuum
state q through all dipole-allowed intermediate states. The small component follows as in
Equation (8). The phases acquired in the absorption and emission paths (cf. Equation (36)),
are given by the corresponding two-photon matrix element and the phase of the photo-
electron. In the non-relativistic case, and for photoelectrons with momentum along the
common polarization axis of the fields, ẑ, they are given as

φnrel
a = arg

(
∑
`

Ma,nrel(`)e
i(−` π

2 −σZ,k,`+δk,`)Y`,0(ẑ)

)

φnrel
e = arg

(
∑
`

Me,nrel(`)e
i(−` π

2 −σZ,k,`+δk,`)Y`,0(ẑ)

)
, (38)
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where the short-hand notation

Ma,nrel(`) = M(2)
nrel(q, ω, Ω<, b),

Me,nrel(`) = M(2)
nrel(q,−ω, Ω>, b) (39)

has been used and the subscripts a and e stand for IR absorption and emission, respectively.
For photoelectron emission along the ẑ-direction, i.e., θ = 0, the spherical harmonic is
non-zero only for azimutal quantum number m` = 0. The atomic delay, defined as the
phase difference divided by 2ω, can subsequently be calculated as

τA =
φe − φa

2ω
. (40)

In the Dirac case, there are two distinct differences. First, a sum over m = ±1/2 is
required, because both spin-directions contribute to the emission along the ẑ-direction.
Second, due to the multi-component wave function the Dirac case the expression gets more
involved:

τA =
1

2ω
arg

[
∑

m=± 1
2(

∑
κ

Ma

(
χκm(ẑ)

iζχ−κm(ẑ)

)
ei(−γ π

2 −σ̃Z,k,γ+ν+δ̃Z,k,γ)

)†

×
(

∑
κ′

Me

(
χκ′m(ẑ)

iζχ−κ′m(ẑ)

)
ei
(
−γ′ π

2 −σ̃Z,k,γ′+ν+δ̃Z,k,γ′
))]

, (41)

where the sum over m = ±1/2 is done incoherently (see e.g., the discussion in ref. [85]) ,
whereas the sum over κ is done coherently. The two incoherent contributions to the atomic
delay are due to unresolved photoelectron spin in the final state. The expression for the
Wigner and atomic delay for electrons detected along an arbitrary direction have been
discussed in ref. [86]

4. Method

In the following, we label the full four-component “perturbed wave function”, associ-
ated with absorption of one photon with angular frequency Ω and a hole in orbital b, by∣∣ρΩ,b

〉
, including both radial and spin-angular parts implicitly. As in [41–43], we use here

the RPAE-approximation for the many-body response to the absorption of an XUV-photon,
albeit within a relativistic framework.

4.1. The Form of the Light–Matter Interaction

The standard expression for light–matter interaction,

hI = ecα ·A(r, t), (42)

comes from applying minimal coupling: p→ p + eA to the Dirac Hamilonian in Equation (1).
Within the dipole approximation, the vector potential is assumed to be space-independent:
A(r, t)→ A(t). This is often referred to as the “velocity gauge” expression for light—matter
interaction:

hvelocity
I = ecα ·A(t). (43)
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A unitary transformation can be made to recast the interaction in the alternative
“length gauge” form

hlength
I = er · E. (44)

For details see e.g., ref. [87]. Because our interest here is low-energy photoelectrons, we will
stick to the dipole approximation. It is well known that the two gauge forms give identical
results when evaluated by an exact wave function, but also for approximations that employ
a local potential to describe electron–electron interaction. The non-local exchange potential
in the Hartree–Fock approximation can lead to different results in the two gauges when
static orbitals are assumed [65,66]. As was shown in the 1970s, the gauge invariance for
one-photon processes is restored by the RPAE class of many-body effects [88]. Recently,
this was discussed in connection with the calculation of two-photon processes, as needed
for the calculation of atomic delays [44], and it was shown that gauge invariance required
a full two-photon RPAE treatment. Because ref. [44] also showed that the length gauge
results are completely dominated by the time-order where the XUV photon is absorbed
first and much less sensitive to final state interactions (after absorption of two photons)
than velocity gauge, only the length form will be used here.

With linearly polarized light, we may now write the lowest order approximation of
the transition matrix elements from Equation (8) as

M(1)(q, Ω, b) = 〈q | ez | b〉EΩ, (45)

and similarly the two-photon matrix element in Equation (37) as

M(2)(q, ω, Ω, b) = lim
ξ→0+

∑
p

∫ 〈q | ez | p〉〈p | ez | b〉
εb + h̄Ω− εp + iξ

EωEΩ, (46)

where intermediate states, p, are to be summed and integrated over for the bound and
continuum part of the spectrum respectively. An important difference compared to the one-
photon matrix element is that the two-photon matrix element is intrinsically complex for
the above threshold ionization, i.e., when h̄Ω exceeds the binding energy, even if correlation
effects are neglected.

4.2. Diagrammatic Perturbation Theory

The approximation is illustrated by the diagrams in Figure 1, and a detailed derivation
can be found in ref. [44]. The solution of the RPAE equations is done iteratively as indicated
in Figure 1 and includes the linear response to the interaction with the XUV photon,

(
εb ± h̄Ω− hDF

κ

)
| ρ±Ω,b〉 =

exc

∑
p
| p〉〈p |

(
dΩj + δu±Ω

)
| b〉, (47)

where δu±Ω is the (linearized) corrections to the Dirac–Fock potential induced by the elec-
tromagnetic field (cf. Figure 1c–f,i–l). The Dirac–Fock potential, cf. Equation (4) is defined
from its matrix element between orbitals m, n (occupied or unoccupied):

〈m | uDF | n〉 =
core

∑
c
〈{mc} | V12 | {nc}〉, (48)

where curly brackets denote anti-symmetrization. V12 denotes here the Coulomb interaction.
It is also possible to define a Hartree–Fock type potential for the Breit interaction [89,90], but
this aspect of the electron–electron interaction is neglected here. In addition to the Dirac–
Fock potential, we usually add a so-called projected potential, uproj, to the Hamiltonian
in Equation (4). Aiming for a final state with a hole in one of the originally occupied
orbitals, the projected potential cancels the removed electron’s monopole interaction with



Atoms 2022, 10, 80 13 of 23

all unoccupied orbitals, without affecting the interaction between the electrons in the
ground state. More details can be found in [44]. Through this extra potential, some of the
contributions from Figure 1c, precisely those which ensure that the photoelectron feels the
correct long-range potential, are accounted for already in lowest order. When converged,
the iterative procedure gives the same results if the projected potential is used or not, but
the convergence is often much improved in the latter case, especially close to ionization
thresholds.

p a

b

(c) (e)

pa

p a

b

b

p a

(k)(i)

b

p a

b

(d)

p a

b

(f)

pa

b

(j)

pa

b

(l)

p a

(b)

pa

(h)

p a

(a)

pa

(g)

Ti
m
e

Ti
m
e

Figure 1. Goldstone diagrams illustrating RPAE for the many-body screening of the photon interac-
tion. The set labelled with (a,g) are forward and backward propagation, respectively. Diagrams (b,h)
are the lowest order contributions, while (c–f) and (i–l) give the many-body response. The sphere
indicates the correlated interaction to infinite order. The wavy line indicates the photon interaction
and the dashed line the Coulomb interaction. Downward lines (labelled with a, b) stand for holes
created when electrons are removed from initially occupied orbitals, and upward lines (labelled with
o, p) for initially unoccupied orbitals.

The calculations are performed with a basis set obtained through diagonalization of the
radial one-particle Dirac–Fock Hamiltonians in a primitive basis of B-splines [91], defined
on a knot sequence in a spherical box. B-splines are piecewise polynomials of a given order
k. The radial components f and g of the relativistic wave function, (cf. Equation (5)) are
expanded in B-splines of different orders: typically k = 7 and k = 8 respectively. It has been
shown by Froese, Fischer, and Zatsarinny [92] that the use of different B-spline orders is a
way to get rid of the so-called spurious states, which are known to appear in the numerical
spectrum after discretization of the Dirac Hamiltonian. Details of the use of B-splines to
solve the Dirac equation can be found in ref. [93].

We use further exterior complex scaling (ECS)

r →
{

r, 0 < r < RC
RC + (r− RC)eiϕ, r > RC,

(49)

and thus the eigenenergies of the virtual orbitals are complex in general. As a conse-
quence, the energy integration path avoids the pole in Equation (46) and thus the sum and
integration over unoccupied states p can be represented by a finite sum [41,42].

With converged RPAE results the two-photon matrix elements in Equation (37) can be
calculated for the absorption as well as the emission path to sideband n:

M(2)
a/e = 〈q | ez | ρ+

(2n∓1)ω,b〉, where εq = εb + 2nω, (50)

where length gauge has been assumed. The integration in Equation (50) involves two
continuum functions and will not converge on any finite interval. The integrand is therefore
divided into two parts. The first is an inner region 0 ≤ r < R < RC, where the perturbed
wave function and final state can be determined numerically on the B-spline basis. The
second is an outer region R ≤ r < ∞ where the functions can be assumed to be solutions to
the pure Coulomb problem, albeit with a possible phase shift. By using different breakpoints
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R, we can check that the result is independent on where the change from numerical to
the analytical integration is done. This procedure was described in ref. [42] but has to be
slightly changed for the relativistic case, as will be discussed in the next subsection.

4.3. The Continuum–Continuum Transition

To evaluate Equation (50), we need the final continuum state, q, for a photoelectron
of energy εq, obtained in a relativistic framework and with the phase shift it gets from the
many-body environment. A good approximation is found as the solution of

hψq = εqψq (51)

where h = hDF
κ + uproj. By expanding the radial functions f and g (cf. Equation (5)), in

B-splines, fq(r) = ∑ ciBi(r), and vice versa for g, we can reformulate Equation (51) to
a system of linear equations for the coefficients ci. Exclusion of the first B-spline yields
a regular solution, that is zero at the origin. This determines ψq up to a normalization
constant. After normalization, which will be discussed below, ψq is used for the first part of
the integration in Equation (50), i.e., from zero to R. We note in passing that in practice it is
enough to obtain the large component of the relativistic wave function for a specific energy,
because in the region dominated by the Coulomb potential, the Dirac equation gives the
small component directly from the large one:

ug(r) =
ch̄
(

d
dr +

κ
r

)
u f (r)

ε + 2mc2 +
e2Ze f f
4πε0

1
r

, (52)

where Ze f f is the effective Coulomb potential felt by the escaping electron.
For the second part of the integration, from R to infinity, we need to extract infor-

mation from the numerical representations of q and ρ to perform the rest of the integral
in Equation (50) analytically as was described in ref. [42]. The final state q, is a phase
shifted regular solution to the Coulomb problem, which should be correctly normalized,
and the perturbed wave function ρ, is a phase-shifted outgoing solution with an amplitude
determined by the photoionization process.

The outgoing solution ρ well outside the ionic core can easily be compared with
the pure Coulomb solutions, Equations (23) and (24), combined as in Equation (31), to
determine the phase shift, δ̃ in Equation (25). It can easily be checked that the obtained
phase shift is independent of r, and then Equations (23) and (24) can be used again to
construct the solution at any large r.

The final state phase-shifted regular solution from Equation (51) can be complimented
by its irregular counterpart through Equation (20), evaluated with the relativistic forms
of f̄ and ḡ, and then again the phase shift can be determined from comparision with
Equations (23) and (24), combined as in Equation (31), and finally Equation (23) can be
used to construct the final state at any r.

An additional advantage with the possibility to complement a regular solution with
its corresponding irregular solution, and be able to construct the outgoing function, is that
it is easy to normalize. The probability flux through the surface of a sphere of radius R is

J (R) = ic
(

u f (r)∗ug(r)− ug(r)∗u f (r)
)

r=R
(53)

and is constant for any large value of R, far outside the core. Because the asymptotic
expressions for the large and small components are simple oscillating waves and their
relation is ζ (cf. Equation (8)), the rate should be 2cζ|A|2 and from that we can determine
the amplitude A. From the expression for ζ in Equation (9), we note the close resemblance
with the non-relativistic rate h̄k|A|2/m, just slightly adjusted for relativistic effects.

The last part of the integral, from R to r → ∞, in Equation (50) can now be calculated as was
described in ref. [42], but now with continuum solutions obtained from Equations (23) and (24).
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5. Results

The two-photon matrix elements for the absorption, Ma, and emission, Me, paths are
calculated as indicated in Equation (50) and then the atomic delay for electrons emitted
in the direction of the laser field polarization is obtained from Equation (41). The Wigner
delays are calculated as in Equation (34).

5.1. A Light Element: Argon

Results for ionization of argon atoms to the outermost p doublet 3p−1
1/2 and 3p−1

3/2, are
shown in Figure 2. The two curves for the atomic delays are, more or less, indistinguishable.
The negative atomic delay peak at 50 eV is due to the 3p-Cooper minimum in the cross
section of argon. A slight shift of the negative atomic delays peaks of a few meV is observed.
The similarity of the two fine-structure split channels is expected for such a light system

with ∆E
Ar:3pj
FS = 0.18 meV. The Wigner delays from the two fine-structure channels are also

mostly indistinguishable. Just below the threshold for release from the 3s-orbital, ∼30 eV,
there are narrow resonances that are not fully resolved in the present calculation.

30 40 50 60 70 80
Total Absorbed Photon Energy [eV]

100

50

0

50

100

D
el

ay
[a

s]

Argon 3p

 τA p3/2

 τA p1/2

 τW p3/2

 τW p1/2

Figure 2. The atomic and Wigner delay calculated in length gauge for ionization from Ar 3pj, for
electrons emitted along the polarization axis. The figure shows the region in the vicinity of the Cooper
minimum. The thick dashed blue line shows the atomic delay for electrons ionized from 3p3/2. It is
hardly distinguishable from the dashed–dotted red line that shows the atomic delay for electrons
ionized from 3p1/2. The thin dashed green and solid grey lines show the Wigner delay for electrons
ionized from 3p1/2 and 3p3/2 respectively. Dirac–Fock orbital energies have been replaced with
experimental ionization energies: For 3p3/2 the binding energy is 15.76 eV, and for 3p1/2 it is 15.94 eV.

5.2. Heavy Elements: Krypton and Xenon

Atomic and Wigner delays for ionization to the outermost p-doublet in krypton and
xenon are shown in Figures 3 and 4, respectively. Here the delay differences between the
electrons ionized to the 4p−1

1/2 and 4p−1
3/2 (5p−1

1/2 and 5p−1
3/2) in krypton (xenon) show that

relativistic effects are important. Differences between the delays are clearly visible on the
order of a few eV at the Cooper minima. Such shifts can be expected because the fine-

structure shifts are ∆E
4pj
FS = 0.67 eV for krypton (∆E

5pj
FS = 1.3 eV for xenon). Furthermore, a

difference between the doublet channels is observed at low energies, where xenon shows
the largest delay difference that exceeds 10 as.
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Figure 3. The atomic and Wigner delay calculated in length gauge for ionization from Kr 4pj,
for electrons emitted along the polarization axis. The thick dashed blue line shows the atomic
delay for electrons ionized from 4p3/2, and the dotted–dashed red line shows the atomic delay for
electrons ionized from 4p1/2. The thin dashed green and solid grey lines show the Wigner delay for
electrons ionized from 4p1/2 and 4p3/2 respectively. Dirac–Fock orbital energies have been replaced
with experimental ionization energies: For 4p3/2 the binding energy is 14.00 eV, and for 4p1/2 it is
14.67 eV [94]. Dirac–Fock orbital energies are used for the deeper lying orbitals.
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Figure 4. The atomic delay calculated in length gauge for ionization from Xe 5pj, for electrons emitted
along the polarization axis. The thick dashed blue line shows the atomic delay for electrons ionized
from 5p3/2, and the dotted–dashed red line shows the atomic delay for electrons ionized from 5p1/2.
The thin dashed green and solid grey lines show the Wigner delay for electrons ionized from 5p1/2

and 5p3/2 respectively. Dirac–Fock orbital energies have been replaced with experimental ionization
energies. For 5p3/2, the binding energy is 12.13 eV, and for 5p1/2 it is 13.44 eV [94]. Dirac–Fock orbital
energies are used for the deeper lying orbitals.
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5.3. Study of Continuum–Continuum Delay

The difference between the atomic and the Wigner delay is plotted for argon, krypton,
xenon, and radon in Figure 5. For all the elements, and all fine-structure components, the
results are very similar. This is in accordance with earlier findings, using non-relativistic
calculations [41,42,44], and the corresponding numerical continuum–continuum delay:
τMBPT

cc , is shown as a dotted line in Figure 5 for comparison with the relativistic results.
Thus, the contribution from the second photon depends on the kinetic energy and the
long-range potential, but only weakly, or not at all, on the structure of the remaining ion, or
its angular momentum, for photoelectrons emitted along the polarization axis.

Only in the vicinity of Cooper minima, or close to resonances, is there are a deviation
from this general trend. We stress that non-relativistic deviations, of a few attoseconds, have
also been found for Ar3p at the Cooper minimum by using the effective one-body potential
for the final state [44]. In that case, however, the complete 2P2C-RPAE method was used
to show that these deviations could be reduced, as shown Figure 9b of ref. [44]. Thus, we
may speculate that the present relativistic deviations at the Ar3pj Cooper minima could
be reduced by turning to 2P2C-RRRA theory. On the other hand, the correlation-induced
3s-minimum was shown to be non-separable by using the 2P2C-RPAE method, as shown
in Figure 9a of [44]. Obviously, fast photoelectrons are also well described by the analytical
cc-delay in ref. [33], but more importantly, Figure 5 demonstrates that a universal behaviour
extends to much lower energies than expected from the asymptotic theory (>20 eV) [33], in
good agreement with non-relativistic 2P2C-RPAE matrix elements [44].

5 10 15 20 25 30 35
Electron Energy [eV]
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−
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 Ar 3p3/2

 Ar 3p1/2

 Kr 4p3/2

 Kr 4p1/2

 Xe 5p3/2

 Xe 5p1/2

 Rn 6p3/2

 Rn 6p1/2

τMBPT
cc

Figure 5. The difference between the atomic delay and the Wigner delay for the two outermost
orbitals in Ar, Kr, Xe, and Rn calculated in length gauge and for for electrons emitted along the
polarization axis. The red dotted line shows the non-relativistic result calculated for Ne 2p, i.e., the
numerically obtained continuum–continuum delay discussed in the introduction.

5.4. Comparison with Experiments

The delay difference between photoelectrons originating from the outermost p3/2
and p1/2 orbitals in krypton and xenon have been studied in refs. [71,72] by using the
interferometric RABBITT technique. In Figure 6, this difference, as calculated here, is
shown for xenon. The experiment from ref. [71] includes one data point at 18.6 eV and
one at 24.8 eV which are in qualitative agreement both with the calculation presented here,
and with accompanying calculations in ref. [71], based on the Wigner delay from RRPA
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augmented with the the cc-delay from ref. [33]. Three other data points, on the other hand,
differ markedly from both theoretical results. Especially striking are the large measured
delays for higher energies (around 30 as at 30 eV), where the calculated result is very small.
This might be due to resonances, not fully accounted for in the calculations, as discussed in
ref. [71].

Moreover, a higher energy region has been explored. Ref. [72] measured the the delay
difference for the xenon 5p fine-structure components for the sideband at 90 eV (with
IR photon energies of 1.55 eV) to τA(5p3/2)− τA(5p1/2) = 14.5± 9.3 as. Moreover, the
calculated delay is much smaller, around 2 as (not shown in the figures). We note that the
cross section to produce photoelectrons in the 5`j channels at around 90 eV photon energy
is comparable to those for 4d and shake-up satellites [95]. Because shake-up channels can
have significantly larger delays [12], this region might need a more careful investigation of
all competing channels.
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Figure 6. The delay difference between photoelectrons originating from the 5p3/2 and 5p1/2 orbitals
in xenon. The dashed blue line shows the atomic delay, and the solid red the Wigner delay.

Figure 7 shows finally the atomic and Wigner delay for photoelectrons released from
the xenon 4d orbitals. The result agrees within error bars with the measurement, from
threshold up to∼100 eV, in ref. [74]. It is interesting to note the large difference between the
two channels, defined by the two fine-structure components, in the region just above the
4d thresholds at 67.5 and 69.5 eV, and the rapid variation of the delay with photon energy.
The experiments in refs. [96,97] have shown that also the cross-section branching ratio (for
leaving the ion with 4d−1

3/2 or 4d−1
5/2) shows a rapid variation in this region. In both cases,

this behaviour can be traced back to the presence of two resonances close to threshold.
They are of 3D and 3P character and cannot be populated by one-photon absorption in a
non-relativistic description. The spin-orbit-induced singlet-triplet mixing opens, however,
the route to ionization through these resonances, and thus for a population transfer from
one final channel to the other. This has been further discussed in refs. [74,98]. We note that
although the resonances in argon, mentioned above, are just unresolved in the calculation,
the reason that these xenon resonances are not seen directly is not a question of resolution.
The cross section in this region is completely dominated by the so-called giant resonance
of 1P character and the spin-orbit-induced resonances can simply not be seen against this
background. Still, their mark in the more sensitive observables, such as atomic delays and
branching ratios, is clearly seen.

Also for xenon 4d ref. [72] gives a value at 90 eV: τA(4d5/2)− τA(4d3/2) = −4.0± 4.1 as,
which agrees with our value of −1.2 as.
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Figure 7. The thick dashed blue line shows the atomic delay for electrons ionized from 4d3/2, and
the dotted–dashed red line shows the atomic delay for electrons ionized from 4d5/2. The thin
dashed green and solid grey lines show the Wigner delay for electrons ionized from 4d3/2 and 4d5/2

respectively. Dirac–Fock orbital energies have been replaced with experimental ionization energies.
For 4d5/2 the binding energy is 67.5 eV, and for 4d3/2 it is 69.5 eV [99].

6. Conclusions

We have shown how two-photon above-threshold ionization can be treated in a rel-
ativistic framework from first principles. Correlation is included in the photoionization
process at the level of the relativistic random phase approximation. As in the non-relativistic
case, the calculation of the subsequent continuum–continuum transition relies on knowl-
edge of the form of the intermediate wave packet when it is well outside the atomic
core. For this purpose, we present a convenient recursive formula for both the large and
small component of the regular and irregular solution to the relativistic Coulomb prob-
lem. The procedure have been applied to a few heavy elements, and it is shown that
the separation of the atomic delay into a Wigner–Smith–Eisenbud delay and a universal
continuum–continuum works reasonably well also for these systems.

We have further demonstrated qualitative agreement with existing experimental
photoionization-delay data for ionization from the 4d-orbitals in xenon, and with lower
energy results from the outermost orbitals in xenon and krypton. For higher photon ener-
gies, experiments report considerably larger delay differences between the fine-structure
split channels than supported by the calculations. This might be connected to resonances
or interfering shake-up channels, which can hopefully be resolved in the future.
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