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Abstract: Quantum cosmology aims to develop a quantum theory of the universe, attempting to
answer open questions of physical cosmology, mainly related to the early epochs of the universe.
Such a theory aims to unite relativity theory and quantum theory. Here, the whole universe is treated
as a quantum mechanical system and is described by a wave function rather than by a classical
spacetime. In this review, I shall describe the mathematical structure and primary formulations that
form the backbone of quantum cosmology. We know that over a period of time, several approaches
were developed to form a quantum theory of gravity. However, in order to decide which approach is
the best, we need testable predictions, effects that can be observed in cosmic microwave background
radiation (CMBR). I shall discuss the methodologies for generating quantum gravitational corrections
to inflationary background leading to testable predictions. Another aspect of finding quantum im-
prints on CMBR results through the application of resolution of the ‘quantum measurement problem’
to early universe physics. In this article, I shall also discuss two such promising models explaining
the classicalization of inflationary perturbation and are capable of leaving distinct observational
imprints on the observables.
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1. Introduction

Quantum cosmology is an endeavor to develop a quantum theory of the universe,
describing the first phases of the universe and also answering open questions. Such a
theory aims to integrate relativity with quantum mechanics. To beginwith, here, the whole
universe is described by a quantum mechanical wave function. The process of quantization
is not straightforward. The main idea leading to this unification was put forward in the
inventive work of Bryce DeWitt [1] in 1967. Later, around 1983, James Hartle and Stephen
Hawking proposed the well-known ‘no-boundary proposal’ [2]. Through these works and
many more [2–9], the emergence of the universe out of nothing (no matter or space-time)
came into the picture. For a more general review of quantum cosmology, one may refer
to [10–14], where properties like the problem of time, singularity avoidance, and boundary
conditions in the context of quantum cosmology have been discussed in detail.

Apart from many formal and mathematical problems, conceptual problems also form
a major obstacle to the final construction of a quantum theory of gravity and its application
to cosmology. A detailed discussion of these aspects is given in [15].

The direct quantization of general relativity leads to a non-renormalizable theory at
the perturbative level. There are several non-perturbative approaches present. However,
they still lack a complete form. Thus, one can instead look for observational hints that could
play a role similar to what the Lamb shift played for the development of quantum electro-
dynamics.

Around 1980 with the advent of the inflationary scenario [16,17], quantum cosmology
was also studied in the context of inflation [18–21]. Observables in the context of inflation
have been widely constrained by observational surveys like PLANCK, BICEP, KECK, etc.
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The current constraints on inflationary observables from Planck TT, TE, EE + lowE + lensing
+ BK15 [22] can be quoted as

r0.002 < 0.065; ns = 0.9639± 0.0044; αs = dns/dlnk = −0.0069± 0.0069 (1)

When running of the scalar spectral index (βs) is allowed to float, the constraints on
ns, αs, and βs can be quoted as

ns = 0.9587± 0.0056; αs = 0.013± 0.012; βs = 0.022± 0.012 (2)

We know that over a period of time, several approaches were developed to form
a quantum theory of gravity [23–26]. However, in order to decide which approach is
correct, we need testable predictions, effects that can be observed in cosmic microwave
background radiation (CMBR). Nonetheless, finding such predictions becomes difficult
since quantum gravitation effects become significant only around Planck-scale energy.
Inflationary cosmology provides the perfect scenario to visualize such effects. This is
a conservative approach where the quantum equation, known as the Wheeler–DeWitt
(WDW) equation, leads to general relativity in the semi-classical limit. The WDW equation
may not yield the ultimate quantum theory of gravity; however, it should provide a reliable
and approximately valid picture, at least close to the Planck scale [27].

In the works by Kiefer and his colleagues [28–31], quantum gravitational corrections
to the CMBR power spectrum in the context of the WDW equation have been studied
extensively.

In Section 2 of this article, I will review the main results obtained in this approach
and discuss the presence of possible quantum effects in the anisotropy spectrum of the
CMBR. The calculations show that the quantum gravitational correction terms lead to a
modification of the anisotropy power spectrum in a way that leads to an enhancement of
power at large scales.

One can also compare these results with the predictions from other approaches to quan-
tum gravity. Suppression of power at large scales has been predicted by non-commutative
geometry and effects from string theory [23,24,32–34]. A similar investigation for loop
quantum cosmology in [35] shows an enhancement of the power at large scales, while
in [36] it shows a suppression. Apart from loop quantum cosmology, an application of
supersymmetric quantum cosmology [37,38] to such a situation can also be found in [39].
We thus can see that such considerations may be able to discriminate between different
approaches to quantum gravity, but there also exists degeneracy among them.

In Section 3, I will review another different aspect of finding quantum imprints on
CMBR. This results from treating foundational issues in quantum mechanics, such as the
emergence of classical behavior and its application in early universe physics. Considering
the inhomogeneities were of quantum origin, the mechanism of generating the primordial
inhomogeneities by inflation is essentially evolving the quantum fluctuations of a scalar
field. This opens an exciting possibility of directly observing the outcome of a genuine
quantum gravitational effect: the generation of quasi-classical fluctuations of quantum
fields, i.e., ‘particle creation from the vacuum in a background gravitational field’ [40].
However, the key problem here is that though the process of creation from the vacuum
and the perturbations themselves are purely of a quantum mechanical nature (at least
initially), the observed temperature or density fluctuations in the universe are certainly
classical [41–43]. Thus, a complete derivation should include some mechanism of quantum-
to-classical transition and collapse of the wave function describing the perturbations.

Going by the Copenhagen interpretation [44,45] of quantum mechanics, this means
that the wave function describing the perturbations has collapsed to one of its eigenstates
(in this case, the eigenstate of the inflaton field) and the CMBR map corresponds to one
of its eigenvalues. However, instantly the question arises regarding the process or the
act of measurement in the early universe. There seems to be a missing link between the
quantum early universe and the classical structures. This then leads us to the problem of
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understanding quantum to classical transition in the cosmological context, which can be
thought of as a more serious form of the so-called ‘quantum measurement problem’ [46–48]
already present in conventional laboratory situations [49].

This issue has been studied widely for a better understanding of this problem leading
to suitable solutions. In Section 3, I will discuss two of such approaches, decoherence
and continuous spontaneous collapse, leading to an explanation of quantum to classical
transition in the context of the early universe. It was found that such scenarios are also
capable of leaving distinct signatures on inflationary power spectra and observables. For
example, in the presence of a collapse mechanism, we find that independent accurate
measurements of r and nT would give us a direct handle on the model parameter, leading
to its falsification. Since the next-generation CMBR experiments are expected to shed more
light on the constraints on r, single-field consistency relation, etc., such models thus provide
promising testing scenarios.

2. Quantum Gravitational Corrections in Quantum Cosmology

Here, I will mainly discuss the works by Kiefer and his colleagues [28–31]. For this,
one needs to analyze the WDW equation in the context of quantum field theory in curved
spacetime. This is achieved in a Born–Oppenheimer type of approximation scheme, as de-
scribed in [50]. This scheme is then realized by expanding the wave function with respect
to the Planck mass [28,29].

The advantage of this approximation is that at consecutive orders, one retrieves first the
dynamics of the background spacetime (classical), then a Schr’́odinger equation for the per-
turbations propagating on this background, and finally, quantum gravitational corrections
to it containing correction terms [28]. Their interpretation in terms of Feynman diagrams
and generalization to supergravity can be found in [51,52]. Earlier, this approximation was
already used to derive such corrections from the Planck mass expansion [28–31,53,54] and
from an alternative expansion [55–58].

In order to describe the mathematical structure one needs to begin with the usual
decomposition of the Hamiltonian into a perpendicular component and three components
tangential to the spatial hypersurfaces with all four components being constrained to
vanish. If Ψ(hab) is the wave functional of the universe with hab denoting the three-metric,
the four constraints can be written as

ĤaΨ(hab) = 0 , Ĥ⊥Ψ(hab) = 0 , (3)

The first equation is the Hamiltonian constraint, popularly known as the Wheeler–DeWitt
(WDW) equation. The other equations are known as diffeomorphism (or momentum)
constraints.

It is important to note that this equation is timeless; it does not contain any external
time parameter [59]. However, the WDW equation should be valid at least as an effective
equation, because it gives the correct semi-classical limit.

In order to quantize them, we use the following quantum operators

ĥabΨ(hab) = hab(x) ·Ψ(hab) , p̂cdΨ(hab) =
h̄
i

δΨ
δhcd(x)

(hab) , (4)

Using these operator forms, the constraint equations now read as(
−16πGh̄2Gabcd

δ2

δhabδhcd
−
√

h
16πG

((3)R− 2Λ)

)
Ψ = 0 , (5)

−2Dbhac
h̄
i

δΨ
δhbc

= 0 . (6)

Here, Gabcd is the DeWitt metric, Λ is the cosmological constant, and Db is the covariant
derivative of the three-metric. The first term in the first equation has the structure of kinetic
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energy, while the second term represents the potential. The second equation has the form
similar to the Gauss constraint in electrodynamics.

Now, we consider a homogeneous, isotropic FLRW universe filled with a perfect
cosmological fluid with curvature index K = ±1, 0. This is an example of a mini-superspace
model [60,61], an approximation of the otherwise infinite-dimensional phase space of a
field theory. The WDW equation becomes

ĤΨ =

(
2πGh̄2

3
∂2

∂ζ2 −
h̄2

2
∂2

∂φ2

+ e6ζ

(
V(φ) + Λ

8πG

)
− 3e4ζ k

8πG

)
Ψ(ζ, φ) = 0 , (7)

where ζ = ln a, with a being the scale factor. This convention is used only to represent the
equation in a convenient form. Here, we have introduced a massive minimally coupled
scalar field φ, playing the role of the inflaton, with potential V(φ).

In [30,31,53], this semi-classical Planck mass expansion scheme was implemented in
the context of WDW equation for gauge invariant scalar and tensor inflationary perturba-
tions. Below, I have highlighted some of the results of this approach. The perturbed action
for the scalar perturbations in terms of the Mukhanov–Sasaki variable v can be written as

1
2

δ2S =
1
2

∫
dτ d3x

[(
v′
)2 − δij ∂iv ∂jv +

z′′

z
v2
]

. (8)

where z = a
√

ε with ε being the first slow-roll parameter. Performing similar analysis for
tensor part and then going over to the Fourier space, one can write the complete WDW
equation (along with the background equation given by Equation (7)) for scalar and tensor
perturbations each mode k as,

1
2

{
e−2ζ

[
1

m2
P

∂2

∂ζ2 −
∂2

∂φ2 + 2 e6ζ V(φ)
]
− ∂2

∂v2
k
+ ω2

k(τ) v2
k

}
Ψk(ζ, φ, vk) = 0 . (9)

where the frequencies Sω and Tω corresponding to the scalar and tensor parts are, respec-
tively, given by

Sω2
k(τ) := k2 − z′′

z
, Tω2

k(τ) := k2 − a′′

a
, (10)

with z := a φ′/H.
Here, mP represents the rescaled Planck mass with respect to which the semi-classical

expansion is performed. It reads as

m2
P :=

3
4πG

. (11)

Next, we apply the semi-classical approximation in this context. For this, we use the
following WKB-type ansatz for the wave functional

Ψk(qA, vk) = ei U(ζ,φ̃,ψk) , (12)

with U(ζ, φ̃, ψk) again expanded in powers of m2
P as

U(ζ, φ̃, ψk) = m2
P U0 + m0

P U1 + m−2
P U2 + . . . . (13)

where U0 and U1 represent the wave function at the corresponding orders.
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Using this ansatz in the WDW, at order m2
P, one obtains the Hamilton–Jacobi equation

of the mini-superspace background.

−
(

∂U0

∂ζ

)2
+ m2

P

(
∂U0

∂φ

)2
+

2 e6ζ

m2
P
V(φ) = 0 . (14)

At the order, m0
P, one retrieves the Schrödinger equation

Hkψ
(0)
k = i

∂

∂τ
ψ
(0)
k , (15)

where τ is the conformal time defined as ∂
∂τ = e−2ζ

[
− ∂U0

∂ζ
∂

∂ζ + m2
P

∂U0
∂φ

∂
∂ζ

]
, with the pertur-

bative Hamiltonian operator for each mode, given as

Hk := − 1
2

∂2

∂v2
k
+

1
2

ω2
k(τ) v2

k. (16)

Finally, at the next order, m−2
P , one obtains the effects of quantum gravitational correc-

tion in the form of the corrected Schrödinger equation:

i
∂

∂τ
ψ
(1)
k = Hkψ

(1)
k −

ψ
(1)
k

2 m2
P ψ

(0)
k

[(
Hk

)2

V ψ
(0)
k + i ∂

∂τ

(
Hk
V

)
ψ
(0)
k

]
. (17)

In [31], the authors analyze these equations in the context of gauge invariant inflation-
ary perturbations-both tensor and scalar. The primary results of their work are encoded in
the following modified power spectra for gauge-invariant scalar and tensor modes:

P (1)
s (k) = P (0)

s (k)
{

1 + δs

}
, (18)

P (1)
T (k) = P (0)

T (k)
{

1 + δT

}
, (19)

Here, P (0)
s (k) and P (0)

T (k) correspond to the standard power spectra derived for fields
propagating on fixed cosmological backgrounds [62]. δs and δT represent the quantum
gravitational corrections on inflationary power spectra given by

δs =
H2

k
m2

P

(
k̄
k

)3(
0.988 + 3.14 ε− 2.56 η

)
; δT =

H2
k

m2
P

(
k̄
k

)3(
0.988 + 0.58 ε

)
. (20)

Here, ε and η are the slow-roll parameters.
The corrected inflationary observables are now given by the following expressions

ns − 1 = 2η − 4ε−
H2

k
m2

P

(
k̄
k∗

)3

(2.96 + 11.40 ε− 7.68 η), (21)

nT = − 2ε−
H2

k
m2

P

(
k̄
k∗

)3

(2.96 + 3.72 ε) (22)

αs ≈ 4ε(η − ε)− 2θ +
H2

k
m2

P

(
k̄
k∗

)3

(8.89 + 40.12 ε− 23.04 η) (23)

αT ≈ 4ε(η − ε) +
H2

k
m2

P

(
k̄
k∗

)3

(8.89 + 17.08 ε) (24)

r(1) ≈ 16ε

(
1 + 2.56

H2
k

m2
P

(
k̄
k

)3

(η − ε)

)
(25)
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with θ being the second-order slow-roll parameter defined as θ := ε̇−η̇
H

Relating k̄ to the largest scale that could influence the CMBR (k̄ ≈ 10−4 Mpc−1) and
using experimental constraints on the spectral indices and slow-roll parameters [63], one
obtains an estimate for the upper limits of the quantum gravity correction for scalar and
tensor perturbations.

|δs| . 2× 10−10, |δT| . 2× 10−10. (26)

From this, one obtains the corrections to the spectral indices and scalar tensor ra-
tio (evaluated at k = k̄) are significantly smaller than the statistical uncertainty in the
Planck data [

n(1)
s − n(0)

s

]
k=k̄

≈ −5× 10−10 (27)[
n(1)

T − n(0)
T

]
k=k̄

≈ −5× 10−10 (28)[
r(1) − r(0)

r(0)

]
k=k̄

≈ −4× 10−12 (29)

An effect of the order of 10−10 cannot be detected by CBMR experiments due to the
presence of cosmic variance at large scales. As a result, the corrections to all the observable
power spectra are well inside the current experimental error bars. More precision measure-
ments in the future are required to detect/falsify such quantum gravitational corrections
arising from semi-classical approximations, or one can test other inflationary models for
larger quantum corrections.

As the authors mention, there are still certain unresolved issues remaining from
the above analysis. Firstly, the quantum gravitational correction term is proportional to
k−3, thus mildly violating scale invariance. Secondly is the presence of a volume 1/k̄3

to regularize the spatial integral in the action due to which a length scale needs to be
considered, and the power spectrum becomes dependent on it. Fixing it with proper
physical understanding becomes difficult.

Apart from these subtleties, there still remain some open questions. One is yet to test
such corrections in the presence of a non-Bunch-Davies vacuum as an initial condition. Such
corrections are shown to modify the tensor modes also, leading to suppression of the tensor-
to-scalar ratio and modified consistency relations. One can find detailed analysis based on
such modified initial conditions in [64–66] and the references therein. Studies showing other
quantum gravity effects on tensor modes can also be found in [52,67] and the references
therein. One also needs to check whether such corrections are present in situations where
cosmic variance is not present, like in galaxy–galaxy correlation functions. Another avenue
for improving the strength of quantum gravitational corrections might be to apply the
above analysis in the context of Starobinsky inflation, non-local theories, or other modified
gravity theories like f (R), f (G), to name a few. Predictions of such scenarios are also highly
model-dependent, commonly seen in any inflationary and reheating analysis. The actual
realization of the inflaton is highly model dependent; even for a single inflaton field, there
are a lot of valid possible potentials. How the energy of the inflaton obtained is converted
into radiation at the end of inflation is also highly model dependent. The outcome, therefore,
may lead to degeneracy among quantum gravity effects coming from different approaches
(as discussed in Section 1).

3. Quantum to Classical Transition of Primordial Perturbations

One facet of explaining the classical nature of the inflationary perturbations is to note
that during the course of evolution, the accelerated expansion transforms the coherent
vacuum states into strongly squeezed ones [68], thereby making the predictions of the
quantum formalism indistinguishable from that of a theory where the fluctuations are
assumed to be realizations of a classical stochastic process. This is possible because it
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has been shown that in the high squeezing limit, the quantum expectations can be well
mimicked by the statistical average over a classical stochastic field [69]. In this sense,
one can study the evolution of these fluctuations through classical equations and take
the fluctuations as classical. Bringing in the phenomenon of decoherence [70–77] helps
in diagonalizing the density matrix before recombination [78–81], thereby explaining an
important aspect of this problem. However, as we know, even in laboratory experiments,
decoherence alone cannot explain the appearance of a single outcome (as it only produces
a statistical mixture of states). It requires to be supplemented by the formalism of many
worlds (different outcomes exist in different branches of the universe) [82–85] that cannot
be falsified. However, the possibility of violations of Bell’s inequalities in a cosmological
setting was proposed in [86]. The analog of a Bell experiment takes place during inflation.
It was shown in [87] that the time and rate of decoherence for inflationary fluctuations put
constraints on the parameter space of models that may allow for Bell inequality violations.
The phenomenon of decoherence relies heavily on the distinction between system and
environment. But as we know neither, we have multiple CMBR maps nor the universe is
an open system. Thus, the problem still requires a complete explanation. There have been
other attempts dealing with these kinds of issues [88–93], but none of them lead to any new,
falsifiable predictions.

Nonetheless, there exists another set of models known as collapse models [49] that are
widely used to address the measurement problem in quantum theory. These models have
nice features. They modify the Schrödinger equation by adding non-linear stochastic terms
leading to the dynamical self-induced collapse of the wave function (thereby avoiding the
requirement of observers to perform measurement) into one of its eigenstates. Dynamical
collapse happens due to the presence of a background classical stochastic field, filling all
space, which couples to the number density operator of the system, thereby reducing it to
one of its eigenstates. Moreover, these models have an inbuilt amplification mechanism
that has the capability to produce stronger effects for macroscopic objects and milder effects
for microscopic ones. But the main advantage of this approach is that it is falsifiable since it
leads to predictions different from that of conventional quantum mechanics. As a result,
these models have been widely constrained in the laboratories [49,94–96] and also in the
cosmological and astrophysical contexts [97–99]. It is therefore interesting to investigate
what the collapse theories have to say about the inflationary mechanism. Their role in
generating classical density perturbations has been analyzed extensively by [100–106].

3.1. Decoherence

Decoherence corresponds to the absence of quantum coherence as a result of inter-
action/coupling of the system with the environment. In other words, if we consider a
two-state system (say) initially,

ψ(t = 0) = c1ψ1 + c2ψ2. (30)

Over time, due to interaction with the environment (represented by the states φ), this
state evolves into the state

Φ(t) = c1ψ1φEA1(t) + c2ψ2φEA2(t). (31)

Here, φ(t)EA1 and φ(t)EA2 denote macroscopically distinguishable entangled states
of the apparatus and the environment. During measurement, due to the presence of the
decoherence process, the inner product

〈φ(t)EA1|φ(t)EA2〉 → 0. (32)

The decay occurs exponentially with time at a rate given by the decoherence rate
Γdecoherence. For a more extensive study of this phenomenon, one may refer to [70–77]. It
is widely believed that decoherence [74,107,108] could have played an important role in
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the process of classicalization of inflationary perturbations [46,79–81,87,109–122]. As was
discussed in [119], cosmological fluctuations couple (at least gravitationally) to the other
degrees of freedom present in the universe, treated as an open quantum system. Thus,
by studying decoherence, one can investigate the role played by these additional degrees
of freedom whose evolution can be modeled with a Lindblad equation (modified with
additional terms, which suppresses the off-diagonal components for the reduced density
matrix). It can thus be expected that this will lead to corrections to observables, such
as the power spectrum of curvature fluctuations. In this context, one can write the total
Hamiltonian as

Ĥ = Ĥv ⊗ Îenv + Îv ⊗ Ĥenv + gĤint , (33)

where Ĥv is the Hamiltonian of the system, Ĥenv is the Hamiltonian for the environment, g
is a dimensionless coupling constant between the system and environment, and Ĥint is the
interaction Hamiltonian, which can be expressed as

Ĥint(τ) =
∫

d3x Â(τ, x)⊗ R̂(τ, x) , (34)

where Â denotes the system, and R̂ denotes the environment.
It has been shown in [119] that the most general expression of the Lindblad equation

for the evolution equation for the density is given as

dρ̂v

dτ
= −i

[
Ĥv, ρ̂v

]
− Ω

2

∫
d3x d3y CR(x, y)

[
Â(x),

[
Â(y), ρ̂v

]]
, (35)

where CR is the correlation function of the environment, CR(x, y) = 〈R̂(τ, x)R̂(τ, y)〉,
and the coefficient Ω is related to the coupling constant g and to the auto-correlation time
τc of R̂ 1 as

Ω = 2g2τc . (36)

There have been several works assuming different kinds of coupling between the en-
vironment and the system, for example, inflaton self-interactions [79,80], coupling to short-
wavelength inflaton fluctuations [79], gravitational waves [123], isocurvature or additional
fields [81,109,124], entanglement between spatially separated Hubble volumes [114], etc.

For instance, in [119], the coupling between v̂ and ψ̂ was assumed to be of the form

Ĥint = λµ4−n−m
∫

d3x
√
−gφ̂n(τ, x)ψ̂m(τ, x) , (37)

where µ is a fixed-mass scale parameter, and φ̂ = v̂/a. Here, v̂ is the Mukhanov–Sasaki
variable [125] describing the inflation curvature perturbations and ψ represents the scalar
field forming the environment with M >> H. The interaction can be both linear or non-
linear. For linear interaction in the presence of a heavy test scalar field, the modified
Lindblad equation turned out to be

dρ̂s
k

dτ
= −i

[
Ĥs

k, ρ̂s
k
]
− Ω

2
(2π)3/2C̃R(k)[v̂s

k, [v̂s
k, ρ̂s

k]] . (38)

The presence of the second term results in the suppression of the off-diagonal compo-
nents, thus resulting in decoherence.

The corresponding spectrum of curvature perturbations is

Pζ = Pζ |standard(1 + ∆Pk), with ∆Pk ≡
Jk

|vk|2
(39)
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with
Jk(τ) ≡ 4(2π)3/2

∫ τ

−∞
dτ′Ω

(
τ′
)
C̃R
(
k, τ′

)
Im2[vk

(
τ′
)
v∗k(τ)

]
. (40)

We now have

ns = ns|standard −
π
6

k2
Ω

k2∗

1 + π
6

k2
Ω

k2∗

(6m− 2)ε. (41)

Here, kΩ is a particular comoving scale appearing in the interaction term used to fix
the dimension of ΩC̃R.

It was thus shown that the correction to the power spectrum is quasi-scale invariant.
In that case, the presence of the environment improves the fit to the data for some infla-
tionary models (such as power-law inflation) and deteriorates it for others (such as natural
inflation) while having a negligible effect on others (like Higgs inflation). One obtains the
observational constraint on the interaction strength, here parameterized by kΩ/k∗.

In [87], a similar study of classicalization of inflationary perturbations has been carried
out, but here, the coupling occurs between short- and long-wavelength modes. The author
finds the evolution of the reduced density matrix for a given long-wavelength fluctuation
by tracing out the other short-wavelength modes. It has been shown that inflation produces
rapid phase oscillations in the wave functional due to the growth of the interacting part
of the Lagrangian, Lint ∝ a(t), which suppresses off-diagonal components of the reduced
density matrix, leaving a diagonal mixture of different classical configurations. The Hubble-
scale modes act as the decohering environment. It was found that the decoherence rate
scales as the physical volume in Hubble units of the inflating region, Γdecoherence ∝ (aH)3.
When Γ ≈ O(1), off-diagonal components of the reduced density matrix are exponentially
suppressed, with a decay time of order the Hubble time. Shorter-wavelength modes play
the role of an environment for superhorizon modes after they cross the Hubble scale,
at which point they are the leading source of decoherence, kenvironment∼aH.

3.2. Collapse Model-Csl

The continuous spontaneous localization (CSL) approach to quantum mechanics
attempts to solve the quantum measurement question in a general context. In this model,
adding new non-linear and stochastic terms to the Schrödinger equation causes the collapse
of the wave function. It was developed to provide a phenomenological explanation to the
existing conceptual issues with quantum mechanics like the absence of superpositions,
distinction between microscopic and macroscopic objects, probabilistic outcome, Born
rule, etc. This approach seems to follow the standard strategy followed in physics, where
first we consider a linear theory and then, in order to have a more accurate description,
consider non-linear corrections. Following the pioneering work by Pearle [126] and its
major improvement in the framework of the GRW model [127], the CSL model has been
proposed as an upgraded and by far the most advanced version of this model [128,129].
The modified Schrödinger equation in Fourier space, with the pointer basis states being
given by the Mukhanov–Sasaki operators, is given by

dΨR
k =

[
−iĤR

k dτ +
√

γ
(

v̂R
k − 〈v̂

R
k〉
)

dWτ

− γ

2

(
v̂R

k − 〈v̂
R
k〉
)2

dτ

]
ΨR

k , (42)

Here, v̂ is the M-S operator, which is related to the comoving curvature perturbation
(v = aφ′R/H) [130]; 〈v̂R

k〉 =
〈
ΨR

k |v̂
R
k |Ψ

R
k
〉

is the expectation value of v̂; γ is a new constant
of nature, which determines the strength of the collapse, which for a laboratory system
is of the form γ = γ0

m
m0

; m0 is the mass of the nucleon; and γ0 measures the collapse
strength with a value 10−2 m−2 s−1 [131,132] such that the collapse of the wave function
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can be explained consistently with all known experimental data. Gravity-induced collapse
or continuous localization models have been stringently constrained by several recent
laboratory experiments [49,133–135], reducing the parameter space to a very narrow range.
Wη is the standard Wiener process (Brownian motion) that encodes the stochastic aspect [49].
There are two non-linear, non-unitary terms in the modified equation. The first one is
proportional to dW(t), and the second is proportional to dt, the latter being (−1/2) times
the former, forming the well-known martingale structure for the stochastic differential
equation. The ‘martingale’ structure of the non-linear equation preserves the norm during
evolution, despite being non-unitary, and is responsible for the emergence of the Born
rule [136]. In [49], different forms of background noise in the laboratory framework have
been discussed. 2

In [47], the CSL equation was explored in the context of inflationary perturbation for a
constant collapse parameter. It was shown in [47] that the power spectrum for the scalar
perturbations for observationally relevant modes in the strong squeezing limits turned out
to be

PR(k) =
k3

16π2εM2
Plγk0

e−∆N . (43)

∆N is the number of folds the mode has spent outside the horizon after its exit and thus for
observationally relevant modes ∆N ≈ 50− 60.

We see that for longer modes, the power is scale-dependent (PR(k) ∝ k3), which is
inconsistent with the observations.

However, in [104–106], the authors assumed the CSL strength parameter to depend
on physical scales so as to capture the CSL amplification mechanism with the phenomeno-
logical form being given by

γ =
γ0(k)
(−kτ)α

, (44)

with γ0(k) = γ̃0

(
k
k0

)β
. Here, α > 0 so that CSL effects become dominant as the modes

become a superhorizon. It was shown that with 1 < α < 2 yields a squeezing in the
direction of MS field variables.

The power spectrum for the scalar perturbations is now given by

PR = As(k∗)
(

k
k∗

)3+α−β+2η−4ε

= As(k∗)
(

k
k∗

)ns−1
, (45)

As we can see, by setting β = 3 + α, one can obtain a scale-invariant power spectrum.
It was assumed that the CSL collapse mechanism affects each helicity mode of the

gravitons the same way as it affects the inflatons, keeping in tune with the concept of
universality of the collapse mechanism. Thus, the CSL-modified dynamics of each helicity
mode of the gravitons would be the same as that of the massless inflatons.

The observables in this case are modified to

ns − 1 = δ + 2η − 4ε,

nT = δ− 2ε, (46)

r = −8nT + 8δ (47)

where we have defined δ = 3 + α − β. The observation of the scalar spectral index by
PLANCK [63] indicates that δ can at best be of the order of slow-roll parameters so that the
comoving curvature power spectrum remains to be nearly scale-invariant. Independent
accurate measurements of r and nT would give us a direct handle on δ in this model.



Universe 2023, 9, 405 11 of 16

In [106], the above analysis for canonical inflation was further extended to the non-
canonical case (k-inflation). The scalar power spectrum for comoving curvature perturba-
tions is now given by

PR =
k2

0cα+2
s H2

8π2εm2
Pγ̃0

(
k
k0

)3+α−β

e−(1+α)∆N , (48)

which yields a scale-independent spectrum when β∼3 + α. Here, cs is the ‘speed of sound’
for inflationary perturbations.

It is then straightforward to determine the scalar spectral index, considering the tilt, as

ns − 1 = δ− 2ε− ε1 + (α + 2)s, (49)

where δ ≡ 3 + α− β. ε1 = ε̇/(Hε), s represents the first slow-roll parameter related to cs.
The observables for k-inflation scenario in the presence of CSL are now given by the

following expressions-

r = 16εc2+α
s (50)

ns − 1 = δ− 2ε− ε1 + (2 + α)s (51)

nT = δ− 2ε (52)

r = −8(nT − δ)c−(2+α)
s (53)

αs = −2εε1 − ε1ε2 + (2 + α)ss1 (54)

Here, s1 = ṡ/(Hs).
Upon a numerical estimation and comparison with Planck observations, it was found

that the observables like ns, running of scalar tilt αs, and running of running of scalar tilt βs,
cannot potentially distinguish a collapse modified inflationary dynamics in the realm of the
canonical scalar field and k-inflationary scenarios. The only distinct imprint of the collapse
mechanism lies in the observables of the tensor perturbations in the form of modified
consistency relation and a blue-tilted tensor spectrum, which is possible only when the
collapse parameter δ is non-zero and positive.

Thus, we see that both decoherence and collapse mechanism leaves distinct imprints
on the inflationary power spectra and observables. However, which process is responsible
for the quantum to classical transition is still debatable. Future constraints on the infla-
tionary observables, especially on the tensor sector, might be able to provide us with more
confirmatory answers.

4. Conclusions

Unifying quantum mechanics and gravity is the foremost and central, still open
problem in theoretical physics. Among several tempting routes, quantum cosmology
is an attempt to develop a quantum theory of the universe. Diverse approaches have
been developed, in particular in the last half-century or so, but in order to ultimately
decide which one better describes nature, we need realistically testable predictions. In this
context, the main pragmatic challenge for quantum cosmology is to make it ’observationally’
congruent, fitting with current as well as forthcoming cosmic microwave background
radiation (CMBR) data. From observations, we know that the universe is mostly flat,
‘mildly’ non-Gaussian, and there are severe constraints on some observables based on the
CMBR power spectrum. This has been a long-awaited goal pursued by several scientists
for several decades. Though there has been progress in this area, we are still far from
suggesting any noticeable quantum effect on the CMBR map theoretically and numerically.

In this short article, I have reviewed two such approaches, where the inflationary
observables are modified by quantum imprints. In the first approach, making use of
the Born–Oppenheimer approximation to the WDW equation, quantum corrections to
Schrödinger equations were obtained. A corrected inflationary power spectrum was also
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obtained. This led to an enhancement of power on the largest scales for both scalar and
tensor perturbations. For the mathematical analysis reviewed in this article, a Gaussian
ansatz for the wave function was considered. The physical quantities/observables were
considered up to linear order in the slow-roll parameters. Terms of higher order in slow-
roll parameters have been neglected as their effect will be comparable or sub-dominant
compared to the first-order corrections. A major contribution to the quantum gravitational
correction comes from the de Sitter term. The slow-roll effect results in a small modification.
It will be interesting to see the effect of non-Gaussinities on these corrections. One can
surely look into that which will require mathematical analysis. Possibilities are there that
the effect will be of the same order or smaller.

In the second approach, I have discussed the possible modifications to inflationary
power spectra through the presence of decoherence and collapse mechanisms responsible
for the classicalization of inflationary perturbations. This opens another possibility of
observing the outcome of another pure quantum gravitational effect. Both processes
leave distinct signatures on the inflationary power spectra, especially on the tensor sector.
Therefore, detection of the tensor sector by future experiments like BICEP2, PRISM, and
COrE will be able to shed more light on this debate. In Table 1, I have quoted the main
results of the models I have reviewed.

Table 1. Corrections to inflationary observables from different approaches (here, ε2 = ε̇1/(Hε1)).

r ns nT αs

WDW

16ε − H2
k

m2
P

(
k̄

k∗

)3
(2.96 + 11.40 ε) − 2ε

4ε(γ− ε)− 2θ +
H2

k
m2

P

(
k̄

k∗

)3
(8.89)

+

(
2.56

H2
k

m2
P

(
k̄
k

)3
(γ− ε)

)
+

H2
k

m2
P

(
k̄

k∗

)3
(7.68 γ) + 1 + 2γ−

4ε
− H2

k
m2

P

(
k̄

k∗

)3
(2.96 + 3.72 ε) +

H2
k

m2
P

(
k̄

k∗

)3
(40.12 ε− 23.04 γ)

Decoherence

r|standard

1+ π
6

k2
Ω

k2
?

ns|standard −
π
6

k2
Ω

k2∗

1+ π
6

k2
Ω

k2∗

(6m− 2)ε
nT |standard -

CSL-Generic 16ε 1 + δ + 2η − 4ε δ− 2ε −2εε1 − ε1ε2

CSL-k-inflation 16εc2+α
s 1 + δ− 2ε− ε1 + (2 + α)s δ− 2ε −2εε1 − ε1ε2 + (2 + α)ss1
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Notes
1 In continuous spontaneous collapse models, the auto-correlation time is strongly constrained not only by experiments, but also

by tests of Bell’s inequalities that rule out the existence of hidden parameters (see, e.g., [120,121]). Any hidden self-interaction or
correlation is similar to a hidden parameter

2 A noise can decay if the solution of the equation approaches a steady state. However, such behavior is not consistent with the
contextuality of quantum mechanics [137].
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