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Abstract: We present a comprehensive discussion of the ground-state properties of dilute D-dimensional
Bose gas interacting with a few static impurities. Assuming the short-ranged character of the boson-
impurity interaction, we calculated the energy of three- and two-dimensional Bose systems with one
and two impurities immersed.
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1. Introduction

The problem of impurities in mediums formed by bosons is comprehensively studied
in condensed matter physics. Even properties of a single atom immersed in the weakly
interacting Bose gas change drastically [1–5]. Depending on the strength of the boson–
impurity interaction, a number of physically distinct impurity phases can be realized,
namely, the Bose-polaronic state [6–9] in various spatial dimensions, which is very simi-
lar to the free-particle one but with the modified, due to the presence of bath, kinematic
characteristics; the molecular state [10,11], when the impurity captures one boson with the
formation of a dimer; a set of the Efimov states [12–15] with the universal scaling behavior
of energy levels, and higher-order conglomerates, [16–21] which involve a larger number
of host atoms. Remarkably, some of these phases can be observed in experiments [22,23].
The experimental progress in the field of ultra-cold atomic gases has recently lead to the ob-
servation [24] of Bose polarons at finite temperatures. This experiment confirmed previous
theoretical predictions [25–30] about the breakdown of the quasi-particle picture description
of Bose polarons in a close vicinity of the Bose–Einstein condensation (BEC) point.

Recently, the problem of two impurities immersed in the dilute one and three-dimensional
Bose gases has become a subject of extensive examination. Physically, this problem is
substantially distinguishable from the single Bose polaron one due to the emergence of the
induced effective interaction [31–34] between impurity particles. In 1D, the character of
this interaction crucially depends on a sign of the boson–impurity coupling constant [35];
the effective attraction is found for positive couplings, while the induced repulsive po-
tential is inherent for the negative interactions. While it increases, the induced attractive
interaction between impurities leads to the formation of bipolarons [36] in the continuum
and on the lattice [37] and even to the emergence of the two-polaron bound states [38].
In one-dimensional geometries with harmonic trapping, the induced interaction causes the
clustering [39] of two initially non-interacting atoms and modifies their quench dynam-
ics [40]. By switching the boson–impurity interaction in 3D dilute BEC with two impurities,
the transition from weakly interacting through the Yukawa potential bipolarons to the
Efimov trimer state was predicted in Ref. [41]. Recently, properties of a single polaron in 2D
BEC have been discussed both analytically [42,43] and numerically [44,45]. The arbitrary D
one-polaron case was considered in Ref. [46]. As far as we know, the problem of two Bose
polarons in 2D Bose gas has never been discussed; therefore, the objective of this study
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was to make the first step toward the revealing of peculiarities of the bipolaron physics
and the boson-induced effective interaction between impurities by considering the static
limit. The absence of the impurity dynamics in this limit allows to find the exact solution
of the problem in the dilute 1D Bose mediums both in one- [47] and two-particle [48,49]
cases. In 3D, only a case of the ideal Bose gas [50,51] is the exactly tractable one, while the
presence of a weak boson–boson interaction requires [52] a substantial numerical efforts.

2. Formulation
2.1. Model

The discussed model consists of the D-dimensional (here we focus on D = 2, 3 cases)
Bose gas loaded in volume LD (with the periodic boundary conditions imposed) with
the weak interparticle interaction and microscopic number N of heavy (infinite-mass)
impurities immersed in it. Heavy particles are supposed to be randomly placed in positions
{rj}. In the following, we adopt the imaginary-time path-integral approach with Euclidean
action

S =
∫

dxψ∗(x){∂τ − ε + µ−Φ(r)}ψ(x)− gB,Λ

2

∫
dx|ψ(x)|4, (1)

where x = (τ, r) denotes the “position” in D + 1-dimensional space (and consequently∫
dx =

∫ β
0 dτ

∫
LD dr), and the complex field ψ(x) is periodic in τ with period β (which is

the inverse temperature of the system). We also use the shorthand notations for bosonic
dispersion ε = − h̄2∇2

2m and the chemical potential µ that fixes average density n of Bose gas
and for the term

Φ(r) = ∑
1≤j≤N

gI,ΛδΛ(r− rj), (2)

that describes the interaction between Bose particles and impurities. The δ-like two-body
potential is ill-defined in the higher (D ≥ 2) dimensions, and therefore, in order to obtain
any reasonable results one should adopt some renormalization scheme. The latter is typi-
cally realized by the implication of the ultraviolet cutoff Λ in all momentum summations
and in the simultaneous rewriting of bare couplings gB,Λ and gI,Λ via the two-body vacuum
binding energies εB and εI

g−1
B,Λ = g−1

B −
1

LD ∑
k

1
2εk

, (3)

g−1
I,Λ = g−1

I −
1

LD ∑
k

1
εk

, (4)

respectively, (from now on, we assume that all summations over the wave-vector k are re-
stricted from the above |k| < Λ). Such a “regularization” is already used in the definition of
the point-like boson–impurity interaction potential, δΛ(r) = 1

LD ∑|k|<Λ eikr, in Equation (2).
The ”observable” couplings gB and gI are specified as follows

g−1
B = −

Γ( 2−D
2 )

(4π)
D
2

(
m
h̄2

) D
2
|εB|

D
2 −1, (5)

g−1
I = −

Γ( 2−D
2 )

(2π)
D
2

(
m
h̄2

) D
2
|εI |

D
2 −1, (6)

where Γ(z) stands for the gamma function. Note that the bound states are only possible for
positive gBs and gIs, but it is convenient to parameterize negative couplings by the binding
energies. By careful inspection of the D → 2 limit, one can conclude that Equations (3)–(6)
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provide a correct description of zero-range potentials even in the two-dimensional case.
Moreover, the D = 2 pseudo-potential always provides the existence of one bound state.

The alternative method (see, for instance [53]) to deal with point-like interactions is to
initially start from some “physical” (Gaussian, for instance) potentials and then relate the
appropriate coupling constant to the s-wave scattering lengths aB and aI in the limit where
the effective ranges are the smallest parameters with the dimension of length in the system.
In the following, no restrictions are set on a magnitude of the boson–impurity interaction,
while the Bose gas itself is expected to be extremely dilute.

2.2. Effective Field Theory Approach

The further analysis will be performed in a spirit of the effective field theory approach
(see, for a review [54]), which is known to be extremely convenient for the many-boson
systems. Particularly, this formulation automatically guarantees the implementation of the
Hugengoltz–Pines theorem (which is a concrete manifestation of the Goldstone theorem)
in every order of a loop expansion. Moreover, the effective field theory approach provides
a non-perturbative predictions for the Bose gas thermodynamics. In the limit of weak
boson–boson coupling, the loop expansion is identical to the perturbation theory in terms
of characteristic small parameter aD

B n. The main idea of the method relies on the separation
of “classical” dynamics during the computations of the partition function by means of the
path integral

ψ(x) = ψ0(r) + ψ̃(x), ψ∗(x) = ψ∗0 (r) + ψ̃∗(x), (7)

where the introduced classical fields are determined by the minimization of the action (1):
δS0 = δS[ψ∗0 , ψ0] = 0. Note that in general |ψ0(r)|2 should not be confused with the Bose
condensate density. In the absence of impurities, Φ(r) = 0, the solution ψ0(r) is real
and uniform. Putting a microscopic amount of heavy particles in the Bose condensate,
we cannot principally change the character of this solution provided that ψ0(r) becomes
only slightly non-uniform, i.e.,

∫
LD dr|ψ0(r)|2 ∝ LD. Of course, one may argue that the

localized solutions ψ0(r) decrease the total energy by ∝ −N |εI |, but any non-zero repulsion
between bosons immediately increases the energy of the system by ∝ N2gB/aD

I . Therefore,
the collapsed BEC state [50] is not energetically preferable in the thermodynamic limit,
where both the number of the repulsively interacting bosons N and the volume of the box
LD infinitely increase.

Performing the shift (7), we end up with the following effective action

Seff = S0 −
1
2

∫
dx[ψ̃∗(x), ψ̃(x)]K̂

[
ψ̃(x)
ψ̃∗(x)

]
, (8)

where only the Gaussian in the fluctuation fields part is explicitly written down. Here the
2× 2 matrix operator K̂ with elements

K̂11 = ε− µ + Φ(r) + 2gB,Λ|ψ0(r)|2 − ∂τ ,

K̂12 = K̂∗21 = gB,Λψ2
0(r),

K̂22 = ε− µ + Φ(r) + 2gB,Λ|ψ0(r)|2 + ∂τ . (9)

is introduced. Taking into account the equation for ψ0(r){
ε− µ + Φ(r) + gB,Λ|ψ0(r)|2

}
ψ0(r) = 0, (10)

and performing the Gaussian integration in (8), we finally obtain the grand potential of the
Bose system with the impurities immersed

Ω = − gB,Λ

2

∫
LD

dr|ψ0(r)|4 +
1

2β
Sp ln K̂− const, (11)
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where Sp denotes the trace in the D + 1 space. A constant term (counterterm) in (11)
is most straightforwardly represented in the plane-wave basis const = 1

2 ∑k〈k|ε − µ +
2gB,Λ|ψ0(r)|2 + Φ(r)|k〉 but cannot be obtained by the functional integration and has to
be written by hand [55] in order to resolve a standard normal-ordering routine. Conse-
quently, the calculation of thermodynamics for “Bose gas + static impurities” reduces to
finding a solution of Equation (10) and then, with ψ0(r) in hand, to the evaluation of the
functional determinant. Note that by taking into account S0 only, one reproduces the
mean-field [56–61] description of the system generalized to N impurities in the static limit.
In comparison to other Bose-polaron theories, the adopted approach takes into account the
correct short-distance boson-impurity physics from the very beginning of the celebrated
Bogoliubov treatment of dilute Bose condensates.

2.3. Limit of Dilute Bose Gas

In the general case, the above program, which can be realized to the very end in
1D [48] even at finite impurity masses [56,58,62], requires considerable numerical efforts in
the higher dimensions, but the limit of weak inter-boson interaction can be handled more
or less easily. Indeed, the intrinsic, for the dilute Bose gas, length-scale is represented by
the coherence length ξ = h̄

mc (with c =
√

ngB/m being the sound velocity), which is large
in comparison to the average distance between particles and to the boson–boson s-wave
scattering length aB. The magnitude of the boson–impurity interaction, in turn, is dictated
by the boson–impurity s-wave scattering length aI . So, if we additionally assume that
aI � ξ, the solution of Equation (10) can be immediately found ψ0(r) =

√
µ/gB,Λ '

√
n.

In all other cases, we can apply the successive expansion in terms of the ψ0-field “non-
uniformity”

ψ0(r) =
√

µ/gB,Λ

{
1− ψ̄

(1)
0 (r)− ψ̄

(2)
0 (r) . . .

}
, (12)

where after the substitution in Equation (10) the dimensionless functions ψ̄
(1)
0 (r), ψ̄

(2)
0 (r)

satisfy the following equations:

{ε + 2µ + Φ(r)}ψ̄(1)
0 (r) = Φ(r), (13)

{ε + 2µ + Φ(r)}ψ̄(2)
0 (r) = 3µ

(
ψ̄
(1)
0 (r)

)2
. (14)

Note that the above approximate procedure does not require the boson–impurity
interaction to be weak. Furthermore, by a naive dimensional analysis, it is easy to argue that
both at the weak and strong couplings gI , the contribution of the second-order correction
ψ̄
(2)
0 (r) in the thermodynamics of the system is much smaller than the one originating from

ψ̄
(1)
0 (r). Therefore, in our consideration below we fully focus on the first-order correction.

However, even this simple approximation effectively sums up some infinite set of terms of
the standard pertubation theory for a model with the uniform condensate [47]. Equation (13)
with Φ(r) given by (2) can be solved for arbitraryN by means of the Fourier transformation

ψ̄
(1)
0 (r) = ∑

1≤j≤N
Aj

1
LD ∑

k

eik(r−rj)

εk + 2µ
, (15)

with εk =
h̄2k2

2m and coefficients Aj = ∑1≤i≤N Tji(−2µ), where matrix Tji(−2µ) is introduced
in Appendix A.

We can now proceed with the calculations of the functional determinant in (11). Taking
into account the extreme diluteness of the Bose subsystem, it is enough to expand Sp ln K̂ '
Sp ln K̂(0) + Sp

{
[K̂(0)]−1∆K̂

}
, where K̂(0) is given by (9) but with ψ0(r) →

√
µ/gB,Λ and

∆K̂ = K̂ − K̂(0). Following our previous discussion, we ignore in ∆K̂ all higher-order
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corrections except ψ̄
(1)
0 (r). After this, the calculations are relatively simple, and at absolute

zero we obtain the Ω-potential in the adopted approximation

Ω ' −LD µ2

2gB,Λ
+

µ

gB,Λ
∑

1≤j≤N
Aj

+
1
2 ∑

k
〈k|E − ε− µ−Φ(r)|k〉+ 1

LD ∑
k

{
1− εk + µ/2

Ek

}
∑

1≤j≤N
Aj, (16)

where E =
√
(ε + Φ(r))2 + 2µ(ε + Φ(r)) and Ek =

√
ε2

k + 2µεk stands for the Bogoliubov
spectrum of the “pure” Bose system. It should be noted that for dilute Bose systems the
impact of the quantum fluctuations (terms with the summations over the wave-vector) to Ω
is much smaller than the first two terms (the mean-field contributions). The last step to be
performed in these calculations is to replace the bare couplings gB,Λ and gI,Λ via (3) and (4),
respectively. This procedure provides the convergence of sums over the wave-vector in
the last two terms of (16). Then, the trace in the third term of (16) can be computed (see
Appendix A for details). With the well-defined grand potential, we can relate, by using
the thermodynamic identity n = − ∂

∂µ
Ω
LD , the chemical potential of the Bose system to

its equilibrium density n. Performing these calculations, one must keep in mind that the
presence of a microscopic number of impurities cannot principally change the properties of
the system. So, if we denote (and appropriate grand potential ΩB) the chemical potential
of Bose gas without exterior particles by µB, the difference ∆µ = µ− µB ∝ N/LD should
be small. Using this fact and n = − ∂

∂µ
ΩB
LD − ∂

∂µ
∆Ω
LD , we can identify a small correction

∆µ = − ∂∆Ω
∂µB

/ ∂2ΩB
∂µ2

B
. The latter formula allows to determine the energy that the Bose system

gains when N impurities are immersed

∆EN = (Ω−ΩB)|µ→µB , (17)

which is an explicit manifestation of the well-known theorem about small corrections to
the thermodynamic potentials.

3. Results

Before we proceed to describing our main results, it is necessary to analyze the case of
“pure” bosons. Setting Φ(r) = 0 in (16) and calculating integrals, we obtain for density

n =
µB
gB

{
1− Γ(D)

D
2 Γ2(D

2 )

(
µB
|εB|

) D
2 −1

}
, (18)

which allows to obtain the expression for µB iteratively. For the weakly non-ideal three-
dimensional bosons we find the well-known formula (|εB| = h̄2

ma2
B

in 3D)

µB =
4πh̄2aBn

m

{
1 +

32
3
√

π

√
na3

B + . . .
}

. (19)

Similarly, in the two-dimensional case we have the transcendental equation [63]

n =
mµB

4πh̄2

{
ln
|εB|
µB
− 1
}

. (20)

Being convinced that the limit of Bose gas without impurities is correctly reproduced
by the adopted approach, we are ready to present our main results concerning the binding
energy of one- and two-impurity atoms in the dilute three- and two-dimensional Bose gases.
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3.1. 3D Case

In the 3D case, the general structure of the two-impurity binding energy in the dilute
Bose gas (nξ3 � 1) can be represented as

∆E2 = ∆E(0)
2

[
ε1

(
aI
ξ

;
R
ξ

)
+

1
nξ3 ε2

(
aI
ξ

;
R
ξ

)
+ . . .

]
, (21)

where ∆E(0)
2 = 2gIn is the contribution of the ideal Bose gas; aI is the s-wave scattering

length that parameterizes the (renormalized) two-body coupling gI =
2πh̄2aI

m ; and R is the
distance between two static particles. The first term in (21) has a simple analytic form

ε1

(
aI
ξ

;
R
ξ

)
=

ξ/aI

ξ/aI − 2 + e−2R/ξ /(R/ξ)
, (22)

and originates purely from the mean-field correction to the grand potential (the second
term in (16)), while ε2

(
aI
ξ ; R

ξ

)
contains both the mean-field and purely quantum corrections.

Note that in the formula for Ω only the one-loop corrections were taken into account, and
a consistent consideration of the next to a leading order terms in series expansion over
the small parameter 1/(nξ3) necessarily requires the calculation of the two-loop diagrams
to the grand potential. By setting the distance between heavy particles R to infinity, one
obtains from (21) the one-impurity limit. A typical behavior of functions ε1,2

(
aI
ξ ; ∞

)
is

presented in Figure 1.

- 4 - 2 0 2 4
- 6

- 4

- 2

0

2

4

6
 ε1 
 ε2

a I  / ξ
Figure 1. Dimensionless functions ε1,2

(
aI
ξ ; ∞

)
determining the one-impurity energy in 3D dilute

Bose gas.

Let us recall that the problem considered here is the exactly solvable one, when the
bosons are non-interacting. Therefore, it should be clearly understood that the presented
results are accurate if the coherence length ξ is the largest parameter with the dimension of
the length in the system. In order to reveal the interplay between regimes of very dilute
aI/ξ → 0 Bose gas and intermediate boson–impurity interaction, we plotted in Figure 2
the binding energy of two heavy particles for the positive and negative s-wave scattering
lengths aI .
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0 , 0 0 0 , 0 2 0 , 0 4 0 , 0 6 0 , 0 8 0 , 1 0

- 1

0

1

 ε1

 ε2

 ε1

 ε2

a I  / ξ = 0,01  ( s y m b o l )
a I  / ξ = −0,01 ( l i n e )

R / ξ 0 1 2- 2

- 1

0

1

2 a / ξ = 1 ( s y m b o l )a / ξ = −1 ( l i n e ) ;

R / ξ

 ε1

 ε2

 ε1

 ε2

Figure 2. Mean-field and the first-order quantum corrections ε1,2

(
aI
ξ ; R

ξ

)
to the energy of 3D dilute

Bose gas generated by two impurities for aI
ξ = ±0.01 and aI

ξ = ±1.

Comparing these findings to the ideal Bose gas results [50], we can observe similar
patterns in the behavior of the systems at weak coupling: at positive aI , the binding energy
is the monotonic function of R, while at the negative boson–impurity scattering lengths
both, ε1,2

(
−0.01; R

ξ

)
have a simple-pole singularity. When the interaction increases (see

right panel in Figure 2) the mean-field and quantum corrections to the ground-state energy
of 3D Bose gas possess an infinite discontinuities independently of a sign of aI .

3.2. 2D Case

In general, the low-dimensional dilute Bose systems with static impurities are very
peculiar. When the interaction between bosons is switched off, these systems are insen-
sible to the boson–impurity interaction in their un-collapsed ground state, and therefore,
the binding energy of the heavy particles requires a finite compressibility of the host system
to be non-zero. This is a general result for the low-dimensional (1D and 2D) ideal Bose
gases with impurities that is independent of the approximations made. Introducing the
two-body s-wave scattering length aI through the boson–impurity vacuum bound state
energy |εI | = 2e−2γ h̄2/(ma2

I ), we can write down the energy that the 2D Bose gas gains
when two heavy particles are immersed in it

∆E2 = 2
2πh̄2n

m

[
ε1

(
aI
ξ

;
R
ξ

)
+

1
nξ2 ε2

(
aI
ξ

;
R
ξ

)
+ . . .

]
. (23)

As in the 3D case, the mean-field correction casts into a simple analytic form

ε1

(
aI
ξ

;
R
ξ

)
=

1

ln
(

e−2γξ2

a2
I

)
− 2K0

(
2R
ξ

) , (24)

K0(z) is the modified Bessel function of the second kind [64]. Note that in contrast to
a 3D case, ε2

(
aI
ξ ; R

ξ

)
tends to zero (at least logarithmically) in the limit of ideal Bose gas

(ξ → ∞). At large distances R, Equation (23) gives the double binding energy of a single
impurity, which is presented in Figure 3.

Particularly, these calculations clearly demonstrate the weakening of the role of quan-
tum fluctuations in the formation of polarons in two-dimensional Bose systems. Actually,
this observation [62] seems to be intrinsic for the low-dimensional systems in general.
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0 1 2

- 0 , 4

- 0 , 2

0 , 0

0 , 2

0 , 4  ε1  
 ε2

a I  / ξ
Figure 3. Dimensioless one-impurity binding energy terms ε1,2

(
aI
ξ ; ∞

)
(see Equation (23)) in 2D case.

The numerical computations of the two-impurity energies (see Figure 4).

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 00 , 0 0
0 , 0 2
0 , 0 4
0 , 0 6
0 , 0 8
0 , 1 0
0 , 1 2

 ε1 
 ε2

0 , 0 0 , 2 0 , 4
- 0 , 0 0 4 0

- 0 , 0 0 3 5

- 0 , 0 0 3 0

- 0 , 0 0 2 5

- 0 , 0 0 2 0

R / ξ

a I  / ξ = 0,01

0 1 2- 2

- 1

0

1

2
  ε2

  ε1

R / ξ

a I  / ξ = 1

Figure 4. The two-impurity dimensionless binding energy corrections ε1,2

(
aI
ξ ; R

ξ

)
in 2D dilute

Bose gas.

The 2D Bose gas demonstrates qualitative similarity between the two- and three-
dimensional cases. At weak boson–impurity interactions aI/ξ � 1, where our effective
field-theoretical formulation is supposed to make a quantitative predictions, the mean-field
term ε1

(
aI
ξ ; R

ξ

)
as well as the one that includes the quantum corrections ε2

(
aI
ξ ; R

ξ

)
behave

as monotonic functions of R. The interaction-induced effective two-body potential between
static particles at large aI/ξ always contains a singularity.

4. Conclusions

In summary, by means of the effective field theory formulation, we calculated the
impurity-induced shifts to the ground-state energies of the two- and three-dimensional
dilute Bose gases. Particularly, by taking into account the extreme diluteness of the host
bosons, we proposed the approximate procedure that allows to calculate the properties
of an arbitrary (microscopic) number of static impurities in terms of a characteristic small
parameter 1/(nξD) (where n and ξ are the density and the coherence length of bosons,
respectively). The numerical calculations of the binding energies of two static impurities in
dilute 2D and 3D Bose gases that were performed for a wide range of the boson–impurity
interactions and distances between impurities has revealed the peculiarities of the medium-
induced (Casimir) forces: (i) the two-body effective potential always demonstrates singular
behavior at the distances between impurities comparable to the boson–impurity s-wave
scattering lengths aI ; (ii) an impact of purely quantum corrections decreases with the



Atoms 2022, 10, 19 9 of 12

lowering of a spatial dimensionality. Similar singularities are also intrinsic for the binding
energy of a single impurity at aI ∼ ξ, which may signal [65] about the inapplicability of
the adopted approximate treatment for calculations of the “classical” solution ψ0(r) in that
region, where the full numerical solution to Equation (10) is required.
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Appendix A

For completeness, in this section we give some details of the calculations not presented
in the main text. Let us first start from the equation that determines the classical field ψ0(r).
Explicitly writing down Equation (13), after the implementation of ansatz (15)

∑
1≤j≤N

AjδΛ(r− rj) + ∑
1≤j≤N

gI,ΛδΛ(r− rj) ∑
1≤i≤N

Ai
1

LD ∑
k

eik(r−ri)

εk + 2µ

= ∑
1≤j≤N

gI,ΛδΛ(r− rj),

and combining j = i terms in double sum with the first term of equation, we obtain

Aj

[
1

gI,Λ
+

1
LD ∑

k

1
εk + 2µ

]
+ ∑

1≤i 6=j≤N

1
LD ∑

k

eik(rj−ri)

εk + 2µ
Ai = 1.

The divergent sum in the square brackets is now regularized by the renormalization
of a coupling constant (4), so the final result contains only observable gI . One can easily
recognize the square brackets as the boson–impurity two-body T-matrix

t−1
I (ω) = g−1

I,Λ −
1

LD ∑
k

1
ω− εk

,

and introducing auxiliary notations

∆ij(ω) =
1

LD ∑
k

eik(ri−rj)

ω− εk
,

we find the result for coefficients Aj announced in the main text

Ai = ∑
1≤j≤N

Tij(−2µ), T−1
ij (−2µ) = δijt−1

I (−2µ)− ∆ij(−2µ)(1− δij).
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For the calculation of the trace in the second term of (16), we used formal identity

∑
k
〈k|E − ε− µ−Φ(r)|k〉 =

∫
dωD(ω)

[√
ω2 + 2µω−ω− µ

]
,

D(ω) = ∑
k
〈k|δ(ω− ε−Φ(r)|k〉.

The density of states D(ω) is easily calculated within the Green’s function method [50]

D(ω) = ∑
k

[
δ(ω− εk)−

1
π

Im
〈k|T (ω + i0)|k〉
(ω + i0− εk)2

]
,

where the T-matrix T (ω) characterizes the scattering of a single boson on N impurities

〈q|T (ω)|k〉 = ∑
1≤i,j≤N

e−iqri Tij(ω)eikrj .

The calculations of 〈k|T (ω + i0)|k〉 in the density of states requires the knowledge of
an explicit analytic formulas for the boson–impurity two-body T-matrix

t−1
I (ω) =

Γ( 2−D
2 )

(2π)
D
2

(
m
h̄2

) D
2 [

(−ω)
D
2 −1 − |εI |

D
2 −1

]
,

and a function ∆ij(ω) = ∆R(ω) of distance R = |ri − rj| between two impurities in
arbitrary D

∆R(ω) =
1

(2π)
D
2

2mkD−2
ω

h̄2

K D
2 −1(Rkω)

(Rkω)
D
2 −1

,

where kω =
√

2m(−ω)/h̄, and Kν(z) is the modified Bessel function of the second kind [64].
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