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Abstract: Quasars have an important role in the studies of galaxy evolution and star formation.
The rare close projection of two quasars in the sky allows us to study the environment and matter
exchange around the foreground quasar (QSO f g) and the background quasar (QSObg). This paper
proposes a pipeline DPQP for quasar pair (QP) candidates’ detection based on photometric images
and the corresponding spectra. The pipeline consists of three main parts: a target source detector,
a regressor, and a discriminator. In the first part, the target source detection network–YOLOv4
(TSD-YOLOv4) and the target source classification network (TSCNet) are used in sequence to detect
quasars in SDSS photometric images. In the second part, a depth feature extraction network of quasar
images (DE-QNet) is constructed to estimate the redshifts of quasars from photometric images. In the
third part, a quasar pair score (Q-Score) metric is proposed based on the spectral analysis. The larger
the Q-Score, the greater the possibility of two pairs being a quasar pair. The experimental results
show that between redshift 1.0 and 4.0, the MAE of DE-QNet is 0.316, which is 16.1% lower than the
existing method. Samples with |∆z| < 0.15 account for 77.1% of the test dataset. A new table with
1025 QP candidates is provided by traversing 50,000 SDSS photometric images.

Keywords: deep learning; quasar pairs’ detection; quasar spectrum; quasar photometric images

1. Introduction

The quasar is an extremely bright active galactic nucleus (AGN), known as one of
the most powerful and energetic objects in the universe [1]. Its activity represents a brief
energetic phase in galaxy evolution, which plays a vital role in galaxy evolution and star
formation [2]. In particular, two quasars that are within a certain distance and interact
with each other are called a quasar pair in astronomy [3]. For a QP, a background quasar
can be used to study a foreground quasar’s halo gas in absorption, providing a wealth of
information about feedback, quenching, and the physics of massive galaxy formation [4].
These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in
absorption and emission simultaneously, because the background quasar pinpoints large
concentrations of gas [5]. There has been much speculation that some feedback mechanism
links a quasar at a particular stage to the evolution of its host galaxy [6–8]. A QP is of great
assistance in the study of quasars and their physical environments. Therefore, in the field
of astronomy, the search for QPs is of extraordinary importance.

A QP is a rare close projection of two quasars in the sky [9]. Artificial authentication
is the basic way to confirm a QP, provided that both quasars have the observed spectra.
However, fiber collisions1 largely prevent the simultaneous observation of objects with
separations <55” in the SDSS spectrometer, which poses a great challenge to artificial
authentication. With the increase in the number of astronomical telescopes and the de-
velopment of technology, astronomical observations have entered the big data era, such
as SDSS [10], Pan-STARRS [11], DES [12], and JWST [13]. At the same time, machine
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learning methods have been increasingly applied in the field of astronomy, such as the
target source detection task (e.g., Refs. [14–17]), and the quasar redshift estimation task
(e.g., Refs. [18–20]) in recent years. The objective of the work in this paper is to construct a
pipeline for QP candidates’ detection based on photometric images and spectra.

The pipeline consists of three parts: a target source detector, a regressor, and a discrim-
inator. Part one (target source detector): the quasar detection algorithm selects a two-stage
network, first utilizing a detection algorithm (TSD-YOLOv4) to identify target sources in
SDSS images, and then (TSCNet) classifying the target sources to obtain quasars. Part
two (regressor): it is increasingly common to use photometric images to estimate redshifts
in regression tasks. However, quasars appear similar to stars in images and have a less
diverse color compared to stars. Former methods cannot extract accurate morphological
information about quasars, resulting in poor redshift regression. To address these problems,
we design a quasar redshift estimation network (DE-QNet) to estimate the detected quasar
redshift. Part three (discriminator): the spectra of quasars present in the images are obtained
from the CasJobs Server and used as background quasars for neighborhood matching with
the detected quasars. For the screened neighboring QP, we propose a metric (Q-Score)
based on spectral analysis. The Q-Score represents the interaction intensity between two
quasars. The target source detector (TSD-YOLOV4 and TSCNet) achieves a high accuracy
source localization and classification task; the regressor (DE-QNet) achieves a low MAE
quasar redshift estimation task; and the discriminator screens QP candidates based on
spectral analysis. According to this idea, we propose a QP candidate detection pipeline
(DPQP). The overall structure is shown in Figure 1.

Figure 1. QP candidate detection pipeline. The target source detection network (TSD-YOLOv4 and
TSCNet) is used to obtain the location and size of quasars in photometric images. The image is
cut according to the location and size of the acquisition, and the cut image is used as input to the
regressor (DE-QNet). The regressor is used to obtain the photometric image redshift of the quasar.
Based on the photometric image redshift (Photo-z), the spectral redshift (Spec-z) and the spectra are
transferred to the discriminator, which obtains the Q-Score by spectral analysis. Finally, a new table
of QP candidates is provided by traversing the SDSS photometric images.

The organization of this paper is as follows: Section 2 describes the data and data
processing method in this paper. Section 3 introduces and discusses the target source
detector and regressor (DE-QNet). Section 4 introduces the metric Q-Score and describes
the spectral analysis process. Section 5 analyzes and discusses the experimental results
of the DE-QNet and DPQP. Section 6 summarizes the experimental results and findings,
and the QP candidates’ table is provided in Appendix A.

2. Data

This paper uses the 17th data release (DR17) of the Sloan Digital Sky Survey (SDSS).
The SDSS uses charged coupled device (CCD) filters to observe the sky and collect photo-
metric images in five bands: u, g, r, i, and z. The corresponding central wavelengths of each
band are 3551 Å, 4686 Å, 6166 Å, 7480 Å, and 8932 Å, respectively [21]. Most work tasks use
data from the u, g, r, and i bands, while the z band, which has high noise, is often discarded.
Because different bands of data contain different information, in order to fully utilize all
the information in the image, we use all five bands of data as input for the network.
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This paper combines the SpecObjAll and PhotoObjAll catalogs and uses SQL state-
ments to query the data in CasJobs Server. As shown in Figure 2a, we cross-reference
the data on CasJobs Server and find that the quasars’ number in Z > 3.0 is about 56,000,
and the one in Z < 3.0 is about 810,000. However, the dataset sample distribution is severely
uneven and can lead to the neural network focusing on the samples with a larger number.
Therefore, to make the data distribution more reasonable, this paper samples the data
evenly and obtains a total of 76,000 spectra; a total of 75,915 quasar samples are eventually
screened by further removing samples from a number of contaminating sources (refer to
Figure 2b). This dataset is randomly divided into three parts: the training set, the validation
set, and the test set, which account for 70%, 20%, and 10% of the entire dataset, respectively.

Figure 2. The distribution hist about the redshifts of the samples. The vertical axis represents the
count of samples and the horizontal axis represents the redshift values. (a) is the SDSS quasar data
sample. (b) is a sample of uniformly distributed SDSS quasar data after screening.

3. Method

The DPQP consists of 3 parts in Figure 1: target source detector, regressor, and discrim-
inator. The target source detector is a reusable work task described in detail in paper [17].
Section 3.1 provides a brief introduction to TSD-YOLOv4 and TSCNet. Section 3.2 describes
DE-QNet’s structure and details.

3.1. Target Source Detector

In this paper, TSD-YOLOv4 is selected as the target detection network. It has the best
detection results compared to typical networks such as SSD, CenterNet, Faster-RCNN,
YOLOX, and YOLOv4. TSD-YOLOv4 achieves an accuracy of 0.988 and a recall of 0.997
on 11,808 target source detection samples. TSCNet is selected as the source classification
network. It has a precision of 0.908 for quasars and a recall of 0.903 in a classified sample of
232,816: 106,547 galaxies, 64,236 quasars, and 62,033 stars. This method yields 2–3% more
sources than the SDSS PhotoObjAll catalog ones that are not included in the SDSS, which
may include quasars.

3.2. Regressor

Section 3.2.1 describes the various modules of DE-QNet and their functions. Section 3.2.2
describes the training strategy of DE-QNet.

3.2.1. Redshift Estimation Network: DE-QNet

In photometric images, quasars are always presented as homochromatic point sources,
which means that image features are not well extracted. Refs. [20,22] proposed a method
that had few network layers and poor accuracy. In order to better extract the image features,
a deep neural regression network DE-QNet was designed, which balances network depth
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and accuracy. The DE-QNet structure is shown in Figure 3, and the network parameters
are shown in Table 1.

Figure 3. Structure of DE-QNet. The network is used to estimate the redshift of quasars.

Table 1. DE-QNet parameter table.

Layer Output Size Input Channels Output Channels Kernel Size Stride Padding Activation

P1 64 × 64 5 32 3 1 1 Hardswish
P2 32 × 32 32 64 3 2 1 Hardswish
P3 32 × 32 64 64 3 1 1 Hardswish
P4 16 × 16 64 64 2 - - -
P5 16 × 16 64 128 3 1 1 Hardswish
P6 16 × 16 128 256 - - - -
P7 8 × 8 256 256 - - - -
P8 8 × 8 256 64 1 1 1 Hardswish

Fully connected - 4096 1024 - - - Hardswish
Fully connected - 1024 32 - - - Hardswish
Fully connected - 32 1 - - - Hardswish

The input of DE-QNet is the five-band photometric images, and the output is the
quasar redshift estimation. DE-QNet consists of many CBH modules, 3 CGH modules,
a downsampling layer, an SCP module, a DM (Double Max-pooling) module, and 3 fully
connected layers.

The CBH module is made up of convolution, batch normalization (BN), and a hardswish
activation function. The CGH module is made up of convolution, group normalization
(GN), and a hardswish activation function. The SCP module consists of four CBH modules
and a CGH module. Feature fusion is achieved through a first layer of 1 × 1 convolution,
a second layer of 3 × 3 convolution, and a fourth layer of 3 × 3 convolution, and the fused
features have a depth of three times the number of channels. Finally, a 1 × 1 convolution
layer is added to squeeze the channel dimension from three times to one time. The DM
module uses Maxpool2d parallel to the CBH module for downsampling of the images.

In the second layer of the network (P2), no pooling layer is used after the convolution
layer step as in classical networks. The pooling layer is mainly used to remove redundant
information and reduce overfitting. Its effect on the image is to reduce the size of the original
image by half. However, it is difficult to extract image features from quasar images. In order
to further extract image features, this paper replaces the pooling layer with a convolution
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layer (stride = 2, padding = 1) to perform convolution on the image again to extract image
features. The output image size is the same as the output image size using the pooling
layer, reducing the number of parameters. In the fourth layer of the network (P4), a pooling
layer (Maxpool2d) is added to reduce overfitting. When the network reaches a certain
depth, the accuracy gain becomes smaller and smaller if the computational blocks continue
to be stacked. What is worse is that when the network reaches a certain critical depth, its
convergence begins to deteriorate, resulting in lower overall accuracy compared to shallow
networks. This paper uses a gradient path design strategy to design SCP modules (P6) for
layer aggregation architectures with efficient gradient propagation paths. The SCP module
not only achieves feature fusion, but also reduces network depth, thereby further extracting
the characteristics of quasar point sources. Afterward, downsampling is performed through
the DM module, which reduces the parameter count and also extracts features.

3.2.2. Network Training Strategy

The programming language is Python. The hardware parameters for the experiments
are i5-10200H@2.40GHz CPU and NVIDIA GeForce RTX 1650 Ti GPU. Before training the
network, some hyperparameters need to be set in advance, such as batch size, learning rate,
epochs, etc. Table 2 summarizes the parameter configuration for the DE-QNet module.

The DE-QNet module uses mini-batch training during the training process. Most
current training network strategies add a BN layer before the activation function to ac-
celerate the convergence of the network. However, excessive BN layers can result in the
accumulation of error offsets, which is described in detail in [23]. The paper proposes
an ABA configuration: substituting the BN layer of the middle convolution with GN,
layer normalization (LN), or instance normalization (IN) layers when three consecutive
convolutions appear, which can effectively reduce error accumulation. This paper proposes
the CGH module. GN layers require mini-batch training; therefore, this paper adopts a
batch size of 8.

Table 2. Hyperparameter configuration of DE-QNet.

Configuration DE-QNet

Optimizer Adam
Batch size 8

Totale poch 300
Learn rate 1 × 10−4

Resize shape 64

4. Discriminator

In this section, we describe the QP determination process. The photometric image
redshift, spectral redshift, and spectra are used as the input to the discriminator. The Q-
Score is obtained from the spectral analysis, which represents the intensity of the interaction
between the two quasars. The larger the Q-Score is, the more likely it is to determine a QP.
Section 4.1 describes the method for defining the Q-Score. Section 4.2 describes the spectral
analysis process.

4.1. Q-Score Indicator

If two quasars constitute a QP, then there will be a series of clearly visible absorption
lines in the background quasar spectrum. These absorption lines correspond to the emission
lines in the spectra of foreground quasars. Assuming that the two quasars have similar z,
this relationship is: when photons from the background quasar pass through the foreground
quasar halo, a part of the photon energy is absorbed by the foreground quasar, resulting
in a corresponding absorption line in the background quasar spectrum. This relationship
is represented on the spectrum as: the background quasar absorption line corresponds
to the foreground quasar emission line. The evaluation metric Q-Score represents the
degree of intensity of this relationship on the spectrum. Ref. [24] upgraded the SDSS
spectrometer by extending the observation wavelength range covered by the input spectra
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from 3800–9200 Å to 3600–10,400 Å. The primary rest-frame ultraviolet quasar emission
lines that are redshifted into the optical for Z ≥ 2 quasars are: Lyα λ1216, N V λ1240, C IV
λ1549, C III] λ1908, and Mg II λ2798.

In order to ensure the appearance of Lyα and Mg II emission lines in the spectrum,
some restrictions are imposed on the redshift of the background quasar. For the blue side,
starting at wavelength λobs = 3600 Å, according to λobs = (1 + Zbg) × 1215.86, Zbg = 1.97 is
the minimum redshift value at which the Lyα emission line appears in the spectrum. For the
red side, the ending at wavelength λobs = 10,400 Å, according to λobs = (1 + Zbg) × 2800.14,
Zbg = 2.71 is the maximum redshift value at which the Mg II emission line disappears from
the spectrum. In order to accurately detect Lyα absorption, the quasar of the Z ≥ 2.1 is
selected as the background quasar to detect the foreground quasar. At Z > 2.71, the Mg II
emission line disappears from the spectrum; to increase accuracy, the Lyβ emission line
needs to be considered for observation. The NV emission line is abandoned because the
mixing of the NV emission line with the Lyα emission line is not good, and it can only be
detected when the NV line is very sharp.

The final selection includes seven emission lines, which consist of five strong emission
lines: Lyβ, Lyα, C IV, C III, and Mg II, as well as two weak emission lines: O I and Si IV.
The emission line information is shown in Table 3, and the Q-Score metric formula is shown
in Equation (1). In Equation (1), Nx represents whether the emission line is identified (with
a value of 0 or 1), and its weight is based on the relative flux values in Table 2 of [25].
In Table 2 of [25], the relative flux of Lyα is 100% because all other emission lines are
compared to the Lya line as a reference. However, due to the excessively large relative
flux of Lyα, this would result in the minimal impact of other emission lines on the Q-Score.
Considering the importance of Lyα when discriminating the significance of QP, we decide
to assign a weight of 50% to maintain the influence of Lyα on the Q-Score while keeping
the relative flux of other emission lines unchanged. As a result, the relative influence of
other emission lines increases, while the influence of Lyα decreases relatively but still holds
a significant proportion.

Table 3. Quasar emission line selection and corresponding wavelengths.

Emission Lines λ

Lyβ 1031.48
Lyα 1215.86
O I 1305.31

Si IV 1398.16
C IV 1545.57
C III 1903.61
Mg II 2800.14

f (x) =

{
NLyβ × 9.615 + NLyα × 50 + NOI × 1.992 + NSiIV × 8.916 + NCIV × 25.291 + NCII I × 15.943 2.67 ≤ z ≤ 4.00
NLyα × 50 + NOI × 1.992 + NSiIV × 8.916 + NCIV × 25.291 + NCII I × 15.943 + NMgII × 14.725 2.10 ≤ z ≤ 2.67

(1)

4.2. Spectral Analysis Process

This section describes the process with regard to spectral analysis. The method
of removing the continuum and filtering is used to highlight the spectrum’s absorp-
tion/emission line features. Section 4.2.1 describes the removal of the continuum.
Section 4.2.2 describes a new approach to filtering.
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4.2.1. Spectral Analysis Process

The spectrum of a quasar is different from any other astronomical object, usually with
extremely strong emission and absorption lines. In order to highlight the absorption and
emission line features of the quasar, the method in [26] is selected to remove the continuum.
QP J0036 + 0839, as an example, shows processing of its QSObg J003643.45 + 083944.40
spectrum. The spectrum after processing is shown in Figure 4, where the absorption lines’
positions can be highlighted.

Figure 4. Illustrating the effect of removing the continuum. The upper panel shows the original
spectrum of QSObg J003643.45 + 083944.40 at redshifts of z = 2.69. The following figure shows the
spectrum of QSObg J003643.45 + 083944.40 after removing the continuum.

4.2.2. Filtering

For most of the quasar spectra, their signal-to-noise (SNR) are low. Thus, some spectral
features are destroyed because of cosmic rays, noise, and other factors. In order to better
find the location of the absorption lines, a filtering operation on the spectrum is necessary.
In this paper, we propose a multistage hybrid filtering method, the structure of which is
shown in Figure 5. The multistage hybrid filter consists of two mean filters and a median
filter. The mean filter is linear filtering that uses the average value of the target and its
neighboring values to smooth out the data and reduce noise. Its disadvantage is that it
cannot preserve data details well. Although it can effectively suppress noise, it may filter
out prominent absorption line features. The median filter is nonlinear filtering, which can
preserve the absorption line features well when smoothing the spectral lines but cannot
suppress the noise much. Combining them can complement each other and achieve better
filtering results.

As shown in Figure 6, the red line represents the spectrum after undergoing filtration
with a multistage hybrid filter; the blue line corresponds to the spectrum that has solely
passed through the process of removing the continuum. As shown in Figure 6a, the red
line preserves the relative strength of the absorption lines well. As shown in Figure 6b
and Figure 6c, the red line fits the positions of the absorption lines well and smooths the
spectrum, making it easier to identify the absorption lines.
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Figure 5. Multistage hybrid filtering method. The black point represents the spectral flux, and the
blue box and red box represent the sliding windows containing N flux lengths. Two mean filters with
different sliding window sizes centered on a certain flux are used to obtain the trend of surrounding
fluxes, and finally, the median of the output results of the two mean filters and the flux at that point
are taken. Multistage hybrid filtering smooths the spectral lines by traversing the entire spectrum.

Figure 6. The blue line is the spectrum after removing the continuum, and the red line is the spectrum
through the multistage mixing filter. (a–c) are zoomed-in images of the localization.

4.2.3. Searching for Absorption Lines

The location of the absorption line is searched easily through the filtered spectrum.
The SciPy library from the Python toolkit is used to search for the absorption line. Figure 7
shows a close-up of the original spectrum (blue line) and the processed spectrum (red line)
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of QSObg J003643.45 + 083944.40; the symbol ‘X’ represents the location of the possible
absorption line. It can be seen that most of the absorption lines have been identified.

By the method proposed in Section 4.2, QP J0036 + 0839 is used as an example. Figure 8
shows the original spectrum (blue line) and the processed spectrum (red line) of QSObg
J003643.45 + 083944.40 at a redshift of Z = 2.690. The “X” on the red line indicates the
location of the absorption line. To assess the accuracy of absorption line identification, we
utilize QSO f g J003653.85 + 083936.20 (green line) at a redshift of Z = 2.565 for observation.
It can be seen that an absorption line marked with an ‘X’ symbol is found near the emission
line (purple line). Among them, C III is not searched, and it is possible that the C III
emission line from QSO f g does not cause absorption on QSObg.

Figure 7. J003643.45 + 083944.40 local spectrum image. The blue line is the original spectrum, the red
line is the processed spectrum, and ‘X’ represents the wavelength location where the absorption line
is found.

Figure 8. QP J0036 + 0839. Blue is the QSObg spectrum, green is the QSO f g spectrum, and red is the
QSObg spectrum after processing.
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5. Results and Discussion

This section is divided into four subsections. Sections 5.1 and 5.2 discuss and analyze
the DE-QNet experimental results, while Sections 5.3 and 5.4 discuss and analyze the
DPQP experimental results. In Section 5.1, the evaluation metrics of DE-QNet are shown.
Section 5.2 analyzes and discusses the performance of DE-QNet. Section 5.3 provides an
example to illustrate the DPQP process. Section 5.4 uses the DPQP on discovered QPs
and discusses the analysis. The target source detector uses a proven algorithm, which is
discussed and analyzed in detail in [17].

5.1. Evaluation Metrics

Evaluation metrics are very important in deep learning because they can evaluate the
model performance and the accuracy of prediction results. In this paper, mean squared error
(MSE), mean absolute error (MAE), the mean of ∆z (Bias), normalized median absolute
deviation (NMAD), and δ0.3 are used for evaluating the network performance.

MSE =
1
N

N

∑
i=1

(zi − ẑi)
2 (2)

MAE =
1
N

N

∑
i=1
|zi − ẑi| (3)

MSE is the average squared difference between the predicted values and the actual
values. MAE is the average absolute difference between the predicted values and the actual
values. N is the number of samples. zi (Spec-z) is the spectral redshift value of the sample;
ẑi (Photo-z) corresponds to the predicted redshift value.

∆z =
zi − ẑi
1 + zi

(4)

Bias = Mean(∆z) (5)

σ(∆z) =

√√√√ 1
n

N

∑
i=1

(∆zi − Bias)2 (6)

|∆z| is the normalized difference between the true value and the estimated value.
Bias is the mean value of |∆z|, and σ(∆z) is the standard deviation of |∆z|.

NMAD = 1.48×Median(|∆z|) (7)

NMAD is a statistic used to evaluate the level of dispersion of outliers in a dataset,
and it is advantageous when dealing with datasets that have outliers or non-normal
distributions. Compared to the standard deviation σ(∆z), NMAD is less sensitive to
outliers, providing a more reasonable estimate of the results. The factor 1.48 is a scaling
factor that makes NMAD equivalent to the standard deviation of normal distribution data.

δA =
N|∆Z| < A

Ntotal
(8)

N|∆Z| < A represents the number of samples whose |∆z| is less than A, while Ntotal
is the total number of samples.

5.2. Comparison and Analysis of DE-QNet

This section discusses the experimental results based on the estimation of photometric
image redshift and illustrates the advantage of DE-QNet proposed in this paper. The trained
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model is tested on 7516 untrained and unvalidated quasar images to evaluate the reliability
of the model. All data in the paper are SDSS photometric images, and the input images are
five bands data from SDSS.

Table 4 presents the performance comparison of DE-QNet with other regression
networks, where the evaluation metrics are presented in Section 5.1. It can be seen that
DE-QNet is the best in all metrics and shows a marked improvement compared to DCMDN
and NetZ. Compared to DCMDN, DE-QNet reduces the MSE and MAE by 26.6% and
16.4%, respectively. Compared to NetZ, DE-QNet reduces the MSE and MAE by 5.6% and
14.5%, respectively. This indicates that the predicted values are closer to the label values
and have smaller absolute errors. To observe the predicted distribution of the redshift of the
quasar images, the density maps of the label and predicted redshifts are plotted, as shown
in Figure 9.

Table 4. The performance of DE-QNet compared with other regression networks. Smaller MSE, MAE,
σ(∆z), NMAD are preferable; smaller absolute value of bias is preferable; larger δ0.3 is preferable.

Method MSE MAE Bias σ(∆z) NMAD δ0.15 δ0.3

DCMDN 0.387 0.389 −0.052 0.299 0.117 0.682 0.894
NetZ 0.299 0.367 −0.048 0.267 0.124 0.680 0.868

DE-QNet 0.284 0.316 −0.048 0.264 0.081 0.771 0.888

Figure 9. Photometric image redshift density map. The horizontal axis represents the spectral redshift,
and the vertical axis represents the predicted redshift.

As shown in Figure 9, as the density increases, the color becomes redder, while as the
density decreases, the color becomes bluer. The blue dashed line in Figure 9 shows the
sample points whose |zi − ẑi|≥ 0.3, accounting for 88.8% of the total test set. According to
Figure 9, it can be seen that there are relatively fewer scattered points in the low redshift (0–0.5)
and high redshift (2.2–4), which represents lower prediction errors compared to the mid-
redshift (1.9–2.2). Although there are many works on quasar redshift regressions ([19,20,22]),
the sample results in the (0.5–0.9) and (1.9–2.2) ranges cannot come close to the desired results.
This range may be improved by photometric redshift optimization, but the prediction error in
this paper is still the lowest among the image estimation methods.
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5.3. DPQP Processing

This section describes the DPQP processing in terms of QP J1204 + 0221. Figure 10
shows J1204 + 0221 in the SDSS image at run = 1458, camcol = 3, field = 376; the back-
ground quasar redshift (Zbg) is 2.528; the foreground quasar redshift (Z f g) is 2.436; and
the pair members are separated by an angular distance of θ ' 13.3 arcseconds on the sky.
However, only the former has the corresponding spectral data in the DR17 database of
SDSS (Figure 10a blue box), while the latter does not, so confirming that the QP needs to
cross multiple databases. In this way, searching for a large number of QPs is complex and
labor-intensive, so it would be valuable to detect QP candidates using images. The imaging
method used in this paper still tries to select QP candidates based on the principle that
the closer the distance, the more effective it is. Specifically, the method is divided into
nine steps:

Figure 10. (a) The image from SDSS with QSObg J120416.7 + 022110 at Z = 2.528 in the blue box;
(b) the image provided by SIMBAD, with the blue circle recording the QP J1204 + 0221.

• Step 1: Detecting the target sources in the image, with the detection of quasars as the
QSO f g.

• Step 2: The CasJobs Server obtains quasars with spectra in this image as QSObg
(red boxes in Figure 11) and matches these QSObg with QSO f g from Step 1 within
60 arcseconds. No quasar is detected within 60 arcseconds from the center of QSObg
(red boxes on the left side of Figure 11, ra = 181.09295, dec = 2.37135, Zbg = 2.0368)
on the left side of Figure 11. A quasar is detected within 60 arcseconds from the
center of QSObg (red boxes on right side of Figure 11, ra = 181.06953, dec = 2.35055,
Zbg = 2.5320) on the right side of Figure 11.

• Step 3: DE-QNet is used to estimate the redshift of the matching quasar by Step 2,
and the estimated value (Zpre) is 2.412.

• Step 4: Because the MAE of DE-QNet is 0.316, in order to accurately match emis-
sion lines and absorption lines, the redshift should fluctuate within a certain range.
The range restriction for this redshift fluctuation, given by Equations (9) and (10), is pro-
vided as follows. The redshift fluctuation range for Zpre = 2.412 is 2.100 < Zpre < 2.532.

Z1 =


2.1 Zpre − 0.316 < 2.1

Zpre − 0.316 2.1 < Zpre − 0.316 < Zbg
None Zpre − 0.316 > Zbg

(9)
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Z2 =

{
Zpre + 0.316 Zpre + 0.316 < Zbg

Zbg Zpre + 0.316 > Zbg
(10)

Generally, Z f g are smaller than Zbg. According to Equation λobs = (1+Zpre) × λline,
when the emission line (λline) is fixed, the observed wavelength (λobs) can be calculated
from the estimated redshift (Zpre). Z1 is the lower limit of the redshift range. Z2 is
the upper limit of the redshift range. The MAE of DE-QNet is 0.316. Zpre is the
estimated redshift of quasars. Zbg is the redshift of background quasars obtained from
the CasJobs Server in Step 2. None means that if Z f g exceeds Zbg, it will be discarded.

• Step 5: Bring the Zpre from Step 4 into Equation (1), calculate the corresponding
Q-Scores for different Zpre, and output the maximum Q-Score.

Figure 11. The schematic of searching for QP in the three bands (g, r, i) synthetic photometric image of
SDSS. The green boxes in the image show the quasars detected by the target source detector. The red
boxes represent the quasars recorded by SDSS. The white boxes represent the quasars recorded by
SIMBAD. The yellow circle represents a distance of 60 arcseconds. The input of DPQP is a five bands
image, and the three bands image is for visualization purposes only. This image is for illustration only.

As shown in Figure 12, when Zpre = 2.44, the maximum Q-Score is 92.008. A higher
Q-score indicates a more intense interaction between the two quasars, suggesting a higher
likelihood of forming a QP. The QP was discovered in [3], where QSO f g exhibits absorption
against QSObg when Zpre = Zabs = 2.44. DPQP provides the highest Q-Score within the
range of 2.441 ≤ Z ≤ 2.443.
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Figure 12. The Q-Score rating chart for the range of 2.100 < Z < 2.532. Zpre represents the estimated
value from DE-QNet, Zlab represents the spectroscopic redshift value, and Zabs indicates the redshift
value at which absorption occurs.

5.4. DPQP Testing

To explore the practical application of this pipeline, we used the trained model to
process the discovered QP in [5], which is shown in Table 5. Z f g is used to validate the
target source detector. If QSO f g is detected, Zpre− f g will be provided; otherwise, it will
not. Zbg/Z f g and Zpre−bg/Zpre− f g are used to validate the regression model. A smaller
difference between Zbg/Z f g and Zpre−bg/Zpre− f g indicates a higher accuracy of DE-QNet.
The Q-Score metric is used to validate the discriminator. If the two quasars are a QP,
indicating a significant interaction, the Q-Score will be larger; otherwise, it will be smaller.

Table 5. Test results of DPQP on known QPs.

Quasar Pair QSObg QSO f g Zbg Zpre−bg Z f g Zpre− f g θ Q-Score

J0023 − 0106 J023946.45 − 010644.2 J023946.43 − 010640.5 3.129 2.591 2.307 2.324 3.7 102.133
J0250− 0047 a J025039.82 − 004749.6 J025038.68 − 004739.2 2.448 2.192 - - - -
J0752 + 4011 b J075259.14 + 401118.2 J075259.81 + 401,128.2 2.121 2.008 1.881 2.334 12.6 0.000
J0814 + 3250 c J081419.58 + 325018.7 J081420.37 + 325,016.1 - - 2.178 - - -
J0837 + 3837 c J083757.13 + 383,722.4 J083757.91 + 383,727.1 - - 2.059 - - -
J0841 + 3921 J084159.26 + 392,140.0 J084158.47 + 392,121.0 2.213 2.209 2.04 2.046 21.1 51.985

J0856 + 1158 c J085656.05 + 115,802.7 J085655.75 + 115,802.0 - - 1.767 - - -
J0938 + 5317 b J093804.84 + 531,743.1 J093804.22 + 531,743.9 2.320 2.111 2.068 2.455 5.6 0.000
J1006 + 4804 a J100627.10 + 480,429.9 J100627.47 + 480,420.0 2.591 2.378 - - - -
J1025 + 5820 J102554.77 + 582,017.0 J102553.47 + 582,012.0 2.567 2.357 1.956 2.266 11.4 60.899
J1041 + 5630 J104129.27 + 563,023.5 J104121.90 + 563,001.3 2.266 2.262 2.043 1.968 65.0 77.273

J1045 + 4351 c J104506.39 + 435,115.3 J104508.88 + 435,118.2 - - 2.423 - - -
J1204 + 0221 J120416.69 + 022111.0 J120417.47 + 022104.7 2.529 2.438 2.436 2.412 13.3 92.008

J1306 + 6158 c J130603.55 + 615,835.2 J130605.19 + 615,823.7 - - 2.109 - - -
J1358 + 2737 b J135849.54 + 273,756.9 J135849.71 + 273,806.9 2.113 2.380 1.899 2.64 10.2 0.000
J1427 − 0121 J142758.74 − 012136.2 J142758.89 − 012130.4 2.353 2.346 2.271 2.256 6.2 84.207
J1442 + 0137 J144231.91 + 013734.8 J144232.92 + 013730.4 2.273 1.882 1.803 2.179 15.7 98.920

J1508 + 3635 c J150812.80 + 363,530.3 J150814.06 + 363,529.4 - - 1.837 - - -

Note: Zbg: background quasar redshift; Z f g: foreground quasar redshift; Zpre−bg: background quasar estimation
redshift; Zpre− f g foreground quasar estimation redshift; θ: angular separation between QSO f g and QSObg (arcsec);
Q− Score: The intensity of interaction between the two quasars; a: J0250− 0047a and J1006+ 4804a are detected by
the algorithm in the image, but they appear in different images; b: J0752+ 4011b, J0938+ 5317b, and J1358+ 2737b

have Z f g greater than Zbg; c: J0814 + 3250c, J0837 + 3837c, J0856 + 1158c, J1045 + 4351c, J1306 + 6158c, and
J1508 + 3635c are not recorded in SDSS.

According to Table 5, the reasons for the failure of QP matching can be summarized
into three classes. They are as follows:

Class a: Two quasars form a QP, but they appear in different sky regions (refer to
Table 5: J0250 − 0047a, J1006 + 4804a) such as QP J0250 − 0047a, QSObg J025039.82 −
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004749.6 image in region run = 4263, camcol = 2, field = 401; QSO f g J025038.68 − 004739.2
image in region run = 4263, camcol = 2, field = 400. Although DPQP detected quasars in
each image, the inability to detect this class of QP is due to the fact that they are not present
in the same image. This is illustrated in Figure 13a,b with the white box, where the former
represents QSO f g and the latter represents QSObg.

Class b: The quasars with Zpre-fg greater than Zbg result in a Q-Score of 0 (refer to
Table 5: J0752 + 4011b, J0938 + 5317b, J1358 + 2737b). According to the data in Table 5, it
is observed that there is a significant deviation between the predicted values and the true
values in the redshift range of 1.9–2.2. In response to this issue, we plan to improve our
network in the future to enhance accuracy within this redshift range (refer to Section 5.2
for analysis).

Class c: SDSS does not have the spectrum of this type of quasar, so the discriminator
cannot function, resulting in a Q-Score of 0 (J0814 + 3250c, J0837 + 3837c, J0856 + 1158c,
J1045 + 4351c, J1306 + 6158c, J1508 + 3635c).

In summary, when Q-Score = 0, only class b is the error caused by DPQP, which cannot
be avoided in machine learning. Class a and class c are data issues. Excluding class a and
class b, the model has an accuracy rate of 7/10 = 70%.

Figure 13. QP J0250-0047. The red arrows indicate the same quasar in different images. The green
boxes represent the quasars detected by DPQP.

6. Conclusions

This paper proposes a pipeline for quasar pair candidates’ detection based on pho-
tometric images and spectra. The pipeline can accurately obtain the positions of quasars
on the photometric images and provide redshift values. It can also identify QP candidates.
The output QP candidate table from DPQP includes the QSO f g coordinate, QSObg coordi-
nate, redshift, angular separation, and Q-Score. The specific contributions are as follows:

• Proposes a quasar pair candidate detection pipeline.
• Proposes an accurate redshift regression network based on photometric images.
• A new table with 1025 QP candidates is provided (refer to Appendix A).

To validate the reliability of the redshift regression network, 75,915 quasar samples are
generated from the SDSS DR17 data. The samples are divided into a training set, validation
set, and test set in a ratio of 7:2:1. The MSE and MAE of DE-QNet on the validation set
are 0.284 and 0.316, respectively. The proportion of data with |δz| < 0.15 reaches 77.1%
of the total test samples, while the proportion of data with |δz| < 0.3 reaches 88.8% of
the total test samples. Compared to DCMDN and NetZ, the proportion of data with
|δz| < 0.15 significantly increased. This study tests the pipeline using QP discovered in [5].
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After excluding the influence of data, it achieves an accuracy rate of 70%. The lowest
Q-Score is 51.985, while the highest Q-Score is 102.133, which indicates that the pipeline is
capable of effectively detecting QP. Finally, a new table with 1025 QP candidates is provided
in Appendix A.

In future work, we will make improvements to the target source detector and the
regressor in DPQP. The specific improvements are as follows:

• We plan to incorporate a neighboring image stitching algorithm to address the issue
of two quasars being QP but not present in the same image. By aligning and stitching
these neighboring images together, we can create a larger composite image.

• Since high-redshift samples are scarce, the scope of this study is currently limited to a
redshift range of 0.0–4.0. Our next step is to expand the redshift range and utilize high-
redshift quasars as probes to search for other high-redshift quasar pairs. By including
a wider range of redshift values, we can explore and analyze the properties and
characteristics of high-redshift quasars more comprehensively.
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Appendix A

Quasar Pair QSObg QSO f g Zbg Z f g θ Q-Score

J1301 + 0013 J130142.41 + 00136.7 J130139.93 + 001310.35 3.095716 2.365087748 37.14735264 27.283
J0045 + 0014 J004527.66 + 001410.26 J004524.94 + 001456.01 2.424207 2.196105719 61.40756165 100.924
J0919 + 5404 J091925.21 + 540,459.83 J091921.14 + 540,534.4 2.174495 2.203944683 50.45078615 98.932
J0942 + 0817 J094212.56 + 081737.25 J094215.03 + 081815.44 3.161636 3.011915207 53.32757725 93.822
J0019 + 1415 J001911.49 + 14,158.03 J00199.54 + 141,428.87 3.003208 2.844203472 48.19299423 84.906
J2159 − 0816 J215944.02 − 081634.34 J215948.24 − 08169.95 3.736069 2.407644749 67.62501206 50.141

. . .

. . .

. . .
1025
. . .
. . .
. . .

J0217 − 0817 J021719.39 − 081728.87 J021719.94 − 081655.24 2.742388 2.731396675 34.94623331 93.822
J1233 + 0616 J123323.8 + 06168.42 J123321.25 + 061552.18 2.680345 2.610152483 41.23386367 90.016
J1518 + 2603 J151823.17 + 260,353.36 J151822.83 + 26,033.64 3.65314 2.468950987 49.90493798 86.199

Notes
1 Fiber collisions occur when the positions of two or more astronomical objects in the survey field are so close to each other that the

fibers cannot be positioned without overlapping or conflicting.

http://skyserver.sdss.org/CasJobs/
https://www.sdss.org/dr17/
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