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Abstract: A promising method for understanding the geometric properties of a spacetime in the
vicinity of the horizon of a Kerr-like black hole can be developed by applying the antipodal boundary
condition on the two opposite regions in the extended Penrose diagram. By considering a conformally
invariant Lagrangian on a Randall–Sundrum warped five-dimensional spacetime, an exact vacuum
solution is found, which can be interpreted as an instanton solution on the Riemannian counterpart
spacetime, R2

+ ×R1 × S1, where R2
+ is conformally flat. The antipodal identification, which comes

with a CPT inversion, is par excellence, suitable when quantum mechanical effects, such as the
evaporation of a black hole by Hawking radiation, are studied. Moreover, the black hole paradoxes
could be solved. By applying the non-orientable Klein surface, embedded in R4, there is no need
for instantaneous transport of information. Further, the gravitons become “hard” in the bulk,
which means that the gravitational backreaction on the brane can be treated without the need for
a firewall. By splitting the metric in a product ω2 g̃µν, where ω represents a dilaton field and g̃µν

the conformally flat “un-physical” spacetime, one can better construct an effective Lagrangian in
a quantum mechanical setting when one approaches the small-scale area. When a scalar field is
included in the Lagrangian, a numerical solution is presented, where the interaction between ω and Φ
is manifest. An estimate of the extra dimension could be obtained by measuring the elapsed traversal
time of the Hawking particles on the Klein surface in the extra dimension. Close to the Planck scale,
both ω and Φ can be treated as ordinary quantum fields. From the dilaton field equation, we obtain a
mass term for the potential term in the Lagrangian, dependent on the size of the extra dimension.

Keywords: conformal invariance; dilaton field; black hole paradoxes; brane-world models; antipodal
mapping; Klein surface; quintic polynomial; Hawking radiation
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1. Introduction

One of the most profound unsolved problems in theoretical physics is the discrepancy
between quantum mechanics (QM) and general relativity theory (GRT). One would like to
obtain a consistent theory of quantum gravity, a major goal of theoretical physics (the “holy
grail”), which would reconcile QM and Einstein’s GRT. Over the last few decades, several
authors have proposed different approaches in order to tackle this epic problem. The main
question now is how to embark on this immense task. In general, there are two possible
routes. One can modify general relativity theory and consider quantized field theory as the
principal theory. An alternative would be to modify quantum theory and retain general
relativity theory as the principal model. Before arriving at a decision, one might wonder
where experimental tests and potential unification could take place. This is likely to occur
at a physical location, where the energy density is huge. The physics in the vicinity of the
horizon of a black hole fulfills this criterion. Gravitational radiation and Hawking radiation
produced at this location could harbor valuable information within themselves.
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Pioneering work on this problem was delivered by Hawking [1], who investigated
particle creation near the horizon of a black hole. He found that black holes radiate as
black bodies with a thermal spectrum. So, the black hole would be in a mixed state.
However, this seems to violate a unitary evolution, because all information connected with
the infalling particle (“in-state”) appears to have been lost after the evaporation of the
black hole. In quantum field theory (QFT) one usually deals with pure quantum states that
evolve unitarily.

A possible solution was addressed by Almheiri et al. [2] to solve the conflict between
complementarity and firewalls. The infalling observer would burn up at the horizon’s
firewall. However, this viewpoint conflicts with GRT. A related problem is how to interpret
the induced regions in the Penrose diagram of the maximally extended Schwarzschild black
hole solution in Kruskal–Szekeres coordinates. Maldacena et al. [3] proposed the “ER = EPR”
hypothesis. The two exterior regions should be connected by an Einstein–Rosen bridge (or
“wormhole”), and the connectivity in this spacetime is equivalent to quantum entanglement.
However, one ignores the gravitational interaction between the two exterior regions I
and II of the Penrose diagram. Another interesting method for solving the information
paradox for certain regions is the so-called “island recipe” [4–6]. The method consists of
a semi-classical framework of gravity while maintaining unitary black hole evaporation.
In fact, the method solves the missing element in Hawking’s original calculation. However,
boundary unitarity is not sufficient, even in the restricted context of AdS/CFT. One proves
that Hawking radiation continues to be in a thermal state (up to greybody factors) that
is purified by interior modes, even at later times in the evaporation process. By using an
entangled wedge construction, one shows that at later times, the interior degrees of freedom
are not microscopically independent of the early Hawking radiation. This is essentially a
notion of the complementarity. One identifies parts of the interior that are encoded in the
Hawking radiation. In this method, to calculate the von Neumann entropy, one uses the
formation of saddle points, determined by the “island” prescription, i.e., an arbitrary set of
intervals on a Cauchy surface. The most striking feature is that the entanglement effect of
the island can be accounted for in terms of its mirror image in the outgoing radiation.

Finally, we mention that some physicists have suggested that region II could represent
another universe [7]. Even more exotic solutions have been proposed [8]. In this manuscript,
we will focus on a totally different approach for the interpretation of the geometry near
black holes, that is, the antipodal boundary condition, introduced in 1957 by Schrödinger
(the so-called “elliptic interpretation” of the spacetime [9]. ’t Hooft recently improved the
method to solve several black hole paradoxes [10]. In brief, antipodal points on the horizon
are identified. The spacetime inside the horizon is removed through the identification of
the antipodes.

The approach we will address in this manuscript relies on the antipodicity of a con-
formally invariant warped 5D spacetime, following the approach of Randall–Sundrum
(RS) [11,12]. These warped brane-world models provide a simplification of the full-string
model. Only gravity can propagate into the bulk, while the other fields reside on the
brane. A possible effective theory can then be constructed without a UV cutoff because the
fundamental scale can be much smaller than the effective Planck scale. This model can
also be applied to a Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime [13]. Fur-
ther, we will replace the antipodal boundary condition, which could be visualized by a
non-orientable Möbius surface in R3, with a non-orientable Klein surface, which can be
embedded in R4 [14,15]. This is mandatory because we work in a 5D spacetime. Many
approximation procedures can be applied near the horizon to describe the gravitational
interaction, i.e., the emission of gravitational waves, together with Hawking radiation.
The calculations of the quasi-normal modes were conventionally performed on a fixed
background, which is not adequate for the black hole evaporation process. This is a time-
dependent process and one would like to obtain a complete scattering description for
both the external and local observers, preferably by using dynamically differential equa-
tions. The method of ’t Hooft bypasses the troublesome Planck area by using the Shapiro
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time-delay effect [16,17]. The high-energy effects are replaced with high wave numbers
of the spherical harmonics. In this manuscript, we will use the conformally invariant La-
grangian. The complementarity issue can then be reformulated by introducing a dilaton ω,
by gµν = ω4/(d−2) g̃µν in d-dimensions [18]. The conformal invariance will spontaneously
be broken by a mass term in the Lagrangian. The dilaton determines the scale. Different
observers will then experience different scales. For very small scales, close to the Planck
scale, it could be treated as a quantum field, similar to a scalar field. One observer sees
Hawking radiation as matter, while the other one sees it as part of their vacuum. The
approach in this manuscript is not the ultimate description of the behavior of a quantum
black hole. The main reason for the antipodal approach is the remarkably consistent ex-
tension to the warped 5D spacetime by using the non-orientable Klein surface instead
of the non-orientable Möbius surface. The topology of spacetime again becomes regular
and has some advantages, as we shall see. There are, of course, other approaches. In a
recent work by Penington [4], the “entanglement wedge reconstruction” of highly mixed
states is applied. He argues that before the evaporation begins, a single, state-independent
interior reconstruction exists for any code space of microstates with entropy strictly less
than the Bekenstein–Hawking entropy. The firewall paradox could also be solved using
this approach.

This manuscript contains the following sections. In Section 2, we formulate the model
under consideration. In Section 3, we add a scalar field to the model, and in Section 4, we
apply the model to the antipodal boundary condition.

2. The Model

It is conjectured that a conformally invariant theory of gravity promises interesting
results when applied to the quantum-gravity area, particularly the conformal dilaton
gravity (CDG) model [18–21]. We shall see that it is a route to constructing a topologically
regular theory of gravity. Examples of topological regular solutions in field theory are
solitons and instantons. We will encounter both solutions in due course. The singularities
that arise in these solutions can be handled through suitable coordinate transformations.
The topology dictates these mappings. The antipodal mapping meets the criteria, such
as smoothness. Further, regularity also means the stability of the solution in the applied
topology. This is rather difficult in more general settings. In Euclidean spaces, this is
no problem [22,23]. Another topological feature is the contractibility of closed surfaces
in a manifold. The Klein bottle, for example, must be embedded in (4 + 1)-dimensional
spacetime to avoid self-intersection (Section 5). A theory is called conformally invariant
at the classical level if its action is invariant under the conformal group of translations,
dilatations, Lorentz transformations (LT), and special conformal transformations [23]. This
is a local symmetry if the metric is dynamical, as will be considered here1. Let us consider
the conformal invariant Lagrangian

S =
∫

ddx
√
−g̃
[
−1

2
ξ(ΦΦ∗ + ω2)R̃− 1

2
g̃µν
(
DµΦ(DνΦ)∗ + ∂µω∂νω

)
−1

4
FαβFαβ −V(Φ, ω)−Λκ

4
d−2 ξ

d
d−2 ω

2d
d−2

]
, (1)

which is invariant under

g̃µν → Ω
4

d−2 g̃µν, ω → Ω−
d−2

2 ω, Φ→ Ω−
d−2

2 Φ, (2)

for a suitable choice of V (for example, the simplest one, V = 0). Further, ξ = (d− 2)/4(d− 1).
In the vacuum case (Section 2.1), the original Einstein–Hilbert action is replaced with

S =
∫

d4x
√
−g̃

2κ2

(
− 1

12
ω2R̃− 1

2
g̃µν∂µω∂νω− 1

36
Λω4

)
, (3)
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with κ = 8πGN . Further, we will rescale ω2 → −6 ω2

κ2 to store κ in the last term in
Equation (3). One preserves the unitarity and positivity properties when including a scalar
field in the Lagrangian. The functional integral over ω now has to go over a contour parallel
to the imaginary axis, a well-known feature of canonical quantum gravity, especially when
investigating the Euclidean counterpart model using the Wick rotation (see Section 2.4).
Note that we get back Newton’s constant when conformal invariance is broken by the incor-
poration of matter fields, such as∼√−gm2Φ2 [18]. In fact, all physical constants eventually
emerge as dimensionless combinations of Newton’s constant. The energy-momentum
tensor consists of the contribution from ω, and in the non-vacuum case, the matter fields.
In the resulting equations, we have the covariant derivative ∇̃ with respect to the “un-
physical” g̃µν, which is defined in the CDG model initiated by ’t Hooft [18], by writing

gµν = ω4/(d−2) g̃µν. (4)

The gauge-covariant derivative isDµΦ = ∇̃µΦ+ ieAµΦ and Fµν is the abelian field strength.
A mass term in the expression of the potential will break the tracelessness of the energy-
momentum tensor and thus the conformal invariance. This spontaneous breaking can be
compared with the famous Brout–Englert–Higgs (BEH) mechanism. On small scales, the
dilaton approaches zero, and no singularity occurs in this limit. We parameterize the scalar
field and gauge field as

Aµ =
[
0, 0, 0,

1
e
(P(t, r)− n)

]
, Φ = ηX(t, r)einϕ, (5)

where n is the winding number, η is the vacuum expectation value, and e is the electric
charge. The metric g̃µν is actually a meta-tensor. All the scale dependencies are contained in
the dilaton and will be handled on equal footing with the scalar field and can be extended
to scales close to the Planck scale. The reason for the use of a scalar-gauge field (Φ, Aµ)
in the action finds its origin in superconductivity, where the famous Meissner effect can
be explained by the symmetry breaking below a critical temperature. In gravity theory,
a comparable symmetry is desirable. It is commonly believed that the universe underwent
a violent phase transition during an early epoch. A natural step is then to incorporate
a matter term in Φ and Aµ on the right-hand side of the Einstein equations to describe
the symmetry breaking in a common symmetry group [24]. This procedure was, after all,
also successful for the electro-weak unification (SU(2)×U(1)) and the unification with
chromodynamics (SU(3)).

We consider here the Kerr-like spacetime on a warped 5D spacetime with Z2-
symmetry [25,26]

ds2 = ω(t, r, y)4/3y0

[
−N(t, r)2dt2 +

1
N(t, r)2 dr2 + dz2 + r2(dϕ + Nϕ(t, r)dt)2 + dy2

5

]
, (6)

where y5 is the extra dimension (not to be confused with the Cartesian y2). Here, ω is
called a “warp factor” in the formulation of RS 5D warped spacetime with one large
extra dimension and negative bulk tension. It turns out that one can write ω(t, r, y5) =
ω1(t, r)ω2(y5), with ω2(y5) = y0 = constant (the length scale of the extra dimension). In
an FLRW metric, one then recovers the well-known RS warp factor for ω2(y5) [13]. All
the fields of the standard model reside on the brane, while gravity can also propagate in
the extra dimension. The model possesses Z2-symmetry. One can formulate the model
covariantly, which means that one should solve the 5D field equations simultaneously with
the effective 4D field equations [27,28]. We do not consider matter fields in the bulk here.

The Einstein field equations become [25,26]

(5)Gµν = −Λ5
(5)gµν, (7)

(4)Gµν = −Λe f f
(4)gµν + κ2

4
(4)Tµν + κ4

5Sµν − Eµν, (8)
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where we have written
(5)gµν = (4)gµν + nµnν, (9)

with nµ = [0, 0, 0, 0, 1√
y0
] being the unit normal to the brane. Here, (4)Tµν is the energy-

momentum tensor on the brane, which also contains the contribution from the dilaton

(4)Tµν = T(ω)
µν + T(scalar)

µν (10)

and Sµν is the quadratic contribution of the energy-momentum tensor (4)Tµν arising from
the extrinsic curvature terms in the projected Einstein tensor. Further,

Eµν = (5)Cα
βρσnαnρ(4)gβ

µ
(4)gσ

ν , (11)

represents the projection of the bulk Weyl tensor orthogonal to nµ. It contains the infor-
mation of the gravitation field in the bulk [25]. In the dynamical situation, in general, one
needs to specify the initial data on the brane. Further, we have the conservation equation
∇µEµν = κ4

5Sµν. It expresses the exchange of so-called Kaluza–Klein (KK) modes, i.e., the
effective 4D modes of the 5D graviton [28].

Now, we again replace
(4) g̃µν → ω̄2(4) g̃µν. (12)

A variation of the action Equation (1) for a general V3 with respect to g̃µν, Φ, and ω yields
(d = 4, 5)

ξω̄R̃− g̃µν∇̃µ∇̃νω̄− ∂V
∂ω̄

= 0, (13)

ξΦR̃− g̃µνDµDνΦ− ∂V
∂Φ∗

= 0, (14)

and

(ω̄2 + ΦΦ∗)G̃µν = T(Φ)
µν + T(ω)

µν − g̃µνV − (ω̄2 + ΦΦ∗)Eµνδ4
d , (15)

with

T(ω)
µν = ∇̃µ∇̃νω̄2 − g̃µν∇̃2ω̄2 +

1
ξ

(1
2

g̃αβ g̃µν − g̃µα g̃νβ

)
∂αω̄∂βω̄, (16)

and
T(Φ)

µν = DµDνΦΦ∗ − g̃µνDαDαΦΦ∗ +
1
ξ

(1
2

g̃αβ g̃µν − g̃µα g̃νβ

)
DαΦDβΦ∗. (17)

For n = 4, in Equation (15), there is the contribution from the projected Weyl tensor Eµν.
In the vacuum case, the dilaton equation (13) delivers [25] no new information, as ex-

pected. After all, it is part of the gravitational sector. When the scalar field is incorporated,
there will be an interaction between ω and Φ and some constraint on V. One observes that
Φ and ω can be treated on equal footing.

2.1. The Vacuum Case

In a former study, in the case without a scalar field, we found an exact solution of the
vacuum equations [25]. By isolating the PDEs for ω, N, and Nϕ one can simultaneously
solve the 5D Einstein equations, together with the effective 4D Einstein equations. By
eliminating the equations for Nϕ from the 5D Einstein equations, it turns out that the
equation for ω becomes

ω̈ =
ω̇Ṅ
N

+
1
3

ω̇2

ω
− N2

16
3√18Λκ4/3ω7/3y0 − N4

(ω′N′

N
+

4
3

ω′2

ω
+

1
2

ω′

r

)
. (18)
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This equation, together with the equation for N̈ (see Equation (22)), must be solved
numerically, which we will carry out in Section 3 when a scalar field is incorporated. There
is, however, still an equation left

ω̄′′ = − 2n
n− 2

Λy0κ
4

(n−2 ξ
n−2

4(n−1) ω̄
n+2
n−2

N2 − ω̄′N′

N
− ω̄′

2r
+

4
n− 2

˙̄ω2

ω̄N4 −
˙̄ωṄ
N5 . (19)

When we eliminate Ṅ from the ω equation with the help of this equation, we surpris-
ingly obtain,

ω̈ = −N4ω′′ +
5

3ω

(
N4ω′2 + ω̇2

)
. (20)

This also happens for the effective 4D equations (8), which contain the extra term Eµν,
which is remarkable. The only explanation will be that this solution represents an instanton
(see Section 2.4) in the warped spacetime. In this case, one can write the equations for ω, ω̄,
and N for n = 4, 5

ω̈ = −N4ω′′ +
n

ω(n− 2)

(
N4ω′2 + ω̇2

)
, (21)

N̈ =
3Ṅ2

N
− N4

(
N′′ +

3N′

r
+

N′2

N

)
− n− 1
(n− 3)ω

[
N5
(

ω′′ +
ω′

r
+

n
2− n

ω′2

ω

)
+N4ω′N′ + ω̇Ṅ

]
. (22)

Note that we are dealing with two different dilaton fields, ω and ω̄. For n = 5, we obtain
the solution for ω, and for n = 4, the solution for ω̄. This is due to the fact that we have two
different local observers: one in the bulk and one in the brane. They use different notions
of scale. The equation for Nϕ decouples. One obtains the solution

ω =
( a1

(r + a2)t + a3r + a2a3

) 3
2
, ω̄ =

( a1

(r + a2)t + a3r + a2a3

)
N2 ≡ N1(r)

N2(t)
=

1
5r2

10a3
2r2 + 20a2

2r3 + 15a2r4 + 4r5 + C1

C2(a3 + t)4 + C3
, (23)

where ai and Ci are some constants4.
The result is that both partial differential equations are of the elliptic type. If we do

not eliminate Ṅ, the differential equations are only solvable numerically. The solutions for
the two dilaton fields, ω and ω̄, differ only by the different exponents 3

2 and 1, respectively.
The solution for the metric component is the same (apart from the constants). Further,
for the effective 4D solution, it turns out that dN

dt = N2J (t, r). So, for the location of the

singularities, dN
dt = 0 holds. Further, d2ω

dtdr → ∞ for r = −a2, t = −a3 and the zeros of the
nominator and denominator of N2. The solution for the angular momentum component is

Nϕ = Fn(t) +
∫ 1

r3ω̄
n−1
n−3

dr. (24)

The Ricci scalar for g̃µν is given by

R̃ =
12
N2

[
˙̄ω2 − N4ω̄′2

]
, (25)

which is consistent with the null condition for the two-dimensional (t, r) line element,
when R̃ = 0. One can easily check that the trace of the Einstein equations is zero. Note that
N2 can be written as

N2 =
4
∫

r(r + a2)
3dr

r2[C2(a3 + t)4 + C3]
. (26)
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The non-local conservation equations become [27]

∇̄µEµν = ∇̄µ
[ 1

ω̄2

(
−Λκ2(4) ḡµνω̄4 + (4)Tµν

(ω̄)
)]

, (27)

So, the divergence of Eµν is constrained. In the vacuum case, one can easily check that
the conservation equation is fulfilled. Our solution belongs to the case where the high-
energy term Sµν ∼ (T(ω)

µν )2 is neglected [28]. It will play a role when one approaches the
Planck scale. In some sense, one can state that this vacuum solution, which can analytically
continue to Euclidean space, represents an instanton. As ´t Hooft stated [29], “The creation
of a small black hole could be caused by an intervening gravitational instantons using the
antipodal identification. Such instanton should be topological stable for all deformations
barring scale transformations”. We will return to this issue in Section 2.4.

Finally, some notes must be made about the physical interpretation of the dilaton ω.
We already mentioned that ω defines the scales and is observer-dependent. Locally, it is
unobservable (comparable with a local gauge), particularly when considering a black hole
horizon. It is fixed only if one knows the global spacetime and after choosing a coordinate
frame with its vacuum state.

The “un-physical” spacetime g̃µν must obey equations of its own and should describe
some of the physical phenomena that are taking place. Note that we still have the freedom of
Equation (2), so we can adjust ω such that, for example, no naked singularities emerge, or at
least occur at time infinity. Further, we still have the dilaton Equation (13). It turns out that
this equation is superfluous, as expected. This can be seen when we consider gµν = ω2 g̃µν

as a transformation. Then, the Ricci scalar transforms as R̃ = 1
ω2

(
R− 6

ω∇µ∇µω
)

. If R̃ = 0
in a region where g̃µν is conformally flat, we obtain the dilaton equation for V = 0. If
one Fourier transforms ω(r, t) to ω(k), then the wave vector k, with k2 = 0 and pointing
in the + direction, determines the non-interacting massless particles. This follows from
the (+,+) component of the Ricci tensor. Because ω belongs to the gravitation sector,
one could say that in the case of an evaporating black hole, these particles can be seen
as Hawking radiation. So, the complementarity transformation that modifies the values
of ω, while keeping Equation (13) valid, switches on and off the effects these particles
have on g̃µν. An ingoing observer moving in the direction of the horizon will experience
a different surrounding spacetime than the outside observer, and they disagree about
the backreaction of the Hawking radiation. Therefore, they will also have different ideas
about the vacuum state and the expectation value of ω2. Since R̃µν is not invariant under
conformal transformation, the observers also disagree about the matter distribution.

One would eventually handle the dilaton field as a quantum field when approaching
the Planck scale, while one could treat g̃µν (renormalized) classically5.

Without the 5D contribution in the effective 4D Einstein equations, one obtains the
solutions for N2 and ω (compare with Equation (23))

N2 =
1

4r2
(6d2

2r2 + 8d2r3 + 3r4 + D1)

D2(t + d3)2 + D3
, ω =

1
(r + d2)t + rd3 + d2d3

, (28)

Again, one can write the r-dependent part as

N1(r)2 =
3
r2

∫
r(r + d2)

2dr. (29)

So, the singularities are determined by a quartic equation, and the residue is determined by
a quadratic equation.

2.2. Relation with the (2 + 1)-Dimensional Ban̆adoz–Teitelboim–Zanelli Solution

Gravity in a (2 + 1)-dimensional context has been recognized as a framework for
studying GRT in relation to quantum-gravity issues. It can serve as a stepping stone
toward understanding full four-dimensional spacetime. It also plays a prominent role
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in understanding the AdS/CFT correspondence. In 1992, Ban̆ados–Teitelboim–Zanelli
(BTZ) [31] found an exact solution for a spinning black hole, which is axisymmetric and
stationary. The black hole arises from identifications of points in AdS3 spacetime by a
subgroup of SO(2, 2). The action is

S =
∫ √

−g
(

R +
2
l2

)
d2xdt (30)

with Λ = − 1
l2 . The solution becomes

N2
1 =

r4

l2 − 8MGr2 + 16G2 J2

r2 =
4

l2r2

∫
r(r + l

√
4GM)(r− l

√
4GM),

Nϕ = −4GJ
r2 . (31)

where M is the mass, J is the angular momentum, and l is the scale where the curvature
sets in. The spacetime is locally Minkowski [32]. If we compare this expression with our
solution for Equation (23), we can conclude that the constant a2 will be related to the mass
and thus to the location of the horizon. The relation with the dynamical “uplifted” BTZ
solution6 was presented by Slagter [33]. It turns out that the cosmological constant must
then be taken as zero.

It is remarkable that one can write the equation for the r-dependent metric component
N(r) for a general k as a first-order differential equation

N2
1 + rN1

∂N1

∂r
= b(r + a2)

k, (32)

where b is a constant and k ∈ Z. The general vacuum solution in the conformal model
becomes

N1(r) =

√√√√ 1
r2

(
(r + a2)

k+1(r(k + 1)− a2)

k + 2
+

ak+2
2

k + 2
+ C

)
. (33)

It is clear that for the case C = − ak+2
2

k+2 , the zeros are for rH = −a2 with multiplicity (k + 1)
and for rH = a2

k+1
7. For k = 3, we recover our 5D solution, and for k = 2, the BTZ solution.

For a general k, that is, in a k + 1-dimensional warped spacetime, there will still be one real
zero for positive r, while the other zeros are located at negative r, with multiplicity (k + 1).
For C 6= 0, there is only one real solution, whereas the other ones are complex.

2.3. Penrose Diagram

If one defines the coordinates,

dr∗ ≡ 1
N1(r)2 dr, dt∗ ≡ N2(t)2dt, (34)

then our induced effective spacetime can be written as [25]

ds2 = ω4/3ω̄2
[N2

1
N2

2

(
−dt∗2 + dr∗2

)
+ dz2 + r2(dϕ +

Nϕ

N2
2

dt∗)2
]
, (35)

due to the fact that the solution for the metric component N is a quotient N1(r)
N2(t)

. Further,

r∗ =
1
4 ∑

rH
i

rH
i log(r− rH

i )

(rH
i + b2)3

, t∗ =
1

4C2
∑
tH
i

log(t− tH
i )

(tH
i + b3)3

. (36)
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The sum is taken over the roots of (10b3
2r2 + 20b2

2r3 + 15b2r4 + 4r5 + C1) and C2(t + b3)
4 +

C3, i. e., rH
i and tH

i . This polynomial in r defining the roots of N2
1 is a quintic equation,

which has an interesting connection with Klein’s icosahedron solution. Further, one can
define the azimuthal angular coordinate dϕ∗ ≡ (dϕ + Nϕ

N2
2

dt∗), which can be used when

an incoming null geodesic falls into the event horizon. ϕ∗ is the azimuthal angle in a
coordinate system rotating about the z-axis relative to the Boyer–Lindquist coordinates.
Next, we define the coordinates [34] (in the case of C1 = C3 = 0 and one horizon, for the
time being)

U+ = eκ(r∗−t∗), V+ = eκ(r∗+t∗) r > rH
U− = −eκ(r∗−t∗), V− = −eκ(r∗+t∗) r < rH , (37)

where κ is a constant. The spacetime becomes

ds2 = ω4/3ω̄2
[N2

1
N2

2

dUdV
κ2UV

+ dz2 + r2dϕ∗2
]
. (38)

If we compactify the coordinates,

Ũ = tanh U, Ṽ = tanh V, (39)

then the spacetime can be written as

ds2 = ω4/3ω̄2
[

H(Ũ, Ṽ)dŨdṼ + dz2 + r2dϕ∗2
]
, (40)

with

H =
N2

1
N2

2

1
κ2arctanhŨarctanhṼ(1− Ũ2)(1− Ṽ2)

. (41)

We can express r and t as

r = rH +
(

arctanhŨarctanhṼ
) 1

2κα
, t = tH +

( arctanhṼ
arctanhŨ

) 1
2κβ , (42)

with
α =

rH

4(rH + b2)3 , β =
1

4C2(tH + b3)3 . (43)

Further, N1 and N2 are now functions in (U, V) (or (Ũ, Ṽ)). In Figure 1, we illustrate
the Penrose diagram. For U = 0 and V = 0, one obtains the horizons rH and tH , as expected.
The scale term H is consistent with the features of the Penrose diagram. Remember that
ds2 and H are invariant under the transformation Ũ → −Ũ and Ṽ → −Ṽ. g̃µν is regular
everywhere and conformally flat.

The hyperbolas in the Penrose diagram are given by

UV = e2κr∗ = (r− rH)
κrH

2(rH+b2)
3 , (44)

where b2 contains the mass and κ is a constant. So, when the black hole is evaporating,
the hyperbola moves to the left in region I in the Penrose diagram. If r is close to rH ,
the hyperbola approaches the Planckian area. The antipodal points P(X) and P(X̄) are
physically identified. In light cone coordinates, u = r− t and v = r + t, one obtains a set
of PDEs

∆N =
1

1 + N4 A , ∆ω =
1

1− N4 B , ∆X =
1

1− N4 C , (45)
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where A , B , and C are expressions in N, ω, and X, and their derivatives. Further,
∆ ≡ ∂2

u + ∂2
v. These PDEs can be used in a numerical setting to follow the Hawking

particles in the (U, V) plane8. One can also prove that Laplace equations make sense on
Klein surfaces [14].

Figure 1. Penrose diagram. The antipodal points P(X) and P(X̄) are identified. Particles going in
will generate waves that approach the horizon from the outside. Those passing through the horizon
will reappear from “the other side” of the black hole. Note that t∗ = log(U/V) ∼ log(t− tH). In this
approach the regions I and II are CPT invariant, implying that time runs backward in region II.

2.4. Instanton Solution

Let us write our (4 + 1)-dimensional spacetime on the five-dimensional Riemannian
manifold:

ds2 = ω(τ, r, y)4/3
[

N(τ, r)2dτ2 +
1

N(τ, r)2 dr2 + dz2 + r2(dϕ + Nϕ(τ, r)dτ)2 + dy2
5

]
. (46)

One easily obtains the field equations (d = 4, 5)

ω̈ = N4ω′′ − d
ω(d− 2)

(N4ω′2 − ω̇2), (47)

N̈ =
3Ṅ2

N
+ N4(N′′ +

3N′

r
+

N′2

N
)

+
(d− 1)
(d− 3)ω

[
N5
(

ω′′ +
ω′

r
+

d
2− d

ω′2

ω

)
+ N4(ω′N′ − ω̇Ṅ

]
, (48)

where the dot now represents ∂τ . Note that here, we are now dealing with hyperbolic PDEs
instead of elliptic ones on the pseudo-Riemannian spacetime. The exact solution is again
given by Equation (23) on the pseudo-Riemannian spacetime)9. Note that our original
pseudo-Riemannian 5D spacetime delivered an effective 4D Riemannian spacetime on the
brane, i.e., Equation (35). Now, we will have

ds2 = ω4/3ω̄2
[N2

1
N2

2
(dτ∗2 + dr∗2) + dz2 + r2dϕ∗2

]
, (49)

where r can be expressed as r∗. The topology is R2
+ × R1 × S110. The ϕ∗ causes no

problems because the Nϕ component decouples from the equations for N and ω. R2
+

is still conformally flat.
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Instanton solutions play a fundamental role in field theory and possibly also in gravity
theory. It is well-known that on Minkowski spacetime Rd+1, the action of the static Yang–
Mills–Higgs configuration (A, Φ) equals the Euclidean action on Rd. The field equations
of the Euclidean action, for example, in R4 in this model, allow soliton solutions, which
are time-independent finite energy solutions for the variational equations for the action
density on the R5 Minkowski spacetime. For the d = 4 pure Yang–Mills case, they are
called instantons. It turns out that their “curvatures” are self-dual11. In the book by Jaffe
and Taubes [35], one can find a comprehensive overview of these issues.

One can say that the transition from Minkowski to Euclidean spacetime is a Wick
rotation. What is the advantage of this “simplification”? Well, it has a big advantage
in quantum field theory. One can construct a Euclidean propagator, and the action is
then positive definite and finite. The propagator can be decomposed into a complete set
of eigenfunctions of the Hamiltonian. Afterward, one Wick rotates the solution back to
Minkowski spacetime. One can also define a Euclidean vacuum, i.e., the zero point of the
potential energy density. The field approaches the vacuum asymptotically. Other nontrivial
solutions are then instantons. They are useful because they dominate the Euclidean path
integrals and can help find the Euclidean propagator. An important principle is then
valid: “A static soliton in d space dimensions is completely equivalent to an instanton in d
spacetime dimensions”. In the case of a double-well potential with a degenerate minimum,
the instanton interpolates between the two classical vacua. This degeneracy persists if one
quantizes the model! The interested reader should consult Chapter 5 of Felsager [23].

It has been known for a long time that Euclidean self-dual gravitational fields exist.
They have a vanishing classical action and nontrivial topological invariants. In some sense,
they resemble the Yang–Mills instantons [36]. The asymptotically local Euclidean self-dual
metrics imply that the path integral possesses the same weight as the flat vacuum metric.
These solutions likely play an important role in understanding quantum gravity. There
exists a conjecture that states that for a positive action S and a non-singular positive definite
asymptotically locally Euclidean metric with R = 0, S = 0 if the curvature is self-dual. The
instanton solution in the vacuum case could also be used to explain the formation of a
Planck-size black hole or study the very final stage of an evaporating black hole, which
also takes place on Planckian scales [29].

Let us now compare our instanton solution with the well-known self-dual axially
symmetric Eguchi–Hanson instanton [36] solution, where the Riemannian spacetime is

ds2 = F(ρ)2dρ2 + ρ2
[
σ2

x + σ2
y + G(ρ)2dσ2

z

]
(50)

with ρ2 = τ2 + x2 + y2 + z2. Using the Newmann–Penrose formalism and imposing
anti-self-duality on the spin connections, one obtains

F =
1
G

, G + ρ
∂ρG
∂ρ

=
2− G2

G
(51)

This first-order differential equation is comparable with our first-order equation for N. One
can easily check that the solution becomes

G =

√
1− a4

ρ4 (52)

It satisfies Einstein’s equations with anti-self-dual curvature. If one defines u2 = ρ2
(

1− a4

ρ4

)
,

then near the singularity r = a, i.e., u = 0, one recovers the two-sphere in polar coordinates
for fixed (θ, ξ)12, ds2

2 = du2 + u2dϕ2. So, for ρ → a, the spacetime is locally ∼ R2 × S2,
provided ϕ ∈ [0, 2π]13. Then, the Eguchi–Hanson spacetime is regular everywhere, geodesi-
cally complete, and singular-free. For τ → 0, R2 shrinks to a point on S2. The manifold is
homotopic to S2 and has a Euler characteristic of 2. For large ρ, the metric approaches a
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flat spacetime. The constant ρ hypersurfaces are not three-spheres but three-spheres with
antipodal points identified. The boundary is thus SO(3) = P3(R), for which S3 = SU(2)
is the double cover. The metric is asymptotically locally Euclidean, S3/Z2, but not glob-
ally. The entire manifold can be represented as a cotangent bundle of the complex plane
S2 ∼ P(C1).

We introduce once again a different radial coordinate ū4 = ρ4 − a4 and the complex
coordinates V = x + iy,W = z + iτ (ū2 = VV̄ +WW̄). The spacetime then becomes, on
C2/{0} (Kähler form),

ds2 =
ū2

√
ū4 + a4

(dVdV̄ + dWdW̄) +
a4

√
ū4 + a4

∂∂̄ log(ū2) (53)

Again, we see that ū = 0 (ρ = a) causes problems, but this apparent singularity can be
removed by the antipodal identification (V ,W) ∼ (−V ,−W). At infinity, the coordinate
xµ is identified with its time-parity conjugate −xµ. The spacetime originates at ρ = a
and represents an instanton-like bump in the curvature. In our case, we must consider,
for example, the vacuum case, where the g̃µν is conformally flat, and also consider T(ω)

µν .
One can easily check that R̃ = 0 for our “un-physical” spacetime. In order to prove
that our metric is self-dual, one needs the Cartan structure components. The advantage
is that one has to solve first-order differential equations. Note that our solution has a
Eguchi–Hanson-type form

ds2 = N2(r, τ)dτ2 +
1

N2(r, τ)
dr2 + r2(dσ2

x + dσ2
y ) (54)

where the metric component N2 is now a fifth-order polynomial instead of a fourth-order
polynomial in r. Moreover, our solution is (r, τ)-dependent.

3. The Non-Vacuum Case

We take now for the gauge potential Aϕ = − n
e , i.e., P(t, r) = 0 in Equation (5), and a

potential V(Φ, ω). The equations then become

N̈ = −N4
(

N′′ + 3
N′

r
+

N′2

N

)
+ 3

Ṅ2

N
+

2N
(η2X2 + ω2)

[
y0N2V

+3N4(η2X′2 + ω′2)− 3(η2Ẋ2 + ω̇2)− 3
4r

N4(η2XX′ + ωω′)
]
, (55)

Ẍ = N4
(

X′′ +
X′

r
+ 2

X′N′

N

)
+ 2

ẊṄ
N

+
N2

η

∂V
∂X

+
2X

(η2X2 + ω2)

[
N4(η2X′2 + ω′2)− (η2Ẋ2 + ω̇2) +

y0

3
N2V

]
, (56)

ω̈ = N4
(

ω′′ +
ω′

r
+ 2

ω′N′

N

)
+ 2

ω̇Ṅ
N

+ y0N2 ∂V
∂ω

+
2ω

(η2X2 + ω2)

[
N4(η2X′2 + ω′2)− (η2Ẋ2 + ω̇2) +

y0

3
N2V

]
. (57)

From the superfluous ω equation, we obtain that the potential must be taken as

V(X, ω) = β1Xβ2 ω
2
3−

ηβ2
|y0 | , (β1, β2)cst. (58)

which is consistent with the tracelessness of the energy-momentum tensor14. Observe that
the scale of the extra dimension enters the equations through y0. It is remarkable that we
can obtain a quartic conformal invariant matter coupling in the Lagrangian

M ∼ X2ω2, (59)
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for a suitable combination of the parameters, i.e.,

|y0| =
3
2

η. (60)

If we inspect the equations for the scalar and dilaton fields in the case of a flat spacetime
N = 1, we obtain the two potentials

VX =
α
(

ηX2(3ηβ + 2y0) + 3βω2
)

3η(η2X2 + ω2)
Xβ−1ω

(2y0−3βη)
3y0 , (61)

Vω =
α
(

η2X2(2y0 − 3ηβ) + ω2(4y0 − 3βη)
)

3(η2X2 + ω2)
Xβω

− (y0+3βη)
3y0 . (62)

In this special case, one can still integrate the functional integral over ω exactly. So,
non-conformal matter does not affect the conformal invariance of the effective action after
integrating over ω [18,21]. One can conjecture that in the non-vacuum case, this still holds.

The equations for Nϕ are

Ṅϕ′ = −3Nϕ ′ (η
2XẊ + ωω̇)

(η2X2 + ω2)
,

Nϕ ′′ = −3Nϕ ′
[1

r
+

(η2XX′ + ωω′)

(η2X2 + ω2)

]
, (63)

and the general solution is

Nϕ = f
∫ 1

r3(η2X2 + ω2)3/2 dr, (64)

where f is a constant. The scalar and dilaton equations differ only by the potential term.
This difference is evident in the numerical solution shown in Figures 2 and 3. Note that
n has disappeared from the PDEs. We have incorporated the winding number (or vortex
number) n into the constant gauge field |Aϕ| = n

e
15. It is also possible to isolate an equation

for Ẍ and ω̈ from the Einstein equations, i.e.,

ωω̈ + N4
(

ωω′′ − 2ω′2
)
− 2ω̇2 = XẌ + N4

(
XX′′ − 2X′2

)
− 2Ẋ2. (65)

Figure 2. Stable solutions of X, ω, and N for the case of a constant gauge field. The potential is

V = β1Xβ2 ω
2
3−

ηβ2
y0 . We used a cosine function for the initial values of the scalar field and a sine

function for the dilaton field. For N, we used the vacuum solutions. Further, we applied Neumann
boundary conditions. Note that N develops a singularity and approaches a constant value with
increasing time. The solution critically depends on the parameters of the potential, for example,
the scale y0 of the extra dimension.
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Figure 3. Same as in Figure 2, but now we use a tanh function as the initial value for ω. We observe
that the polynomial behavior in the metric component N is induced by the dilaton. We also plotted
the total metric component ω4N2.

Thereafter, we obtain

ω̈ + N4
(

ω′′ − 2ω′2

ω

)
− 2ω̇2

ω
=

C
ω

, (66)

and the same equation for X. For C = 0, we recover the equation for ω in the vacuum case.
The case of C 6= 0 is more interesting. Again, the exact solutions for ω, X, and N can be
found in terms of elliptic functions. The potential V appears in the constraint equation for
Ṅ. An exact solution for ω becomes

ω =
1

(r− rH)JacobiSN( 1
2

√
2C(r− rH)t, I)

(67)

One might wonder if an estimate for the value of the extra dimension y0 can be obtained.
In the following sections, we will try to find a possible method using the elapsed proper
time of a particle when it moves in the bulk space and back to the brane16.

Our horizon, rH, is determined by ai (see Equation (23)). We assume that y0 ∼ 10−5 m [28]
and let us take rH ∼ 107 m (see, for example, Maldacena [38]17). Using the wormhole
construction, he obtained an elapsed time of the order 10−2 s, while t would be huge, of the
order of tens of thousands of years for somebody looking from the outside.

The proper traversal time, te, of the Klein surface will be of the order of rH . Further,
the trajectory on the Klein surface in the bulk, lb, will be of the order t

te
, where t is the

asymptotic time and te is the proper time. It would be of interest if one could measure this
elapsed time in Hawking radiation. One could obtain an estimate of y0.
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4. Application of the Antipodal Boundary Condition
4.1. The Black Hole Paradoxes

It is well-known that for smaller scales, the spacetime in Equation (6) results in
quantum-gravitational effects. In the vicinity of the horizon, pair production will take place
due to the high curvature. It was Hawking’s great achievement to calculate the radiation
produced during the evaporation of a black hole [1]. He found that black holes radiate as
black bodies with a thermal spectrum. So, the black hole would be in a mixed state. This
radiation is random with a probability distribution controlled solely by the parameters
of the black hole, i.e., the mass, angular momentum, and charge. However, the collapse
started out of a pure state.

Since different states can have the same mass and angular momentum, this means
that many initial physical states evolve into the same final stage. So, information on the
details of the initial stage is lost. When one particle of the Hawking pair falls into the
black hole and the other one escapes, they are in a pure quantum mechanical state, and the
wave functions satisfy the Schrödinger equation. Pure quantum states are characterized
by maximal information, i.e., zero entropy, so one has a conflict because pure states seem
to evolve in mixed quantum states. On the other hand, the laws of quantum mechanics
are unitary and thus time-reversible. The information is preserved. The lost information
must reappear somehow. Over the past few decades, many physicists have proposed
different approaches to tackle this epic problem. A possible solution was addressed by
Almheri et al. [2]. They suggested that there is a firewall just outside the horizon, with a
thickness of the order of the Planck length. The entanglement will be broken between the
infalling and outgoing particles. This would release a large amount of energy, creating a
firewall. An observer just inside the horizon would see the trapped information, while an
observer just outside would find the information “scrambled” beyond recognition. So, there
is a “complementarity” problem, which is not disastrous because they cannot exchange
information. Matter falling through the horizon would immediately be burned at this
firewall. It could be possible that in the future, one could eventually detect this “bounce”
against the firewall in the gravitational wave spectrum. Nevertheless, it conflicts with
general relativity. One can now conjecture that three statements cannot be simultaneously
true:

1. Hawking radiation is in a pure state.
2. The information is emitted from the stretched horizon. One can use GRT to describe

this phenomenon.
3. An infalling observer encounters nothing special when crossing the horizon and is

burned at the firewall.

Could one solve the paradoxes by giving up Einstein’s equivalence principle, or uni-
tarity? One could even suggest that quantum mechanics must be revised [39].

Maldacena et al. [3] proposed the “ER = EPR” hypothesis, which is based on the
suggestion that connectivity in spacetime is equivalent to quantum entanglement and is
related to locality. The two regions in the Penrose diagram of the maximally extended
Schwartzschild solution would connect two black holes connected by an Einstein–Rosen
bridge (wormhole). One proposes that the entangled Hawking particles remain connected
by the wormhole, which connects the pair of “entangled” black holes. This conjecture
is an extrapolation of the observation that a maximally extended AdS–Schwarzschild
black hole with a wormhole connection is dual to a pair of maximally entangled thermal
conformal field theories via AdS/CFT correspondence. In this model, a firewall is not
necessary. A great disadvantage is the fact that the two black holes in regions I and II
in the Penrose diagram will feel their gravitation field [40]. Further, this model would
suggest that any entangled pair of states are connected by Planck-scale wormholes. If one
detects these mini wormholes at CERN, then one has a strong argument. Quite recently,
Maldacena et al. [38] used this model to calculate the traversal time of the Einstein–Rosen
bridge. They considered the brane-world model of Randall–Sundrum (RS) [11,12], with one
large extra dimension. Here, we will apply a slightly different approach to the RS model.
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4.2. Antipodicity

In a former study [25,26], we considered the black hole paradoxes in the context of
a warped 5D RS spacetime. Further, we imposed the antipodal boundary condition on a
Klein bottle surface.

In general, a spacetime with a given local geometry admits different possible global
isometries. One can consider the modification of the spacetime topology in the form M̂/Γ,
where Γ is a discrete subgroup of isometries ofM without fixed points. M̂ is non-singular
and is obtained from its universal coveringM by identifying points equivalent under Γ. A
particularly interesting case is obtained when Γ is the antipodal transformation onM

J : P(X)→ P̂(X̂). (68)

where the light cone of the antipode of P(X) intersects the light cone of P̂(X̂) only in
two points (at the boundary of the spacetime). At the intersection, one then identifies the
antipodal points. This idea has already been mentioned by Schrödinger(1957) [9]. His
so-called “elliptic interpretation” was historically first studied in cosmology, i.e., in the de
Sitter spacetime. This method was later extended by Sanchez et al. [41] and Gibbons [42].
Quite recently, ’t Hooft [10,40] revised this approach.

Some physicists are convinced that the black hole paradoxes could be solved by
changing the topology around the horizon. A fundamental issue that is omitted in all
the treatments of the effects near the horizon of a black hole is the time dependency
of the spacetime structure near the horizon. The emitted Hawking particle will have
a backreaction effect on the spacetime. The antipodal boundary condition could be an
alternative route. As already mentioned, the issue of the entangled ingoing and outgoing
Hawking particles causes problems. The information of the ingoing particles must get
back somehow.

The very basic idea behind the identification is the identification of the two regions (I
and II) in the Penrose diagram (see Figure 1). Region II is the antipode of I. Consequently,
there is no hidden sector. It could restore quantum purity and CPT invariance, properties
usually not found in thermodynamic objects as Hawking proposed for a black hole. The
approach of ´t Hooft relies on the unitarity of the S-matrix and the non-orientable structure
of the hypersurface (a Möbius surface). Hawking radiation is only locally thermal, but
globally, quantum states evolve unitarily, assuming the entanglement of the Hawking
particles. The trick is that the infalling particle returns to the antipode.

In order to maintain the Hartle–Hawking vacuum state as a pure state instead of a
thermodynamically mixed one for a faraway observer, one applies the antipodicity on
the spherical coordinates (θ, ϕ) [10,17]18. The result is that the Hawking particle remains
maximally entangled and no firewall is necessary. The antipodal boundary condition19

minimizes the number of unconventional assumptions or the need to rely on full string
theory or “fuzzyballs”. It will require that the local laws of physics are invariant across
the black hole boundary [29]. Usually, one considers the Hawking particles as excitations
of low-energy particles that fulfill the standard model and apply perturbative quantum
gravity on a fixed background metric (i.e., the gravitons). The distant observer notices the
Hilbert space of low-energy particles at a given time. One then maps the states from later
times to earlier times, one on one. One essentially bypasses the Planck area. It manifests
itself only through the higher modes of the spherical harmonics (in the angle variables).
A unitary S matrix can then be constructed if one applies a cutoff for the higher modes of
the harmonics.

The antipodal boundary condition consists of, in Kruskal–Szekeres coordinates,
the map: I → I I : (U, V, θ, ϕ) → (−U,−V, π − θ, ϕ + π). The firewall could then be
solved, i.e., the ingoing particles transform into outgoing particles. One then uses the quan-
tum mechanical approximation model of the partial wave scattering of excited harmonic
oscillators. The desired unitary S-matrix is then obtained. The spherical harmonics satisfy
Yl,m(π − θ, π + ϕ) = (−1)lYl,m(θ, ϕ), so only odd modes contribute. One assumes that the
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separation of the coordinates (θ, ϕ) is possible. In our case (see Section 5), we have the
factor (−1)n+m, where n is the winding number and Ym represents the Bessel functions.
For n = m− 1, it is always negative.

The quantum mechanical principle can be summarized [43,44] as follows: ingoing
wave packets are gravitationally backreacted, and they are strongest for the outside ob-
server. Most of the information then passes through the antipodal region, and a small
fraction is reflected back. The ingoing position is imprinted on the outgoing momenta.
Highly localized momenta of ingoing waves transform into two outgoing pieces, i.e., trans-
mitted and reflected ones. The positions are then highly delocalized. Large-wavelength
Hawking particles are produced out of short-wavelength waves. The entanglement would
need a wormhole connection between regions I and II in the Penrose diagram or the an-
tipodal boundary condition of ’t Hooft’s method. In our case, we do not need a wormhole
construction: the antipodal identification is performed on the Klein surface. No reflection
procedure is necessary. There is only a time delay between the outgoing Hawking particles
and the ingoing particles traveling on the Klein surface and leaving at the antipode. The
main task was how to describe the quantum mechanical effects on the time evolution
of the Hawking particles falling into region I of the Penrose diagram. It is possible to
describe these effects at low energies (as the Hawking particles are), such that initially, the
backreaction on spacetime is negligible. One can “dynamically” handle the gravitational
effects due to particles moving in or out of horizons.

The Planck scale comes into play when one goes to a high wave number l of the
spherical modes. The cutoff will then be determined by the number of micro-states in order
to reproduce the Hawking radiation value.

How could the primordial black hole come into being and grow? It could be a grav-
itational instanton. In ’t Hooft’s model, one cuts out a small S3 region in spacetime and
applies the cut-and-paste method of the antipodal map. The topology is then R× S3/Z2.
In our model, we have the Klein surface embedded in 5D, with topology R2

+ ×R× S1.
In Section 2.4, we found this instanton solution on the 5D warped Riemannian manifold,
which was equivalent to the solution on the pseudo-Riemannian manifold. Further, the so-
lution of the effective 4D spacetime was the same apart from some constants. The dilaton
solution, treated as a quantum field for the local observer, determines the scale for the
outside observer. When more particles fall in, the black hole will grow until the evaporation
takes the upper hand. The most complicated issue in antipodal mapping is the treatment
of the gravitational interaction. See Section 5.4.

5. Antipodicity in the Conformal Dilaton–Higgs Model
5.1. Cylindrical Harmonics and the Stress Tensor

In our model, we can write the scalar as (compared to Equations (5))

φmn = ηX(r, t)einϕYm(ϕ), (69)

where X(t, r) fulfills the partial differential equations in Section 2. In the case of a potential
V = A

r2 (X2 + ω2), where A is a constant, the equation for Ym(ϕ) can be separated as

∂2

∂ϕ2 Ym(ϕ) = −m2Ym(ϕ)− y0, (70)

where y0 is still the scale of the extra dimension. The solution becomes

Ym = Aeimϕ + Be−imϕ +
y0

m2 . (71)

So, we have

φmn = ηX(r, t) ∑
m,n

[
Amei(m+n)ϕ + Bme−i(m−n)ϕ +

y0

m2 einϕ
]
. (72)
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Here, we have two mode-expansion numbers (m, n), where n is the winding number. For a
more general potential, the separation of variables is harder to perform. It is clear that we
then need, for example, a high-frequency approximation [45,46]. When we approach the
very small scale, we already remarked that the scalar field and the dilaton are equal, apart
from the potential. Suppose we can write the solution of the scalar equation using creation
and annihilation operators on a Cauchy surface Σ

Φ = ∑
νmn

φνmnaνmn + φ∗νmna†
νmn, (73)

where Φνmn is now Xν(t, r)Ym(ϕ)einϕ, which depends on ν ∈ R. In Eddington–Finkelstein
coordinates, one usually makes the distinction between the outgoing and ingoing waves
using (U, V) coordinates. In our situation, we can also keep (r, t) because in region II of
the Penrose diagram, t runs backward20. To obtain the stress-tensor operator components
〈0|T̂ab|0〉, one needs the derivatives of φ̂

∂tφ̂ =
∫

dν
∞

∑
m=−∞

ν

2π

[
∂tXν(r, t)Ym(ϕ)einϕ âνmn + ∂tX∗ν(r, t)Y∗m(ϕ)e−inϕ â†

νmn

]
∂rφ̂ =

∫
dν

∞

∑
m=−∞

ν

2π

[
∂rXν(r, t)Ym(ϕ)einϕ âνmn + ∂rX∗ν(r, t)Y∗m(ϕ)e−inϕ â†

νmn

]
∂ϕφ̂ =

∫
dν

∞

∑
m=−∞

ν

2π

[
Xν(r, t)

(
i(m + n)Aei(m+n)ϕ − i(m− n)Be−i(m−n)ϕ

)
âνmn + . . .

]
. (74)

Note that the integration over the mode space is performed with a factor of k
2π to obtain

the correct commutation relations for the creation and annihilation operators, i.e., delta
functions. Next, we can calculate 〈0|∂aφ̂∂aφ̂|0〉

〈0|∂tφ̂∂tφ̂|0〉] = 2
∫

dν
∞

∑
m=−∞

∑
n=odd

ν

2π
|∂tXν|2Y2

me2inϕ

〈0|∂rφ̂∂rφ̂|0〉] = 2
∫

dν
∞

∑
m=−∞

∑
n=odd

ν

2π
|∂rXν|2Y2

me2inϕ

〈0|∂ϕφ̂∂ϕφ̂|0〉] = 2
∫

dν
∞

∑
m=−∞

∑
n=odd

ν

2π
X2

ν

(
|∂ϕYm|2 + n2Y2

m

)
. (75)

We can perform the same calculation for ω. In principle, using this approach, we can obtain
the desired 〈0|T̂00|0〉 to make statements about the vacuum. However, we need expressions
for (x, ω) and their first derivatives. Although the vacuum is related to the minimum of the
Hamiltonian, i.e., the lowest energy state, it becomes troublesome in the non-flat spacetime.
First, we are dealing with a time-dependent situation. Second, in treating the evaporation
process, we have different notions for the local observer and the faraway observer. In
our situation, we need both the scalar field and the dilaton ω, and both are conformally
invariant. So, we can use Ω (see Equation (2)). As we shall see, this will help us formulate
the local vacuum. Because our model relies on a 5D warped spacetime, we extend the
antipodicity to the Klein hypersurface in R4.

5.2. Motivation for the Klein Bottle Surface

In our model, we need the Klein surface K, which is the compact sum of two projective
planes. Our conjecture is that our solution can be seen as a dynamical solution embedded in
our (4 + 1)-dimensional spacetime. More precisely, ifN is the submanifold with the metric
g, i.e., the metric in our effective 4D spacetime, then N is diffeomorphic to the hyperbolic
5D spacetime χ : R5 → N . The Riemannian manifold (N , g) must be conformally flat,
which is the case here. Physicists are now interested in the topology of moduli spaces of
self-dual connections on vector bundles over Riemannian manifolds. One reason is that on
these spaces, the instanton approximation to the Green functions of Euclidean quantum
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gravity Yang–Mills theory can be expressed in terms of integrals over moduli spaces. One
then needs the metric and volume form of the moduli spaces. From the investigations of
Groisser et al. [47], we conjecture that we can consider K as a four-sphere in our hyperbolic
pseudo-Riemannian spacetime. This is fueled by the solution in Section 4.2 and the work
on the orientable counterpart model of Groisser (and the references therein). More precisely,
on a Riemannian five-manifold, one can prove that there exists a coordinate diffeomorphism
ξ : R5 → N for which the pullback of the metric g on N is given by (ξ∗g )ij = Ψ2(x)δij.
Further, the Riemannian manifold (N , g ) is conformally flat, with a finite radius and
volume. The action of SO(5) on S4 induces an isometry on N whose pullback, via ξ,
is the usual SO(5) action on R5. So, N can isometrically be included as the interior of
a compact Riemannian manifold, say N̄ , whose boundary ∂N̄ is isometric to the four-
sphere of constant radius. The embedding ∂N̄ → N is totally geodesic. The sphere ∂N̄
is conformally equivalent to the original manifold (S4, g ), and points on ∂N̄ correspond
to instantons that are concentrated at a single point on S4. It is remarkable that Ψ(x)
is determined by a PDE that is comparable to our scalar equation (N has no constant
curvature). A remark must be made about the Z2 symmetry in the original description
of the antipodal mapping [29]. At the border of regions I and II in the Penrose diagram,
the antipodes on a three-sphere are glued together, and the transverse (θ, ϕ) part is a
projected two-sphere. In our model, it is replaced with the projected three-sphere (z, ϕ, y5)
using the Z2 symmetry of the bulk space (U, V, z, ϕ, y5). No cut-and-paste procedure is
necessary. There is another strong argument for considering the topology of the Klein
surface. In short, we blow up the four-manifold to 5D to handle the singularities in the
curvature and apply the antipodal map. One can mathematically formulate the topology
of a four-manifold using self-dual connections over the Riemannian S4 [48]. It depends
only on the conformal class of the Riemannian metric. This self-dual connection can be
interpreted by the conformal map R4 → S4/{0} as a self-dual connection or “instanton”.

In our 5D RS model (with a finite number of singularities), we found that the metric is
determined by N and ω (see Section 2). The solution for N in the effective 4D spacetime
is the same, whereas the ω contribution is different. This is solely due to the contribution
of Eµν (Equation (8)). If we switch to the Riemannian case (t → iτ, a Wick rotation),
the solutions for both N and ω remain unaltered. Moreover, g̃µν is conformally flat. The
embedding of the Klein surface was performed using the extra dimension y , and the
effective spacetime is conformally flat. Consider now the ball B4 ⊂ R4 with the induced
metric ω4/3ω̄2 g̃µν (see Equation (40).21), so the scale is ω4. Then, the ball r

2ω B4 ⊂ R4 has a
curvature ≤ const

|ω|4 . We interpret the Riemannian 5D warped spacetime (Equation (46)) as an

open five-ball, as an instanton on R4. In the pseudo-Riemannian spacetime in Equation (6),
the boundary is the non-orientable Klein surface, which we used for the antipodicity
in order to maintain the pure states of the Hawking particles. The importance of the
instanton trick is the fact that in the Riemannian space (or more easily, in Minkowski
space), they play a crucial role in calculating path integrals [23]. It turns out that a static
solution in m space dimensions is completely equivalent to an instanton in m spacetime
dimensions. Now, remember that for the S2, we could apply the stereographic projection
S2 → RP2 → CP1. To ensure a one-to-one mapping, the Z2 symmetry identification is
applied: the two antipodal planes are identified, z→ − 1

z̄ (see Figure 4). In our situation,
we uplift the projection to S3 ⊂ R4 and use cylindrical coordinates (r, ϕ).

Using the Hopf fibration, one then establishes the connection with real spacetime
(for details, see Slagter [25] and Urbantke [49,50]). Another important characteristic of the
non-orientable Klein surface is the fact that meromorphic functions remain constant [14].
Our solution for N is meromorphic22. Further, the Klein surface is homeomorphic to the
connected sum of two projective planes.
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Figure 4. Left: Stereographic projection of S2 → RP2 → CP1. To ensure a one-to-one mapping,
the Z2 symmetry identification is applied: the two antipodal planes are identified, z→ − 1

z̄ . Right:
Stereographic projection of S3 ⊂ R4 ' C×C also with antipodal identification, representing the
projection of an embedded Klein bottle.

In the past, extensive research has been conducted on the fundamental group structure
of compact surfaces in m dimensions. It is clear that, for example, the torus possesses the
structure of two infinite cyclic groups. For the projective plane, the cyclic group of order
2. For the Klein bottle, the fundamental group can also be presented [37]. We constructed
our model in the 5D RS warped spacetime. So, the question is how we can imagine the
evolution of the Hawking particles created near the horizon, say point P(U, V, z, ϕ, y5), as
shown in Figure 4. The ingoing particle can travel on the Klein surface in order to leave
in the antipode P̄(−U,−V,−z, ϕ + π,−y5) on the horizon. J : P → P̄ is an inversion.
The real physics still takes place on the brane. Effectively, we replaced the “cut-and-paste”
method in R3 with transport in R4 (via the Hopf fibration of the three-sphere in R4).

We know that complete embedded surfaces in R3 must be orientable; otherwise, we
have self-intersection, which changes the genus. Non-orientable surfaces immersed in
R3 do not have global Gauss maps and thus do not have a well-defined mean curvature.
So, the application of the Klein surface embedded in R4 is quite interesting in our con-
text. We found that the system of PDEs can be solved on a conformally flat Riemannian
spacetime. Therefore, the spacetime emerges from an instanton. First, we complexify our
hypersurface [25]. Let us write our coordinates (r, z, y5, ϕ∗) as23

V = z + iy5 = Reiϕ1 , W = x + iy = reiϕ2 , (76)

where the antipodal map is now V → −V ≡ −R2/V̄ andW → −W ≡ −r2/W̄ .24 Further,
VV̄ = z2 + y2

5 = R2 andWW̄ = x2 + y2 = r2. And after inversion,

z =
1
2
(V + V̄), y5 =

1
2i
(V − V̄),

x =
1
2
(W + W̄), y =

1
2i
((W − W̄),

ϕ1 = i log

√
W̄
W ϕ2 = i log

√
V̄
V . (77)

We can write
dz2 + dy2

5 + dx2 + dy2 = dVdV̄ + dWdW̄ . (78)

We now have |V|2 + |W|2 = x2 + y2 + z2 + y2
5 = r2 + R2. We identified C1 ×C1 with R4,

and it contains S3, given by |V|2 + |W|2 = const. Every line through the origin, represented
by (V ,W), intersects the sphere S3. For example, (λV , λW) with λ = 1√

|V|2+|W|2
. Thus,

the homogeneous coordinates can be restricted to |V|2 + |W|2 = 1. The point (V ,W) ∈
S3 ⊂ C1×C1 with |V|2 + |W|2 = 1 becomes, through complexification, a point on S2, with
the single complex coordinate Z = V

W . We now have a map H : S3 → S2 that is continuous.
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One calls this a Hopf map. For each point on S2, the coordinate (V ,W) is non-unique
because it can be replaced with (λV , λW), where |λ|2 = 1 and λ ∈ S1. We will now denote
C1 as S2/{∞} and C2 as S2/{0} and admit the coordinates Z and Z ′ = 1

Z , respectively25.
If we write

H =

(
z + iy5 x + iy
−x + iy z− iy5

)
=

(
V W
−W̄ V̄

)
with det(H) = |V|2 + |W|2 and R4 ∼= H, we can also describe the mapping with normalized
quaternions A = [a, A] = [cos α, sin αn] as binary rotations [51]. This becomes clearer when
we consider the covering groups for covariance, such as SO(3) and SU(2). A rotation is
effectively represented by two antipodal points on the sphere (a kind of double cover) and
as a point on the hypersphere in 4D. Each rotation represented as a point on the hypersphere
is matched by its antipode on that hypersphere. The quaternion represents a point in 4D.
Constrained to unit magnitude, it yields a 3D space, i.e., the surface of a hypersphere. The
group of unit quaternions S3 ⊂ H is isomorphic to SU(2). We identify S3 and SU(2) with
this isomorphism. The relation with the Möbius group G is then easily made (see Toth [52]
or Slagter [25]), and also with the alternating group A5, which is isomorphic to the binary
symmetry group of the icosahedron. Because the icosahedron can be circumscribed by
five tetrahedra, they form an orbit of order five symmetry rotations of the icosahedron.
These symmetries are subgroups of the icosahedron symmetry group. The connection with
our quintic solution was made in a former study [25,26] by the observation that the vertices
of the icosahedron, stereographically projected to C, are

0, ∞, γj(γ + γ4), γj(γ2 + γ3), j = 0, ...4, γ = e
2πi

5 . (79)

Briefly stated, for the icosahedral Möbius group, through a suitable orientation of the axes,
we can express the linear fractional transformations as ζ → γmζ(m = 0...4). The binary
icosahedral group G∗ is associated with the Möbius group G ⊂M0(C)26.

Now, let us attempt to establish a connection with state vectors in C2. On a complex
Hilbert space H, which is taken as the space C2 consisting of pairs |U〉 = (V ,W) and is
equipped with a scalar product, one can define a state vector as the set of multiples λ|U〉,
with |λ| = 1, and satisfying the normalization condition 〈U |U〉 = 1. Further, we have the
matrix

ρ := |U〉〈U |, ρij =

(
VV̄ VW̄
WV̄ WW̄

)
, (80)

with ρ† = ρ and Tr(ρ) = 1. We now define the vector ~V = (V1, V2, V3) ∈ R3, with ρ11 =
1
2 (1− V3), ρ22 = 1

2 (1− V3), and ρ21 = ρ̄12 = 1
2 (V1 + iV2). We can write ρ = 1

2 (I+ ~V.σ),
where σ represents the Pauli matrices. Further, 1 − V2 ≥ 0. We define the vector
~X = (x, y, z, y5) and take λ = eiα as a phase factor. We then writeWi → eiαWi,Vi → eiαVi.
So, ~X → cos(α)~X + sin(α)J~X, where J~X = (−X2, X1,−X4, X3) = (−y, x,−y5, z) is a
normalized combination of two orthogonal unit vectors in R4 for all α. In fact, we
obtain a Hopf fibration of S3. This fibering involves the stereographic projection of
X4 = y5 = 0 onto S3, analogous to the stereographic projection in one dimension lower.
Remember that we have identified the antipodal points, so we obtained a Klein bottle
K = {(V ,W); |V|2 − |W|2 = cos(θ)} ∈ S3 ⊂ C2 within R3 (see Equation (81) below).
However, it is embedded within our R4. If we project from (0, 0, 0,±y0), the running point
~X on S3 is now related to its stereographic image~x = (x1, x2, x3) by X4 = ± x2−1

x2+1 , Xi =
2xi

x2+1 .
For the normalization of |Z〉, we first define ϕ = ϕ2 − ϕ1 and write

W = cos(
θ

2
)eiϕ1 = cos(

θ

2
)e−iϕ/2ei(ϕ1+ϕ2)/2

V = sin(
θ

2
)eiϕ2 = sin(

θ

2
)eiϕ/2ei(ϕ1+ϕ2)/2. (81)
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Varying α will only change (ϕ1 + ϕ2)/2 and not ϕ and θ. Further, we have V3 = cos(θ) and
V1 + iV2 = sin(θ)eiϕ, Z = V

W = tan(θ/2)eiϕ, with the antipodal identification ϕ→ ϕ + π.
One can compare this visualization to the orientable counterpart situation of the torus
(for details, see Toth [52] (Section 1.4) or Urbantke [50]). So, if we consider a Hawking
particle falling in, it travels for a while in R4, transitioning from y5 → −y5, and arrives at
the antipodal point in R3.

5.3. Treatment of the Gravitational Backreaction

The most ideal procedure is to solve the system of PDEs with the (θ, ϕ) coordinates
(or ϕ alone in our case). This approach was carried out in the case of the Vaidya spacetime
using the high-frequency method [45,46]. However, one can gain some insights from
an approximation procedure. This involves temporarily switching off the gravitational
backreaction by considering “soft” particles. In short, a firewall caused by ingoing particles
can be replaced with outgoing particles. So, the entire distribution of all ingoing particles is
related to the entire distribution of the outgoing ones. In this approximation, one obtains a
black hole evolution operator. The antipodicity is mandatory (in our case, the Klein surface);
otherwise, the relation between ingoing and outgoing particles would not be unitary. Here,
quantum mechanics comes into play: the relation can be described by the relation between
momenta and position; one is the Fourier transform of the other. The transform is unitary
if one incorporates regions I and II of the Penrose diagram, i.e., integration from −∞ to
+∞. So, the process is time-reversible. The firewall transformations come together with
the so-called Shapiro shift effect. The gravitation interaction is described by this shift effect,
a time delay of signals grazing past a heavy object. One uses in the calculation of the
expansion in spherical harmonics. One states that the Hawking particles, which originated
near the horizon with very high energy and momentum, can be regarded as decaying
firewalls. What about the entanglement? As already stated, one also has to average over
the contribution of the quantum states of region II. However, the inside observer will not
detect these states. We cannot include these states in the final stage of the evaporating
black hole. So, pure quantum states turn into mixed states. One could conclude that
the information from the states |E, n〉I I will eventually escape from the black hole in the
distant region III. This leads to the well-known paradoxes. We already explained the
solution, i.e., through the firewall transformation and the antipodal map. The information
retrieval process is summarized as follows: the outgoing particle carries the information
of the ingoing particle back to the outside world (via the shift to the new coordinates of
the outgoing particles). So, a firewall will not build up27. To see that the antipodal map
is mandatory, we first note that there was no one-to-one mapping of the coordinates in
regions I and II. The map is one-to-two. Are there two black holes? An Einstein–Rosen
bridge does not solve the problem (or another universe). The antipodal map makes the
mapping one-to-one, yet they remain distinct because they are space-like separated. The
states |E, n〉I I and |E, n〉I now describe visible particles outside the horizon. This means
that the state no longer requires summation over unseen states to form the density matrix.
We still have a pure state. If one sums over the other states far away from the antipodal
area and unobservable to the local observer, then one would conclude that these particles
have the Hawking temperature. However, the entire state is not thermal. The Hawking
particles on one hemisphere are entangled with the antipode. For the outside observer,
the Hartle–Hawking wave function is no longer a thermally mixed state, but a single pure
state. In general, the antipodes are completely entangled. So, the outside observer is far
from the black hole, and the black hole is not in a stationary Hartle–Hawking quantum state.
Or to state it differently, there is no complete heat bath. This does not violate Einstein’s
equivalence principle because the points at the opposite sides of the horizon are always
space-like separated. It seems that the particles entering and emerging from the black hole
can be seen as quantum clones in regions III and IV. This is a point of concern. In our
model, we shall see that this concern disappears. In Section 4, we mentioned the time
delay in the Hawking particle traveling on the Klein surface in our model. If this time is
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detectable, it could provide evidence of the antipodal map, as well as evidence of an extra
dimension. A second point of concern is the infinitely fast transport of information from
a point at the horizon to its antipode. One can argue that for the outside observer, this
lasted an infinitely long time in coordinates (U,V). In cosmological time, in our model, this
transport will take a finite time, possibly measurable. Note that for the co-moving observer,
the Hawking particles continue their way falling inwards, and they do not observe the
re-emission. A third point of concern is the time reversal in region II. Could this time
reversal be related to thermodynamical entropy? This is not necessary, as proposed by
Lloyd [53]. Maybe the degree of entanglement determines the arrow of time. Quantum
uncertainty and the way it spreads as particles become increasingly entangled could replace
the standard notion of the arrow of time. The direction of time can thus be related to the
increase in quantum mechanical correlation. The particles running backward in region II
decrease in quantum mechanical correlation28. To quote Lloyd: “The universe as a whole
is in a pure state, but individual pieces of it are in a mixture because they are entangled
with the rest of the universe. When you read a message on a paper, your brain becomes
correlated with it through the photons that reach your eyes. At that moment, you will
be capable of remembering what the message says. So the present can be defined by the
process of becoming correlated with our surroundings”. Finally, the approximation of the
gravitational dragging needed to describe the transfer of the information and bypass the
problem of the non-constant background metric is only valid for a small time interval. Just
like in the Regge–Wheeler approximation, there is the problem of matching. In our model,
we still have the dynamical equations on the effective 4D spacetime. Our decoupling of the
dynamical part and the spherical harmonics is not performed manually but follows from
the PDEs.

5.4. Treatment of the Quantum Fields

An outside observer will register the Hawking radiation as thermal, i.e., in a mixed
state, whereas a local observer will be in doubt about the vacuum state. Further, the evo-
lution of the wave function of the infalling particle must be unitary, i.e., it satisfies the
Schrödinger equation |χ(t1)〉 = U(t1, t2)|χ(t2)〉 and is bijective. It is believed that during
black hole evaporation, information on the quantum state is preserved. Information loss
is inconsistent with unitarity. So, the problem is how to handle the controversy between
the pure quantum state of the infalling particles and the mixed state property of Hawking
radiation. From the antipodal mapping in R4, we also have einϕ → ein(ϕ+π). This can be
“visualized” by examining Figure 4, where we consider points on the circle on S3 for which

sin(θ/2)einϕV(α)− cos(θ/2)W(α) = 0. (82)

From the real part, we obtain the plane after the stereographic projection,

x3 = tan(θ/2)(cos(ϕ)x1 − sin(ϕ)x2. (83)

If we apply einϕ → ein(ϕ+π), the plane is rotated over π. The imaginary part delivers the
two spheres x2 ∓ tan(θ/2)(sin(ϕ)x1 + cos(ϕ)x2) = 1. In the following, we propose that
the infalling Hawking particle travels for a while on the Klein surface in R4. Now, consider
the state

|χ〉 = |χ̂〉einϕ (84)

and the density matrix
ρA = ∑

i
pi|χi〉A A〈χi| (85)

as a mixture of pure states and weights pi, where ∑ pi = 1. Further, TrρA = 1 and ρ2
A = ρA.

The density matrix does not contain the phase. So, the change in the azimuthal angle
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ϕ has no influence on the pure states. This can be compared to the “pureness” of ρ in
Equation (80) of normalized state vectors on S2 ⊂ R3. In addition to ~V,

~V =
(
VW̄ +WV̄ , i(VW̄ −WV̄), |V|2 − |W|2

)
, (86)

independent of a phase change in |U〉 = (V ,W), and we define

~Z = ~P + i~Q =
(
V2 −W2, i(V2 +W2),−2VW

)
. (87)

(~V,~P, ~Q) forms a positively oriented orthonormal triad. Now, ~P is a unit tangent vector
to S2 at ~V. If |U〉 → eiα|U〉, then ~V remains independent of this phase change, whereas
~Z → e2iα~Z. One can verify that ~P registers a phase change mod(π). When |U〉 → −|U〉,
~U still yields the same ~P, whereas (~R,~P) together determine |U〉 up to sign. Let us now
interpret |〈U |U ′〉|2 (independent of the phase) as a “probability”. In the language of the
geometric picture, here,

√
1− |〈U|U ′〉| = 1

2 |~V− ~V′| represents the diameter of S2. This
“visualization” is in fact a Hopf fibration of S3 [52]. In our case, we are dealing with a
time-dependent situation, and the state vectors follow the Schrödinger equation

d
dt
|U〉(t) = − 1

}H|U〉(t), (88)

where H is a Hermitian matrix, with H = H0I+ ~H.σ. One finally obtains

d~V
dt

= ~V =
2
}
~H× ~V, (89)

which is the time evolution in S2. From Equation (86) we have ~V.~V = 0, so a pure state
remains pure and a mixed state remains mixed. In the former antipodal description on
the hyper three-surface, it was concluded that a local observer sees a vacuum, the Hartle–
Hawking state

|0〉HH = C ∑
E,n
|E, n〉I |E, n〉I Ie−

1
2 βE (90)

He can use the creation and annihilation operators. All these states remain pure due to
the antipodal identification. However, the loose entanglement of the HH state exists. So
he observes a perfect thermal mixture with Hawking’s temperature. The outside observer
concludes that the vacuum contains states |E, n〉 in regions I and II of the Penrose diagram.
His Hawking particles are not precisely thermal since there is strong entanglement between
the particles emitted at the opposite hemispheres of the horizon. Further, region II is not
“really there”. It represents the inside of the black hole. The only problem is that the
information seems to travel infinitely fast to the antipodal point.

In our warped spacetime, we noticed that the cut-and-pasted identification can be
replaced with the Klein surface: there is no need for instantaneous transport of information.
Further, while traveling in the bulk for a while in local time (or in the tortoise coordinate
system) close to the brane, the gravitons become “hard”, i.e., very massive, due to the shape
of the gravitational probability function. This causes backreaction on the brane (Section 2).
Moreover, when returning to the brane, we do not encounter problems concerning the
firewall caused by the hardness of the particles. In Figure 5, we visualized the 5D topology.

The two antipodal regions (I + I I I) and (I I + IV) are marked on the brane. Close

to the center, quantum effects emerge. We have UV = (r− rH)
κrH

2(rH+b2)
3 (see also Figure 1).

Arrows in red represent the ingoing particles, whereas those in green represent the outgoing
particles. The ingoing Hawking particles reappear at the antipode. However, they stay
awhile on the Klein surface. Again, the particles remain entangled. The embedding of the
Klein bottle is without self-intersection in R2

+ ×R× S1.
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Finally, we make a remark on the role of the dilaton. The gravitational force is small in
the effective 4D spacetime. This is due to the warp factor, which is the amount by which
one rescales the energy. On the weak brane, the graviton has a small probability function,
while away from the brane, the gravitational force “spreads” into the extra dimension
and becomes heavier [11]. We have already noticed that the dilaton field describes the
complementarity. The local observer can rescale his ω. According to our definition of
spacetime in Equations (4), (9), and (12), we have two contributions. They both behave as
scalar fields on small scales. The 5D part could be the radion field (or “gravi-scalar”), which
characterizes the RS-1 model. In Section 2, we found that the Eµν tensor carries information
about the gravitational force outside the brane. We also found that it affects the evolution
of the brane fields, which delivered the new exact solution. Therefore, we do not need
a perturbation method to find the y5-dependent part. Our conformal model provides a
constant value for ω(y5). So, Eµν is the only imprint of the bulk29. Further, we replace
the Shapiro effect with the interaction of the dilaton field and the “ unphysical” metric
g̃µν, along with the scalar field. This is plausible due to the curvature of the Klein surface,
which is conformally flat. In the RS2 model, we have the Z2 symmetry. So, the mapping
y5 → −y5 identifies the Klein surfaces. One could say that the transition to the antipode
map in the extra dimension becomes less “mysterious”. Initially, the Hawking particles
traverse a proper finite time. The apparent discontinuity during the “jump” disappears in
the Klein model within the RS2 warped spacetime model.

Figure 5. In the RS2 model (1 brane), there is a mirror symmetry Z2, i.e., y5 → −y5. So, we have a
contribution from the antipode when considering Hawking radiation (see text). The antipodal map
on the brane is suppressed for clarity. Right: the ingoing and outgoing Hawking particles.

6. Conclusions

We can formulate the main results of our model as propositions:

Proposition 1. The vacuum solution found in the conformal invariant 5D warped spacetime,
where the metric is determined by a quintic polynomial, can be described by a Laplace-type equation
on a Klein surface. This quintic polynomial can have one real zero with a multiplicity of 5 under
some constraints of the parameters of the model under consideration. On the Klein bottle, the first
non-zero eigenvalue of the Laplacian also has a multiplicity of 5. The minimal area is determined
through an elliptic integral of the second kind.

Proposition 2. The antipodal mapping of regions I and II in the Penrose diagram is accompanied
by the continuous transition in the extra bulk dimension using a non-orientable Klein surface that
is embedded in R4 ∼ C1 ×C1.

Proposition 3. In the conformal dilaton-scalar field model on a warped spacetime, the field equa-
tions for the dilaton ω, which is part of the gravitational part of the spacetime, and the scalar
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field obey comparable Klein–Gordon-type PDEs. The interaction of these quantum fields in the
“un-physical” conformally flat spacetime describes the time evolution of the horizon.

Proposition 4. The information problem was solved by the antipodal boundary condition, i.e., by
removing the inside of the black hole. The result was, that the black hole is not thermal because there
is no “hidden sector” to produce the thermodynamically mixed state of the Hawking radiation. All
states remain pure for the outside observer.

In our model, the antipodal map on the brane is accompanied by the Z2 symmetry in the
bulk in the RS2 model. This means that there is no infinitely fast transport to the other side of
the hemisphere. The Hawking particles remain for a while on the Klein surface, as seen by the
outside observer.

Proposition 5. The geometric quantization of our Klein surface can be constructed using a two-
level Hilbert space on the complex hypersurface C1 ×C1.

7. Discussion

One can conjecture that new Planck scale physics should be necessary to address
the black hole paradoxes, such as the information paradox. Considering only the low
energy seems inadequate for describing Hawking radiation together with gravitational
interaction. The Hilbert space will be affected, and one needs new geometrical boundary
conditions to incorporate the quantum effects. One of the issues that needs clarification is
the physical interpretation of the maximally extended Schwarzschild spacetime manifold
in Kruskal–Szekeres coordinates. The geometry of the spacetime can be divided into four
regions in the Penrose diagram. An alternative method is the “cut-and-paste” method,
where the “obscure” regions II and IV are the antipodes of our real regions I and III. One
secures the unitarity of the S-matrix. The handling of high energies and the gravitational
backreaction is performed in this model through the Shapiro dragging by considering
the equations in the transverse spherical coordinates. One usually expands the spherical
harmonics in Yl,m(θ, ϕ) and the dynamics factorizes in (l, m). Soft particles transform into
hard particles for a short time, removing the firewall. Region II then refers to the same black
hole as region I, but for the solid angle, we apply the map (θ, ϕ)→ (π− θ, ϕ + π) together
with the dynamical map of the Kruskal–Szekeres coordinates (U, V)→ (−U,−V).

We presented a solution of a conformal invariant dilaton–Higgs Kerr-like black hole on
a 5D warped axially symmetric spacetime and clarified some shortcomings of the antipodal
mapping. We replaced the spherical harmonics with cylindrical ones Ym(ϕ) and used the
winding number of the scalar-Higgs field as a second quantum number. The dynamical
part was obtained using partial differential equations in (r, t) and could be solved exactly
in the vacuum case. It was conjectured that the angle-dependent part of the model could be
derived in the non-vacuum case to confirm the numerical solution. By applying conformal
invariance, we could treat the small-scale dynamics through the dilaton field, which is
coupled to the scalar field. It also described the complementarity between the ingoing and
outside observers. Using the Randall–Sundrum warped brane-world model with one extra
dimension y5, one antipodal map became (U, V, z, ϕ, y5) → (−U,−V,−z, ϕ + π,−y5),
with an extra Z2 symmetry in y5. This means that the stereographic projection of S3 was
replaced with S4 ∼ C1 × C1, which is a Klein bottle embedded in R4. The Hawking
particles remained pure because the in-particle stayed on the Klein surface for a short
time and remained entangled. No infinitely fast transport through the antipodal map was
necessary.
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Notes
1 It is a global symmetry when one considers the spacetime as fixed.
2 One can also use the Eddington–Finkelstein coordinates (U, r, z, ϕ, y5).
3 For the time being, we omit the cosmological constant term ∼ Λω4.
4 The signs of ai and Ci are not important yet.
5 Here, we will not treat the conformal anomalies [30].
6 In this case, the dz2 term is maintained.
7 The sign of a2 is just a matter of convention.
8 This technical aspect is currently under investigation by the author.
9 See Slagter [26]. The replacement t→ iτ has no influence on the solution.

10 When we apply the antipodal mapping, ’t Hooft suggests cutting out an S3 sphere, with topology R× S3/Z2. This is not
necessary in our 5D model. The effective 4D spacetime is already present.

11 If one allows a Higgs field, then for d = 2, one calls the configuration a vortex, and for d = 3, a monopole.
12 In Euler angles (θ, ξ, ϕ).
13 Note that we have the double cover C1 ×C1 for our original spacetime. Then, ϕ indeed runs from 0...2π.
14 Remember that ω contains the gravitational constant κ due to the redefinition.
15 The scalar-gauge system possesses a quantized magnetic flux ∼ n

e , which equals the first Chern number of A on R2
+. This has an

important consequence in the expansion of the scalar field in cylindrical harmonics (see Section 5).
16 Another interesting method could be derived from the equation of the directrix of the Klein bottle. From the integral curve of the

PDEs, ∂r
∂te

, one could find, in principle, the elapsed time [37].
17 There is a difference between Maldacena’s method and our model: our method does not need a matter field in the bulk.
18 There are no fixed points.
19 Also called the “cut-and-paste” procedure or firewall transformation.
20 Further, our slice is the Klein surface!
21 Remember that we used twice the dilaton separation.
22 Remember that our solution for N in Section 4.2 could be written as [25] a meromorphic polynomial P(z)

Q(z) , with Deg(P) = 5.
23 With x = r sin ϕ, y = r cos ϕ.
24 Because ei(ϕ+π) = −eiϕ.
25 Let G be the group of self-homeomorphisms of the product space S2 × S2, generated by interchanging the two coordinates of

any point and by the antipodal map on either factor. G is then isomorphic to the dihedral group. It contains three subgroups,
for example, K = {I, (x, y)→ (−x, y), (x, y)→ (x,−y), and (x, y)→ (−x,−y)}. It acts freely on S2 × S2. Thus, (S2 × S2)/K =
RP2 ×RP2. The most interesting feature is the fact that the twofold symmetric product of RP2, SP2(RP2) = RP4.

26 Remember, SO(3) ∼=M0(C) = SU(2)/{±I}.
27 For a more extensive description, see t’ Hooft [10].
28 Another issue is the proposition that the entropy is proportional to the horizon area and not the volume. There is no inside in the

antipodal map. In the context of the Klein surface, does the area extend to the Klein surface? In the RSII model, this is not an
issue because the two mirror surfaces cancel each other.

29 From the black hole, where we have an FLRW spacetime, the warp factor is y5-dependent. One then Fourier expands the
perturbative 5D graviton amplitude as f (x, y5) = ∑m eimy5 fm(x) The KG equation for f is replaced with our dilaton field.
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