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Abstract: Recently, we reported a series of global minima whose structures consist of carbon rings dec-
orated with heavier group 14 elements. Interestingly, these structures feature planar tetracoordinate
carbons (ptCs) and result from the replacement of five or six protons (H+) from the cyclopentadienyl
anion (C5H5

−) or the pentalene dianion (C8H6
2−) by three or four E2+ dications (E = Si–Pb), respec-

tively. The silicon derivatives of these series are the Si3C5 and Si4C8 clusters. Here we show that ptC
persists in some clusters with an equivalent number of C and Si atoms, i.e., Si5C5, Si8C8, and Si9C9.
In all these species, the ptC is embedded in a pentagonal C5 ring and participates in a three-center,
two-electron (3c-2e) Si-ptC-Si σ-bond. Furthermore, these clusters are π-aromatic species according
to chemical bonding analysis and magnetic criteria.

Keywords: planar tetracoordinate carbon; clusters; global minima; DFT computations; chemical
bonding analysis; aromaticity

1. Introduction

Chemists have a great interest in predicting new chemical entities with exotic non-
classical structures. Planar hypercoordinate carbon (phC) atoms, i.e., molecules containing
carbon atoms linked to four or more ligands in-plane, are particularly puzzling. The phCs
violate the well-established rule of van’t Hoff and Le Bel (regarding the concept of tetrahe-
dral four-coordinate carbon); thus, at the beginning, they were considered experimentally
inaccessible. However, in 1968, Monkhorst evaluated, theoretically, methane stereomu-
tation through a planar tetracoordinate carbon (ptC) transition state [1]. Two years later,
Hoffmann and co-workers proposed different approaches to stabilize a ptC with the modest
purpose of achieving a thermally accessible transition state for a racemization process [2].
These pioneering works inspired different studies that finally allowed the identification of
viable ptC compounds [3–7].

In the last 50 years, significant progress has been made in synthesizing and “in silico”
proposals of numerous ptC compounds [3–5,8–11]. Even more recently, the chemistry of
the family was extended to species in which the carbon coordination number is higher than
four (penta [12–22] and hexacoordinate [23–26]). In many of these systems, the formation
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of delocalized bonds plays a decisive role in their stability. For instance, the experimentally
detected ptC CAl42− cluster exhibits doubly σ- and π-aromatic character [10,11].

In 2019, some of the current authors designed a series of ptC global minima composed
of carbon and heavier group 14 elements (Si–Pb) [7]. These clusters were obtained by
replacing five or six protons (H+) from the cyclopentadienyl anion (C5H5

−) or pentalene
dianion (C8H6

2−) by three or six E2+ dications (E = Si–Pb), respectively. In these clusters, the
π-aromatic circuits of the parent aromatic hydrocarbons are preserved. The global minima
structures of the clusters Si3C5, Ge3C5, Si4C8, and Ge4C8 contain one or two ptCs (see
Figure 1). Chemical bonding analysis suggests that these clusters are globally π-aromatic
and locally σ-aromatic, where the local aromaticity is due to the E-ptC-E 3c-2e σ-bond.
It is important to note that a similar strategy has successfully allowed other aromatic
hydrocarbon derivatives with ptCs [6,22,27,28].
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correspond to the global minima (see bottom of the figure).

The current work highlights that ptCs are more common than one would think in
Si-C clusters. For example, in the SinCn combinations, when n = 5, 8, and 9, the global
minima contain ptCs. This feature was not perceived in the works that reported these
structures [29–31], which has motivated us to highlight it here, and analyze these species’
chemical bonding patterns. Remarkably, silicon carbide (SiC) grains are major dust compo-
nents in carbon-rich stars of the asymptotic giant branch [29]; and there is evidence that
combinations of carbon and silicon with suitable stoichiometries favor the formation of two-
dimensional materials with the consequent hypercoordination of C and Si [32,33]. Thus,
some of these clusters could be involved in these materials’ formation or fragmentation pro-
cesses. On the other hand, the ptC in the studied clusters is embedded in a pentagonal C5
ring. This evidence leads us to propose that any polycyclic hydrocarbon, with pentagonal
aromatic rings, can be transformed into Si-C clusters favoring the formation of ptCs.

2. Computational Details

The potential energy surface of the species Si5C5, Si8C8, and Si9C9 was explored
using the AUTOMATON program [34,35]. Geometry optimizations were performed at
the PBE0 [36]/def2–TZVP [37] level. Low-lying isomers were reoptimized at the PBE0–
D3 [38]/def2–TZVP level, where dispersion is included in the functional, to identify possi-
ble effects on the relative energies. Vibrational frequencies were evaluated at the same level
to confirm the optimized structures as true minima on their potential energy surface. These
computations were performed using the Gaussian16 program [39].
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We computed current densities at PBE0/def2-TZVP level using the GIMIC pro-
gram [40,41], which employs the gauge-including atomic orbital (GIAO) [42] method.
The calculations consider a magnetic field directed along the z-axis, i.e., perpendicular
to the molecular plane. Note that the unit for current susceptibility is nA·T−1, and the
results are, therefore, independent of the magnitude of the magnetic field. We prepared
vector plots of the current density in a plane placed 0.5 Å above the molecular plane. In our
analysis, diatropic (aromatic) and paratropic (antiaromatic) currents circle clockwise and
counterclockwise, respectively. To visualize current pathways, we used Paraview 5.10.0
software [43,44]. The ring current strengths (RCS), a measure of the net current intensity
around a molecular ring of interest, were obtained after considering different integration
planes. The integration planes correspond to cut-off planes perpendicular to the chosen
bonds of the annular moiety and extend horizontally for 3.6 Å along the ring’s plane, with
2.6 Å above and below the ring. For the integration of the current density passing through
an integration plane, GIMIC uses the two-dimensional Gauss–Lobatto algorithm [41,45].
For the RCS, positive (diatropic) and negative (paratropic) signs correspond to the aromatic
and anti-aromatic molecules, respectively. RCS values close to zero suggest non-aromatic
character [46].

To gain insights about chemical bonding, we used different methods: Wiberg bond
indices (WBI) [47], natural population analysis (NPA) [48], and the adaptive natural density
partitioning (AdNDP) method [49,50]. These approaches are based on the natural bonding
orbital (NBO) method and were performed at the PBE0/def2–TZVP level. The WBI and
NPA were computed with the NBO 6.0 code [51], and [41] the AdNDP analysis was
performed using Multiwfn 3.8 [52]. The molecular structure and AdNDP results were
visualized using CYLview 2.0 [53] and VMD 1.9.3 [54], respectively.

3. Results and Discussion

Figure 2 reports the global minima structures of the clusters analyzed in this study:
Si5C5, Si8C8, and Si9C9. We can confirm from our searches using the AUTOMATON
program that the identified lowest energy structures are the same as those reported in
references [29–31]. Note that the dispersion inclusion in the calculations, obtained by
Grimme’s method (D3), has no significant influence on the relative energy of the lower
energy isomers (see Figures S1–S3, and the Cartesian coordinates reported in Table S1).
For Si5C5, the C atoms form a pentagonal ring resembling the cyclopentadienyl anion.
On the other hand, for Si8C8 and Si9C9, more indene-like carbon structures are formed.
Nonetheless, one Si replaces a C for the former to close the six-membered ring.
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What about chemical bonding in these species? In general, we are interested in
looking at the presence of both the 3c-2e bond of Si-ptC-Si and the π-aromatic circuit
around the planar carbonaceous moiety. The NPA analysis predicts a negative partial
charge distribution on the C and positive on the Si, agreeing with the differences in C/Si
electronegativities. However, the most negative charges (about −0.9 |e|) are on the Si’s
surrounding the ptC (see Figure S4). These results agree with the design model for these
species, where protons are replaced by Si2+ dication.

Figure 3 shows the chemical bonding interpretation for the Si5C5 cluster according
to AdNDP analysis. There are five lone pairs (one on each Si), five 2c-2e C-C σ-bonds
connecting the C5 ring (similar to the cyclopentadienyl anion C5H5

−). The Si’s on the
plane are connected to two C’s (ptC neighbors) of the C5 ring by 2c-2e C-Si σ-bonds and
participate in a 3c-2e Si-ptC-Si σ-bond. It also recovered three π-bonds distributed on
the planar C5Si2 fragment, suggesting the possibility of aromaticity according to Hückel’s
rule. The out-of-plane Si3 fragment shares one edge of the C5 pentagon; it exhibits three
3c-2e σ-bonds and one 2c-2e π-bond. These results show that Si5C5 retains much of the
C5H5

– π-aromatic features. It also exhibits the multicentric Si-ptC-Si 3c-2e σ-bond, a feature
highlighted as a local aromaticity and stabilizing factor in these species [2,6,7,22]. This
chemical bonding picture entirely agrees with the Wiberg bond indexes (WBI) analysis.
Figure S4 shows that five C-C single bonds (with some contribution of double bonds)
join the C5 ring with WBI values between 1.02 and 1.33 (higher than a single bond), the
lowest being for the C-C bonded to the out-of-plane Si3 fragment. The in-plane Si-C and
Si-ptC bonds have a WBI value of 1.03 and 0.51, in complete agreement with the single and
multicentric bonds recovered by AdNDP analysis.
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In the case of Si8C8 and Si9C9 (Figures 4 and 5), AdNDP predicts that both have a
pentagonal C5 ring connected by 2c-2e C-C σ-bonds. The C5 pentagon of Si8C8 is connected
to the chain -C-C-Si-C- by two neighboring vertices. Where 2c-2e σ-bonds link carbons,
the Si of this chain forms multicentric bonds with the out-of-plane Si4 fragment and the
neighboring C’s. In the case of Si9C9, the pentagonal ring is connected to a C4 chain, forming
a bicycle analogous to the indene, where 2c-2e σ-bonds connect this bicycle. In both systems,
two in-plane Si’s are coordinating the ptC (embedded in the C5 pentagon), forming part
of a 3c-2e Si-ptC-Si σ-bond, in addition to 2c-2e σ-bonds with the C’s neighboring the
ptC. In addition, Si9C9 has one of its Si as a bridge (single) on one side of the C6 hexagon,
linked to the C’s by Si-C 2c-2e σ-bonds. All in-plane bridged silicon have a lone pair of
electrons, in agreement with the design criteria for these species [2,6,7,22]. Both clusters
also exhibit π-bonds, six in both cases, which could be associated with an aromatic character.
Interestingly, as in Si5C5, the π orbitals are located around the SiC2 fragments (bridged
silicon). This bonding feature is also in complete agreement with the initial design strategy
of these systems, where it is advisable to use ligands that can receive electrons in their pz
orbitals, and thus participate in the π-circuit and aromaticity when it is favored [2,6,7,22].
As with the Si5C5 cluster, the chemical bonding description provided by AdNDP is in
complete agreement with the WBI analysis (see Figure S4). WBI predicts bond orders for
the C-C bonds slightly higher than the single bonds (higher than 1.15). For Si8C8, the Si that
closes the hexagonal ring and which is annealed to the pentagonal ring, has a bond order
of 0.82 and 0.84, agreeing with the detection of multicentric bonds according to AdNDP.
Besides, Si’s bridged on the hexagonal C6 ring of Si9C9 have Si-C bond orders of 0.75 and
0.81 in agreement with the detection of two S-C single bonds by AdNDP.

We will now analyze the magnetic response to an external magnetic field applied
perpendicular to the Cn plane. This analysis aims to identify patterns related to the (anti)
aromaticity phenomenon, i.e., the presence of (diatropic) paratropic ring currents, and to
evaluate their intensity (ring current strength, RCS). For reference, the ring current circuits
of benzene have been analyzed at the level used in this work. As can be seen from the
results (Figure S5), benzene has a paratropic ring current of medium intensity (−3.5 nA.T−1)
inside the C6 ring (from σ-electrons). In addition, there is an intense diatropic ring current
(15.3 nA.T−1) around the C6 ring, giving an appreciable diatropic resultant of 11.8 nA.T−1,
characterizing this aromatic molecule par excellence [40,55–58].

In this study, the RCS has been evaluated using integration planes for this purpose,
placed bisecting different bonds. In addition, profiles of these integration planes have
been analyzed to facilitate the dissection of the different contributions: local, semi local,
and global. The analysis used to identify the different ring current circuits has been
performed according to the strategy initially proposed in references [46,59], which consists
of establishing equations that account for the couplings of the different current flows. Note
that this strategy has been used satisfactorily in our group in different recent works [60,61].
The integration planes used and the RCS values (total and partial: profiles) are reported in
Figures S3–S5 in the Supplementary Material. From the results (summarized in Figure 6),
we wish to highlight first the presence of a moderately intense local diatropic current
around the ptC, of 4.2, 4.8, and 5.6 nAT−1, for Si5C5, Si8C8, and Si9C9, respectively. The
presence of this ring current agrees with the AdNDP analysis, which detects a multicentric
Si–ptC–Si σ-bond, thus providing support for the presence of a stabilizing local aromatic
contribution. Next, all local C5 and C6 rings have a low-intensity inner paratropic current
(between −5.4 and −1.3 nA.T−1), which would be σ in nature, analogous to that exhibited
by aromatic hydrocarbons (see the case of benzene mentioned above). Si5C5 exhibits a
diatropic current involving the C2-ptC-Si2 fragment, but not the entire C5 pentagon. This
arises from the π-electron cloud involving the Si bridged to the C5 ring.
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Si8C8 exhibits a local current around the pentagonal C5 ring, which would result from
the π bonds in this fragment. A horseshoe-shaped diatropic current circuit is also evident
around the C3–ptC–C2 fragment. In addition, there is a semi-local diatropic current that
does not close the SiC5 hexagonal circuit; however, it does surround the C5 ring. This is
related to the delocalized π-bonds distributed throughout the system. Si9C9 exhibits a
local diatropic current around the C5 ring (3.2 nA.T−1) with participation of the π-orbitals.
In addition, an intense global diatropic current (13.9 nA.T−1) is evident, which is mainly
delocalized around the C9 ring. To summarize (Figure 6), Si5C5, Si8C8, and Si9C9 exhibit
local aromaticity (σ and π), with the participation of bridged Si and ptC and semi-local
aromaticity (in the first two), and global aromaticity in the case of Si9C9, as a consequence
of the π-electron cloud.
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4. Conclusions

Here, we highlight that the global minima of the Si5C5, Si8C8, and Si9C9 clusters
comprise a planar tetracoordinate carbon (ptC), a feature unnoticed in previous works.
Chemical bonding analysis allows us to establish that Cn rings are formed, monocyclic in
the case of Si5C5, and bicyclic in the other two (in the case of Si8C8, a Si atom close one
of the rings). A pentagonal C5 ring is present in the latter, similar to what happens in the
former. The ptC is embedded in this pentagonal ring in all cases, in which two Si form a
3c–2e Si–ptC–Si σ-bond. In addition, several delocalized π-bonds are detected. Therefore,
the bonding analysis suggests the possibility of both local (σ) and semi-local or global (π)
aromaticity. The latter is corroborated by the analysis of induced current density by an
external magnetic field; i.e., the presence of local, semi-local, and global diatropic rings—a
characteristic of aromatic compounds—is confirmed. In particular, in all cases, a local ring
current is detected between the Si–ptC–Si fragment, which confirms this local aromatic
σ-contribution. The other contributions would be of the π-type. These findings open up
the possibility of identifying other Si–C combinations in which conditions are provided to
favor the presence of ptCs; that is, to favor local, semi-local and global aromaticity in these
species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atoms10010027/s1, Figures S1–S3: Global minimum and low-
lying isomers of SinCn (n = 5, 8 and 9), their point group symmetries and spectroscopic states. Relative
energies are shown in kcal.mol−1 at PBE0/def2-TZVP and PBE0-D3/def2-TZVP (in parentheses)
levels, including zero-point energy (ZPE) corrections. Figure S4: Bond length in Å (black), natural
charges (red), and Wiberg bond indices (blue) for (a) Si5C5, (b) Si8C8, and (c) Si9C9 global minimum
at the PBE0/def2-TZVP level. Figures S5–S8: (a) Vector plot visualization of the current density of
C6H6, Si5C5, Si8C8 and Si9C9 in a plane placed 0.5 Å above the molecular plane and top view of
integration planes. The intensities of the diatropic currents are indicated in blue and the intensity
of the paratropic currents is red. The intensity of the total current susceptibility is the sum of the
paratropic and diatropic contributions. (b) Integration profiles along the integration planes of C6H6,
Si5C5, Si8C8, and Si9C9. Table S1: Cartesian Coordinates of the Si5C5, Si8C8, Si9C9 global minimum
calculated at the PBE0/def2-TZVP level of theory.
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