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Abstract: This review paper emphasizes the significance of microscopic calculations with quantified
theoretical error estimates in studying lepton—nucleus interactions and their implications for electron
scattering and accelerator neutrino oscillation measurements. We investigate two approaches: Green’s
Function Monte Carlo and the extended factorization scheme, utilizing realistic nuclear target spectral
functions. In our study, we include relativistic effects in Green’s Function Monte Carlo and validate
the inclusive electron scattering cross section on carbon using available data. We compare the
flux-folded cross sections for neutrino-carbon scattering with T2K and MINERvA experiments,
noting the substantial impact of relativistic effects in reducing the theoretical curve strength when
compared to MINERvVA data. Additionally, we demonstrate that quantum Monte Carlo-based spectral
functions accurately reproduce the quasi-elastic region in electron scattering data and T2K flux-folded
cross sections. By comparing results from Green’s Function Monte Carlo and the spectral function
approach, which share a similar initial target state description, we quantify errors associated with
approximations in the factorization scheme and the relativistic treatment of kinematics in Green’s
Function Monte Carlo.

Keywords: electroweak responses; lepton—nucleus scattering; nuclear spectral function; quantum
Monte Carlo

1. Introduction

The electron scattering experimental program at Jefferson laboratory, aimed at investi-
gating nuclear short-range correlations [1-3], and the accelerator neutrino program, which
will culminate with the completion of DUNE [4], have been the springboard for significant
progress in theoretical calculations of lepton-nucleus scattering. Approaches based on
empirical effective nucleon-nucleon interactions [5-8] have been used to study inclusive
and semi-inclusive neutrino scattering data in a variety of kinematic setups [9-20]. De-
spite their success, it is still imperative to attain a description of lepton-nucleus scattering
from microscopic nuclear dynamics, which assumes that the structure and electroweak
properties of atomic nuclei can be modeled in terms of nuclear potentials and consistent
electroweak currents. These microscopic approaches allow one to quantify the theoret-
ical uncertainties due to both modeling nuclear dynamics and solving the many-body
Schrodinger equation. This aspect is critical for a meaningful comparison with electron
scattering data, and, perhaps more importantly, to rigorously assess the error budget of
neutrino oscillation parameters. Moreover, retaining nuclear correlations in the initial target
state is important to explain the observed abundances of neutron—proton correlated pairs
with respect to the proton—proton and neutron—-neutron ones [21]. These experimental
measurements can in turn shed light on the behavior of nuclear forces at short distances,
which plays an important role in the equation of the state of infinite nuclear matter at high
density [22,23].
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Variational Monte Carlo (VMC) and Green’s Function Monte Carlo (GFMC) methods
have proven to be extremely successful for computing the structure and electroweak transi-
tions of atomic nuclei taking as input highly realistic nuclear Hamiltonians [24]. Over the
past decade, these methods have been employed to carry out microscopic calculations of the
electroweak response functions of light nuclei, fully retaining correlations and consistent
one- and two-body currents [25-28]. Computing the hadronic response tensor is a highly
nontrivial task, as it involves transitions from the initial ground state of the target to excited
states, both bound and in the continuum. The prohibitive difficulties involved in com-
puting all transitions mediated by the electroweak current operators are circumvented by
employing integral transform techniques. Within this approach, the electroweak response
functions are inferred from their Laplace transforms, denoted as Euclidean responses,
which are estimated during the GFMC imaginary-time propagation. Retrieving the energy
dependence of the response functions from their Euclidean counterparts is nontrivial. The
maximum entropy method [29,30] has been extensively employed to retrieve the energy
dependence of the electroweak response functions in the smooth quasi-elastic region. More
recently, inversion methods based on deep neural networks have been proposed as viable
alternatives and seem to be more accurate, especially in the low-energy transfer region [31].

One of the main limitations of the GFMC approach lies in the nonrelativistic formula-
tion of the many-body problem. Although the leading relativistic corrections are included
in the transition operators [32], the kinematics of the reaction is nonrelativistic, thereby
limiting the application of the GFMC to moderate values of the momentum transfer. This
restriction is particularly relevant when making predictions for inclusive neutrino-nucleus
cross sections since the incoming neutrino flux is not monochromatic and its tails extend to
high energies. In Refs. [33,34], relativistic effects in GFMC calculations of lepton—nucleus
scattering are controlled by choosing a reference frame that minimizes nucleon momenta
and utilizing the so-called “two-fragment” model to include relativity in the kinematics of
the reaction.

On the other hand, alternative approaches based on the factorization of the nuclear
final state, such as the spectral function (SF) formalism [35], can reach larger energies
and momentum transfers, as they include relativistic effects in both the kinematics and in
the interaction vertex. In contrast with the GFMC, the SF approach can access exclusive
channels and larger nuclei. However, while based on a similar treatment of the initial target
state, factorizing the final state involves additional approximations, which are only valid
at large momentum transfer and whose validity can be tested against comparisons with
GFMC calculations [36,37].

In this work, we first review the GFMC and SF approaches to compute inclusive
lepton—-nucleus scattering, placing particular emphasis on the role of relativistic effects
and two-body currents. We then compare the SF predictions for the neutrino—nucleus
cross sections with the MINERVA Medium-Energy charge-current quasielastic (CCQE)-like
data [38]. Finally, we present unpublished GFMC calculations for the inclusive electron-1>C
cross sections that include relativistic corrections.

2. Methodology

The lepton—nucleus differential cross section in the one-boson exchange approximation

can be written as p
o
(m)l = LR, M

where [ stands for either a charged lepton or neutrino, C; is a coupling term, and E’ and ()
are the energy and solid angle of the lepton in the final state. The leptonic tensor is denoted
by LZW and is a function of the initial and final lepton four-momenta k and k/, respectively.
For small lepton energy, the Coulomb distortion of the outgoing lepton in the potential
of the residual nucleus can be described by multiplying the cross section by the Fermi
function F(Z, k"), with Z denoting the number of protons. The expression of this function
for charge-raising reactions is given in Ref. [32], and it is equal to one otherwise. For higher
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energies, the correction is provided by the modified effective momentum approximation
as discussed in Ref. [39], where an effective momentum is utilized for the final lepton,
correcting its value with the Coulomb energy evaluated at the center of the nucleus and
modifying the phase space representing the density of final states accordingly. For the
comparisons with T2K and MINERvA data discussed in this review, the effect of Coulomb
corrections is negligible as discussed in Figure 9 of Ref. [40] and therefore they have not
been included.

In this review, we will consider electromagnetic and CC electroweak interactions.
In the first case, we have an electron in both the initial and final state, the prefactor
reads C,. = aE/(Q*E’), where E is the energy of the initial lepton, « = 1/137 is the
electromagnetic fine structure constant, Q> = q? — w? is the four-momentum transfer and
the leptonic tensor is

1
Ly = ﬁ(kyk/v + k;lkV — & (k- K — mg)) ’ ()

where m, = 511 keV is the electron mass. Note that we adopted the convention h = ¢ = 1.
For CC electroweak interactions, we have that a neutrino or anti-neutrino scatters off
the initial nucleus and in the final state the corresponding charge lepton is emitted.
The prefactor reads C; = (Gpcos6)?/(4m)|K'|E' with Gr = 1.1803 x 107> [41] and
cosf. = 0.97425 [42]. The leptonic tensor has an additional term proportional to the
Levi-Civita tensor
Ly = %(kyk{, + Kky = guv k- K+ €upuokPk”), )

where the sign +(-) corresponds to a v (7) in the initial state.

The hadronic response tensor, R*¥, contains all the information on the structure of the
nuclear target and is defined as

Ry =Y (Yol I3 ¥ ) (¥f1Ju[¥0)d(Eo + w — Ey), @)
f

in terms of a sum over all transitions from the ground state |'¥) with energy E to any final
state |¥¢) with energy Ef, including states with additional hadrons. The nuclear current
operator describing the interaction with the electroweak probe is denoted by J,,.

2.1. Nuclear Hamiltonian and Current Operator

Microscopic nuclear methods are aimed at describing properties of nuclear systems as
they emerge from the individual interactions among the constituent protons and neutrons.
This endeavor is based on the tenet that the internal structure of atomic nuclei can be
described starting from a nonrelativistic Hamiltonian of A point-like nucleons

2
i

A A
+) v+ Y Vi ©)

i<j i<j<k

A
_ P
H—;sz

In the above equation, p and my are the nucleon momentum and mass defined as the
average of the proton and neutron mass my = (m, + m;)/2, while vjj and Vjji are the two-
(NN) and three-nucleon (3N) potentials, respectively; four- and higher-body potentials are
assumed to be suppressed.

Phenomenological NN interactions have been traditionally constructed by including
the long-range one-pion exchange interaction, while different schemes are implemented
to account for intermediate- and short-range effects, including multiple-pion exchange,
contact terms, heavy-meson exchange, or the excitation of nucleons into virtual A-isobars.
As an example, the highly accurate Argonne v1g (AV18) potential [43] involves a number
of parameters that are determined by fitting deuteron properties and the large database
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of NN scattering data at laboratory energies up to pion production thresholds. The AV18
potential is written as

18
Uij = Z UP(“]')OZ' . (6)
p=1
The first 14 spin-isospin operators are charge-independent

i L-S, 1%L (0; - 07), (L- S]] x [1, 7 - 7], )

1-14
Ol-]- =[l,0i-0S
where o¢; are Pauli matrices that operate over the spin of nucleons,
Sij = 3(#ij - 0;)(7ij - ¢j) — 0; - 0} is the tensor operator, L;; = x(r; — 1) x (V; = V) is the
relative angular momentum of the pairijand S = %(Vi + V) is the total spin. The remain-
ing operators include three charge-dependent terms and one charge-symmetry-breaking
contribution

15-17 _
O =[,0i 05,8 x Ty,

Of =t + 17, (8)

where Tj; = 3'(1»21']»2 — T; - Tj is the isotensor operator.

Phenomenological 3N interactions, consistent with the NN ones, are generally ex-
pressed as a sum of a two-pion-exchange P-wave term, a two-pion-exchange S-wave
contribution, a three-pion-exchange contribution, plus a contact interaction. Their inclu-
sion is essential for reproducing the energy spectrum of atomic nuclei and the saturation
properties of infinite nucleonic matter. For instance, the Illinois-7 3N force [44], when used
together with AV18, can reproduce the spectrum of nuclei up to 12C with percent-level
accuracy—see Figure 2 discussed in Section 3.

The past two decades have witnessed the tremendous development and success of
chiral Effective Field Theory [45-56] (XEFT). This formalism exploits the broken chiral
symmetry pattern of QCD, the fundamental theory of strong interactions, to construct an
effective Hamiltonian organized in powers of the ratio between the pion mass, m, or a
typical nucleon momentum, Q, and the scale of chiral symmetry breaking, Ay ~ 1 GeV.
Over the years, NN interactions have been developed up to N°LO in the chiral expan-
sion [57-59], with a full systematic error analysis currently underway [60]. On the other
hand, chiral 3N forces have been fully derived at N>LO, while only contact terms at N*LO
have so far been included [61].

Analogously to the nuclear Hamiltonian, the nuclear current operator J#, which
couples the nucleus to the external electroweak probe, can be written as a sum of both one-
and two-body contributions

Ta(a) =3 jf () + 3 jf(a) + - )
i ij

where higher-order terms, involving three nucleons or more, are found to be small [62]
and generally neglected.
The one-body electromagnetic current is given by

fem(@) = 7 s(a) + 2 (a), (10)

where the first term is the isoscalar contribution and the second one is the isovector. The
isoscalar component reads

S S S _ S
]’V 5(’7) — Myy + iayqu GM GE . (11)
T 2(1+ Q?/4m3)) dmy 14 Q?/4m3,
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The isoscalar and isovector components of electric and magnetic form factors are
written in terms of the proton and neutron ones as

Giy = GEm +GEms GEm = Giam — GEm- (12)

The isovector contribution to the current operator j . is obtained by replacing
GE,M — GEMTz in Equation (11).

The one-body charge and current operators employed in the GFMC are obtained from
the nonrelativistic reduction of the covariant operator of Equation (11), including all the
terms up to 1/m%;. This expansion leads to the following expressions for isoscalar charge,
both transverse (L) and longitudinal (]|) to q components of the current operator

S S S
GS 2G5 — G}

-0
Jys = q-(@xp)
a1+ Qramd, 8

Gi 1. Gu

o | _ E _ oM

]’)/,S _2mN 1477’1]\] (q X 0-)

| w

]ry,s - |q|]'y,5 : (13)

Note that the last relation has been obtained from the conserved vector current (CVC)
relation [63], e.g., w]°(w, q) — q-J(w, q) = 0. The CC electroweak interactions of a neutrino
or anti-neutrino with the hadronic target are written as the sum of a vector and axial term

jec(@) =iy (9) + %+ (9)- (14)

The CVC hypothesis allows one to write ]@ , (¢) in terms of the isovector term where
T, is replaced by the isospin raising-lowering operator 7+ = (T + T;,) /2. The relativistic
expression of the axial one-body current operator reads

G
Ja,+ THysGaTe — ¢ ’)’57mNTi . (15)

Based on Partially Conserved Axial Current (PCAC) arguments, the pseudo-scalar
form factor is written in terms of the axial one
2m3;
(m% +Q?)

Most neutrino—nucleus scattering calculations are carried out employing a dipole
parameterization for the axial form factor, which is given by

Gp = Ga. (16)

8A

Ga="— 5, (17)
(1+Q/AY)?

where the nucleon axial-vector coupling constant is taken to be g4 = 1.2694 [64] and

the axial mass is taken as A4 = 1.049 GeV [65]. More recently, a model-independent z
expansion has been introduced to parameterize the axial form factor

00 . jmax .
Ga(Q%) = L4 2(Q" ~ ) 4;z(Q%). (18)
j=0 j=0
In the last equation, z is an analytic function of Q? for Q% = —t > —t,

Vet @ -VEh
Vie+ Q2+ Vet

z(Q%) (19)
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where £ is the location of the t-channel cut [66-68] and t( is an arbitrary parameter. The
coefficient 4; includes nucleon structure information and jmax is a truncation parameter
required to make the number of expansion parameters finite. The coefficients of this
expansion are determined by fitting either neutrino—deuteron scattering data [69] or Lattice-
QCD nucleon axial current matrix elements at several discrete values of Q% [70-72]. The
results of these different determinations of the axial form factors are displayed in Figure 1.
While an agreement between different LQCD calculations is clearly visible, the LQCD axial
form factor results are 2-3¢ larger than the results of Ref. [69] for Q? > 0.3 GeV?. The
impact of these tensions in the Q% dependence of the axial form factor on neutrino-nucleus
cross section predictions has been discussed in Refs. [73,74] and recently in [37,75].

1.6
I 2 expansion (D2 Meyer et al.)
1.4 ¢ 0 2 expansion (LQCD Bali et al.)
[ 2 expansion (LQCD Park et al.)
1.2 [ 2 expansion (LQCD Djukanovic et al.)
1.0 I DipolC ]WA = 1.0 GeV
Zost
53
0.6 [
0.4t
02r
OO 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
3 .
2
<)
w 1t
O L L 1 L |
0.0 0.2 0.4 0.6 0.8 1.0

@ (GeV?)

Figure 1. The blue band in the top panel displays the nucleon axial form factor determined using
fits to neutrino—deuteron scattering data with the model-independent z expansion from Ref. [69]
(D2 Meyer et al.). LQCD results are shown for comparison from Ref. [70] (LQCD Bali et al., green),
Ref. [71] (LQCD Park et al., red) and Ref. [72] (LQCD Djukanovic et al., purple). Bands show combined
statistical and systematic uncertainties in all cases. A dipole parameterization with A4 = 1.0 GeV
and a 1.4% uncertainty [76] is also shown for comparison (black). The lower panel shows the absolute
value of the difference between the results of D2 Meyer et al. and LQCD Bali et al. divided by their
uncertainties added in quadrature; very similar results are obtained using the other LQCD results.
Figure from Ref. [37].

For the CC processes, we report the nonrelativistic reduction of the charge and axial
current operators [77] (for brevity, we neglect order 1/m3; terms)

) Ga . Ga
]94,:i: = —MH‘T' q+p), ja+= —MUH . (20)
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and the pseudoscalar contribution
G
Y - A U
= ———1g"0q. (21)
s =y 2 0
The current conservation relation can be rewritten as

V- Jem +i[H, Jiy] = 0. (22)

It requires the introduction of a two-body current operator in Jf,, and links the
divergence of this operator to the commutator of the charge operator with the nucleon—
nucleon interaction.

For the electromagnetic case, however, gauge invariance actually puts constraints on
these form factors by linking the divergence of the two-body currents to the commutator of
the charge operator with the nucleon—nucleon interaction.

Within xEFT, one can exploit the gauge invariance of the theory and construct nuclear
current operators that are fully consistent with the nuclear potentials, at each order of the
chiral expansion. The derivation of YEFT two-body electroweak currents has been the
subject of extensive studies carried out by different groups [78-84].

The majority of the results that will be presented in this review have been obtained
utilizing semi-phenomenological currents that are consistent with the AV18 potential. The
isoscalar and isovector components of the two-body electromagnetic current operator
consist of “model-independent” and “model-dependent term” terms. The former are
obtained from the NN interaction, and by construction satisfy current conservation. They
consist of the one-pion and one-rho exchange current operators—their expressions are
well known and reported in Refs. [35,85,86], both in their relativistic and non relativistic
formulation.

The transverse components of the two-body currents cannot be directly linked to
the nuclear Hamiltonian. The isovector current is associated with the exchange of a
pion followed by the excitation of a A-resonance in the intermediate state. The isoscalar
contribution includes the p7ty transition, whose couplings are extracted from the widths of
the radiative decay p — 7y and the Q? dependence of the electromagnetic transition form
factor is modeled assuming vector-meson dominance [77,87].

3. Quantum Monte Carlo Approaches

Solving the Schrodinger equation for the nuclear Hamiltonian defined in Equation (5)
entails nontrivial difficulties, owing to the nonperturbative nature and strong spin-isospin
dependence of realistic nuclear forces. The VMC method is routinely employed to approxi-
mately find the ground-state solution of the quantum many-body problem for nuclei with
up to A = 12 nucleons [24]. Within this approach, the true ground state ¥ is approximated
by a variational state ¥y, which is defined in terms of a set of variational parameters.
The optimal values of the latter are found by exploiting the variational principle, i.e., by
minimizing the variational energy

Yv|H[Yy)

Ey = > E. (23)

(Fv|¥v) ~
The form of the variational state is taken to be

Ty = Fl|P), (24)
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where F is a permutation-invariant correlation operator of a Jastrow, and the anti-symmetric
|®) controls the quantum numbers and the long-range behavior of the wave function. The
correlation operator explicitly includes correlations between pairs and triplets of nucleons

F= (3 I1 (1+Fijk)) (SHFi]-), (25)
i<j

i<j<k

where S is the symmetrization operator, which is required to ensure the anti-symmetry of
Yy since, in general, neither the two-body correlations, Fij, nor the three-body ones, Fl-]-k,
commute. The structure of the spin-dependent nuclear correlation operators reflects the
one of the NN potential of Equation (6)

6
Fj= Zlup(fij)oz-, (26)
P:

where the first six operators of Equation (7) are Ol.l]fé =[1,0;-0},5j] x[1, 7 tj]. More
sophisticated correlation operators that explicitly include spin—orbit correlations have been
used in the cluster-variational Monte Carlo calculations of Ref. [88]. However, the compu-
tational cost of these additional terms is significant, while the the gain in the variational
energy is relatively small [89].

The GFMC evolves the variational state in imaginary time to filter out the excited state
components so that

[¥o) = lim [¥(7)) = lim exp[—(H — Eo) 7] [¥1), (27)
The above imaginary-time evolution is carried out as a series of many small steps AT
using an exact two-body short-time propagator [90]. At each step, the GFMC retains all
of the spin—isospin components of the nuclear wave function and can take as input the
most realistic local interactions. The results for the ground-state energies of nuclei up to
12C has been computed with 1% accuracy within GFMC using the semi-phenomenological
AV18+IL7 potentials in Ref. [24], and they are displayed in Figure 2. Note that a plot with
a comparable degree of accuracy has also been obtained, using as input the A-full YEFT
nuclear forces that are local in coordinate space [91,92].

20, k - -
C L L ALT - 1
\ R e N Tl
30, o TG T s \\{2) .
C eTEEs2T TR 1
~"He 6p¢ 6 .1 pr SHe i a2t ]
40— Li =12 S0+ =537 s~ 52t 7
C 3/2- k12T ]
C 7L' J ]
—~ - i
o 50
S - ]
5 - Argonne v,g .
g of with Illinois-7 ]
- GFMC Calculations ]
-80— C @ ;
- \\ T \\ ~ 0+:
B AV = | | o]
90— \ AVIS o | ¥ o]
B “ +L7 BXPL 077
-100C C ) 12c_

Figure 2. Energies of light nuclear ground and excited states from a particular parameterization of
Equation (5) computed using Green’s Function Monte Carlo (GFMC) techniques. Figure from [24].
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Since all the spin—isospin degrees of freedom are retained, the GFMC suffers from an
exponential scaling with the number of nucleons, which currently limits its applicability
to light nuclei, up to '?C. The Auxiliary Field Diffusion Monte Carlo can reach larger
nuclear systems by representing the spin-isospin degrees of freedom in terms of products
of single-particle states, thereby reducing the computational cost from exponential to
polynomial in A [24,93]. However, the use of Hubbard—Stratonovich transformations in the
AFDMC imaginary-time propagation prevents the AFDMC from treating highly realistic
NN potentials that include an isospin-dependent spin-orbit term.

3.1. Green’s Function Monte Carlo Calculations of Electroweak Responses

GFMC techniques go beyond just the calculation of ground-state energies and wave
functions. The dynamical properties of the nucleus can be extracted by reducing the sum
over the final states in Equation (4) to the expectation value of a kernel operator evaluated
in the ground state. More specifically, we consider the Euclidean response function

Ewp(q,7) = /dcuK T, w)Rup(q, w)
= 2 Yolli(Q)['¥)K(T, Ef — Eo)(¥f|Js(q)[¥o),

where K(7,w) is a yet-to-be-specified kernel. Using a completeness relation amongst the
final states, this can be simplified to

Eup(q,T) = ;Hom(q)K(nH — Eo)Jg(q)|¥o) (28)

so that the problem involves only the ground state. Choosing an appropriate kernel function
allows one to solve for the Euclidean response using ab initio methods. In particular, a
Laplace kernel has been adopted with GFMC techniques, yielding the following expression
for the inelastic contribution to the response function

Eup(a,7) = [ dwoRyge™ = (FolJE(@)e™ -5y (@) o). 9)

In the electromagnetic case, only the longitudinal (R = Rqp) and transverse
(RT = Ryx + Ryy) responses contribute. In the longitudinal case, we remove the elas-
tic contribution, in which the final state is simply the recoiling ground state, by defining

Fon(a,7) = | daRooe™™ = (Yol i (a)e™HE0o(q)[¥o) — [Fo(@)Pe ™, (30
.wel

In the above equation, w,; = q%/2M 4, with M4 being the mass of the nucleus, is the
energy of the recoiling ground state and the elastic form factor is defined as
Fo(q) = (YolJo(a)[¥0).

The calculation of the imaginary-time correlation operator in the right hand side of
Equation (30) follows the same methodology applied to project out the exact ground state
of H from a trial wave function in Equation (27). First, an unconstrained imaginary-time
propagation of the state |¥) is performed and stored. Then, the states J,(q)|¥o) are
evolved in imaginary time following the path previously saved. For a complete discussion
of the methods, see Refs. [27,94,95]. To retrieve the energy dependence of the response
functions, Bayesian techniques, most notably maximum entropy (MaxEnt), have been
developed specifically for this type of problem [94] and successfully exploited to obtain
smooth quasi-elastic responses [27,95]. However, MaxEnt struggles to reconstruct the
narrow peaks corresponding to low-energy transitions. In particular, understanding the
low-lying nuclear transitions is necessary to properly describe the longitudinal electromag-
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netic responses of '2C in low-energy transfer. The results of Ref. [27] have been obtained by
subtracting the contribution of these excited states by defining

_ 2
Eoo(q,7) = Eoo(q, T) — Z‘ (¥ rlJo(q)|¥o)| e~ BT, (31)
f

where the sum only includes the 27, 05 and 4 final states. The experimental energies and
longitudinal transition form factors from Refs. [96,97] are used.

Furthermore, understanding this region is also crucial for detecting supernova neutri-
nos as well as to describe the low-energy tail contribution of the neutrino flux in accelerator
experiments. To this aim, in Ref. [31] an exploratory study was carried out to develop
physics-informed artificial neural network architectures suitable for approximating the in-
verse of the Laplace transform, utilizing simulated, albeit realistic, electromagnetic response
functions. The training was performed using pairs of physically meaningful responses
and their Laplace transform. There are two data sets of response functions, character-
ized by either one or two distinct peaks in the energy-transfer domain. The left panel of
Figure 3 displays a subset of the two-peaks training data. A detailed comparison of the
reconstruction results obtained for both the one- and two-peak data sets demonstrates that
the physics-informed artificial neural network outperforms MaxEnt in both the low-energy
transfer and the quasi-elastic regions—an illustrative example of this trend is shown in the
right panel of Figure 3. Work is currently underway to extend the study of Ref. [31] to real
GFMC data and to perform error propagation.

0.006 SO —— Original
— 0.010 (7 Phys-NN
% . 0.004 /// —— MaxEnt
2 0.005 n /
3 . 0.002 \{/ N
= 0.000
0.000 ; : ; '
0 200 400 600 0 1001\1 v 200
w [MeV] w [MeV]

Figure 3. Left panel: training data examples of response functions characterized by an elastic narrow
peak in addition to the quasi-elastic peak [31]. Right panel: comparison between the Phys-NN and
MaxEnt reconstructions for the one-peak data set, adapted from Ref. [31].

3.1.1. Relativistic Corrections

One of the limitations of the GFMC approach to describe nuclear reactions is the
nonrelativistic formulation of the many-body problem. Although the leading relativistic
corrections are typically included in the transition operators [32], the kinematics of the
reaction is treated as nonrelativistic, and an expansion of fully relativistic currents in p/m
is performed. The explicit expressions of the one-body current operators adopted in the
GFMC calculation are reported in Section 2.1. Thereby, the application of these methods is
limited to moderate values of the momentum transfer.

In a number of studies [33,34,98-102], a method has been proposed to extend the
applicability of manifestly nonrelativistic hyperspherical harmonics and Quantum Monte
Carlo (QMC) methods to higher momentum-transfer values than typically possible. This
method reduces relativistic effects by performing the calculations in a reference frame that
minimizes nucleon momenta. The reference frame that achieves this goal for kinematics
close to the quasi-elastic peak is the active nucleon Breit frame (ANB). The ANB is defined
as the reference frame moving along the direction of the momentum transfer q where
PZAN B — —AqAN B /2 with PIAN B the momentum of the initial nucleus in the ANB. Indeed,
if one assumes that the bulk of the momentum is transferred to a single nucleon, in the
ANB this nucleon has initial momentum k ~ P{NB/A = —q4NB /2. The corresponding
final-state nucleon has momentum k + q4N8 = q4NB /2. Hence, in the ANB the magnitude
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of both the initial and final-state nucleon momentum is minimal. Additionally, the energy
transfer at the quasi-elastic peak is zero in the ANB frame, implying that qN? is also
minimal at the quasi-elastic peak compared to other frames.

Within a nonrelativistic calculation, the nuclear response can be computed in dif-
ferent reference frames by evaluating Equation (4) at the momentum transfer in the ref-
erence frame specified by q/”, and by taking into account the kinetic energy of initial-
and final-state systems in the energy balance. Thus, the energy-conserving delta function
6(Eo — w — Ey) is evaluated with w = w!/",and E — Ef= —(P?)z/(ZMA) + (Pgr)z/(ZMA),
leading to an energy shift of the response.

The dependence on the reference frame used for calculations can be evaluated by
performing a Lorentz boost of the response back to the LAB frame. At momentum transfers
larger than 500 MeV, one starts to see differences between calculations performed in
different reference frames [33,34,98], indicating that relativistic effects become important.

This frame dependence in the region of the quasi-elastic peak can be significantly
reduced by including the assumption of single-nucleon knockout in the energy balance.
In order to achieve this, one can use the so-called two-fragment model, where a breakup
into two fragments, the nucleon and residual system, is assumed. Following the arguments
of Refs. [33,98], the approach consists of evaluating the nuclear response at an energy
p2,/ (2u), with p,, being the magnitude of the relative momentum of the two fragments
and yu being the reduced mass. The energy of the final-state system can be written in a
relativistic way as

W+ Eg = Ep = \/m2 + (prer + (4/ M)Py)?

+ /M2 + (pray — (/m)Py)?; (32)

where Py = Py + q is the center-of-mass momentum. Under the assumption that p,.; is
directed along q, one can solve Equation (32) for p,;.

In Refs. [33,98], it is indeed found that the frame dependence for electroweak scattering
is strongly reduced when including the two-fragment model to determine the energy.
Moreover, the resulting LAB frame responses are practically identical to the response
obtained in the ANB when the fragment model is not included [34].

Calculations of the nuclear response in the ANB can be used to extend the applicability
of GFMC responses to larger momentum transfer. In Ref. [33], an improved description
of (e,¢’) data for scattering off “He was obtained at large momentum transfer with GEMC
responses computed in the ANB. Recently, this approach was applied to GFMC calculations
of flux-folded charged-current neutrino scattering off 12¢C [34].

4. Extended Factorization Scheme

At large values of the momentum transfer, (|q| 2 400 MeV), the Impulse Approxi-
mation (IA) can be applied in which the lepton—nucleus scattering is approximated as an
incoherent sum of scatterings with individual nucleons, and the struck nucleon system is
decoupled from the rest of the final-state spectator system.

4.1. One-Body Currents

We begin with retaining only one-body current terms and factorize the final state
according to

¥p) = 1) @ ¥4 pa_y), (33)

where |p’) is the final-state nucleon produced at the vertex, assumed to be in a plane-wave
state and on-shell, and \‘I’?_l, P4_1) describes the residual system, carrying momentum
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P _1- Inserting this factorization ansatz as well as a single-nucleon completeness relation
gives the matrix element of the one body current operator as

(Fsli*[¥o) = ;[(‘i’?’ll @ (k[][¥o) (pl L7t ) (34)

where p = q + k. This first piece of the matrix element explicitly does not depend on the
momentum transfer and so can be computed using techniques in nuclear many-body theory.
The second piece can be straightforwardly computed once the currents ]f are specified
as the single-nucleon states are just free Dirac spinors. It is important to point out that
factorization allows for an account of relativistic effect by adopting Dirac quadri-spinors for
the description of the struck particles in the initial and final states and the current operator
of Equation (11). These effects become extremely important at large values of q and w
where a nonrelativistic calculation is no longer reliable. Substituting the last equation into
Equation (4), and exploiting momentum conservation at the single nucleon vertex, allows
us to rewrite the incoherent contribution to the one-body hadron tensor as

) Pk
R’l‘b(q,w):/(2 FAER(k E) it (k)

x 6(@ +e(k) —e(p)),

< Y (k| ke + ) (k + q]jY |k
Z 71 [k 4 q) (k+ gl k) 5)

where e(k) = \/m3; + k2. The factors my /e(k) and my /e(k + q) are included to account
for the covariant normalization of the four spinors in the matrix elements of the relativistic
current. The energy transfer has been replaced by @ = w — my + E — e(k) to account
for scattering off of a bound nucleon. Finally, the calculation of the one-nucleon spectral
function Pj,(k, E) provides the probability of removing a nucleon with momentum k and
leaving the residual nucleus with an excitation energy E; its derivation will be discussed in
Section 5.

4.2. Two-Body Currents

To describe amplitudes including two-nucleon currents, the factorization ansatz of
Equation (33) can be generalized as

¥5) = |pp)a  [¥72). (36)

where |pp')a = |pp’) — |p' p) is the anti-symmetrized state of two-plane waves with
momentum p and p’. Following the work presented in Refs. [35,103,104], the pure two-
body current component of the response tensor can be written as

d3k d3k’ 43 mi
RIY( JE p N
Rav (a0 / )% (27)? e(k)e(K)e(p)e(p’)

x Py(k K, E) Z <kk’|1ij |PP Ya(p Pl kK )o(w — E+2my —e(p) —e(p')).  (37)
)

In the above equation, the normalization volume for the nuclear wave functions
V=p/Awithp = 37T2k?[% /2 depends on the Fermi momentum of the nucleus, which for
12C is taken to be kr = 225 MeV. In previous calculations of the above two-body hadron
tensor, the two-nucleon spectral function P, (k, k/, E) has been approximated as a product
of two one-nucleon spectral functions (see Section 5 for a more detailed discussion). This is
correct in the infinite nuclear matter limit where the two-nucleon momentum distribution
can be split according to

n(k, k') =n(k)n(k') + O(1/A). (38)
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Going beyond this approximation for medium-mass nuclei involves the full calculation
of the two-nucleon spectral function including all correlations and will be discussed further
in Section 5. The two-body current operator in Equation (37) is given by a sum of four
distinct contributions, namely the pion in flight, seagull, pion-pole, and A excitations

= () + () + () + () (39)

and dubbed as Meson-Exchange Currents (MECs). Detailed expressions for each term in
Equation (39) can be found in Refs. [35,105]. Below, we only report the two-body current
terms involving a A resonance in the intermediate state, as we find them to be the domi-
nant contribution. Because of the purely transverse nature of this current, the form of its
vector component is not subject to current-conservation constraints and its expression is
largely model-dependent, as discussed in Section 2.1. The current operator can be written as
follows [105,106]:

. 3 * 2 (1) x () .
(ih)ec = anggf { [( - ng) + %)FnNN(kln)PnNA(k;r)(]y)(l)
7T

2 (2 T(l) X T(Z) + .

(G XY () Fena (R ) ) | TR ) ) + (10 2) (40)
where k' and p’ are the initial and final momentum of the second nucleon, respectively,
while k7, = p’ — k' is the momentum of the 7 exchanged in the two depicted diagrams of
Figure 4, f* =2.14, and

Y5k
Iky) = =———, 41
AZNA
Fxnalkn) = "5, (42)
§ Alna = k5
AZ . mZ
PnNN(kn) = ﬁ ’ (43)

with Azya = 1150 MeV and A, = 1300 MeV. In Equation (40), ]5‘ and ]Z denotethe N — A
transition vertices of diagram (a) and (b) of Figure 4, respectively. The expression of j} is
given by

h=Gv+(h)a,

(i) = (K)"G aﬁ(pA)[C (87 —aPr) + C“é;(gﬁ”q-m—qﬁpﬁ)
C%(gﬁ”q k— qﬁk}’+Cvgﬁ”)}vsf

(jt)a = (kp)* aﬁ(pA)[ (g‘”‘ﬂ qﬁv’*) (gﬁ"q pa—aPp}) +C4 gﬁ’*+ q”q} (44)

where k is the momentum of the initial nucleon which absorbs the incoming momentum §
and py = § + k, yielding pQ = e(k) + @. We introduced § = (@, q) to account for the fact
that the initial nucleons are off-shell. A similar definition can be written down for ]g ; more
details are reported in Refs. [35,107]. For CcY,we adopted the model of Ref. [108], yielding

vy 213 1

Cy = , 45
ST A= /M) T— 2/ (M) )
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with My = 0.84 GeV. Following the discussion of Ref. [105], we neglected the terms CX
and CY, which are expected to be suppressed by O(k/my), while C{ = 0 by conservation
of the vector current. However, it is worth mentioning that including these terms in the
current operator would not pose any conceptual difficulty. To be consistent, in the axial part
we only retain the leading contribution of Equation (44), which is the term proportional to
Cg‘ defined as [109]

1.2 1
cs = x , 46
P (1= g?/Mar)? " (1—q2/(3Map))>? (40
with Mgp = 1.05 GeV.
The Rarita-Schwinger propagator

PP (ps)
G (pa) = 05, (47)

PA — M}

is proportional to the spin 3/2 projection operator P*#(p,). In order to account for the
possible decay of the A into a physical TN, we replace My — Mp — iI'(pa)/2 [85,110]
where the last term is the energy-dependent decay width given by

(4fna)? |d?

T(pa) = Wﬁ(ﬂw + E4)R(F). (48)

In the above equation, (4f;na)?/(47) = 0.38, s = p3 is the invariant mass and d is
the decay three-momentum in the 7N center of mass frame, such that

A = 55— Gy m)ls — g — )], )

and E; = \/m3; + d? is the associated energy. The additional factor

R<r2>—< A ) (50)

2 _ 2
Ap —r

depending on the 7N three-momentum r, with ¥ = (E; — \/m% + d?)? — 4d? and
A% = 0.95m3,, is introduced to improve the description of the experimental phase shift
633 [85]. The medium effects on the A propagator are accounted for by modifying the decay
width as

Ta(pa) = Ta(pa) —2Im[Ua(pa, p = p0)], (51)

where U, is a density-dependent potential obtained from a Bruckner-Hartree-Fock calcula-
tion using a coupled-channel NN & NA @& NN model [111-114], and we fixed the density
at the nuclear saturation value pg = 0.16 fm3. For a detailed analysis of medium effects
in the MEC contribution for electron—nucleus scattering, see Ref. [107]. One key point to
be made from the point of inclusive and even semi-exclusive observables is that the one-
and two-body currents contribute coherently, i.e., their interference terms are nonzero. The
interference between one- and two-body currents leading to two-nucleon emission has
been found to be small [103], but the same interference also contributes to single-nucleon
final states [115,116]. The impact of the latter interference on the SF formalism remains to
be studied.
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pA'

e

i K’ k K’

Figure 4. Feynman diagrams describing the first two contributions to the two-body currents associ-
ated with A-excitation processes. Solid, thick green and dashed lines correspond to nucleons, deltas
and pions, respectively. The wavy line represents the vector boson.

5. Spectral Function

In the factorization scheme of Section 4, the spectral function is the central object
containing all the dynamical information about the nucleus. The spectral function of a
nucleon with isospin T = p, 7 and momentum k can be written as

Py (K, E) = Y [(¥ol[lk) ® [¥ 1)]*6(E+ Eg — E; ). (52)

where E is the excitation energy of the remnant, |k) is the single-nucleon state, |'¥y) is the
ground state of the Hamiltonian in Equation (5) with energy Eg, while |¥4~1) and E/~!
are the energy eigenstates and eigenvalues of the remnant nucleus with (A — 1) particles.
The momentum distribution of the initial nucleon is obtained by integrating the spectral
function over E

e (k) = / dEP;, (K E), (53)

and the proton and neutron spectral functions are normalized so that

/dE (K, E) =
/dE (K E)=A—Z. (54)

We can rewrite the spectral function as a sum of a mean field (MF) and a correlation
(corr) term. The MF piece contains the shell structure with nucleons occupying orbitals
obeying the Pauli principle and contributes to the low k and E region. On the other hand,
the correlation term comes from pairs and triplets of interacting nucleons with low center-
of-mass momentum but large relative momentum above k¢. A large body of experimental
evidence from (e, ¢’p) data has shown that the correlation piece leads to a depletion of
the single-nucleon strength in the MF region by approximately 20% and is essentially
nucleus-independent [3,21,117-120].

Many calculations of the spectral function for finite nuclei are available from a com-
bination of fits to (e, ¢’p) cross sections and theoretical calculations. The spectral function
of Benhar et al. obtains the mean field piece from fits to exclusive electron scattering data,
and computes the correlation piece from CBF theory for nuclear matter [121,122]. The local
density approximation (LDA) is used to extrapolate the correlation piece to finite nuclei
by convoluting the correlation component of the nuclear spectral function Py with the
density profile of the nucleus p 4 (R) [123]; it reads

PER(E) = [ @Rpa(R)PS (, EipA(R)) . 55)
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In addition to the CBE, the spectral function of nuclear matter and finite nuclei has been
computed within the Self-Consistent Green’s Function approach. The latter is a so-called
abinitio method that starts from a nuclear Hamiltonian such as Equation (5) with NNLO
chiral interactions [124,125]. The SCGF method involves an iterative calculation of the
Green’s function’s imaginary component, which is directly related to the one-body spectral
function. This technique can be extended to open-shell nuclei and has polynomial scaling
with the number of particles, making it feasible for systems with up to A = 100 [126].
Both CBF and SCGF spectral functions have been used to compute inclusive electron and
neutrino scattering cross sections, and have been shown to provide good agreement with
electron data when final-state interactions are taken into account [127]. Even though the two
spectral functions are obtained from different nuclear interactions, these calculations show
that the two many-body approaches produce similar results for inclusive cross sections.
Exclusive predictions will most likely be necessary to distinguish the two models.

In this work, we focus on a novel Quantum Monte Carlo (QMC) calculation of the one-
and two-body spectral functions for >C. We begin with the MF piece of the one-body SF
for the 73 = p case. The MF contribution is obtained by considering only the bound A —1
states of the remnant nucleus

Py (I E) = Y (%ol [lk) © [¥ )]

x 5(15 _pAypAl_ K ) (56)
0 n ZmA—] 7

where B{! and B/ ~! are the binding energies of the initial and the bound A — 1 spectator
nucleus with mass 7,4_1. The momentum-space overlaps ¥y |[|k) ® [¥2A~1) pertaining to
the p-shell contributions are computed by Fourier transforming the variational Monte
Carlo (VMC) radial overlaps for the following transitions [128,129]:

2cot) -1 B(3/27)+p
12c(0+) _>11 B(1/2_) + p
2cot) -1 B(3/27)* +p.

The calculation of the s-shell mean-field contribution involves nontrivial difficulties
for the VMC method, as it would require an evaluation of the spectroscopic overlaps for
the transitions to all the possible excited states of !B with J* = (1/2%). To overcome this
limitation, we used the VMC overlap associated with the *He(0") — 3H(1/2%) + p transi-
tion and applied minimal changes to the quenching factor, which is needed to reproduce
the integral of the momentum distribution up to kr = 1.15 fm~!. More details about the
adopted procedure are discussed in Refs. [128,129].

The correlation contribution to the SF is given by

31/
P E) = 1 [ sl (Rl 1) 12

x 6(E+ Eg —e(K') — EA72)

2% 5 [ Gl

T =pn

_ k+K)?
5(E—By—e(K B_—(i)}, 57
><( o—e()+Baa = (57)
to derive the last expression, we used a completeness relation and assumed that the
(A — 2)-nucleon binding energy is narrowly distributed around a central value By .
The mass of the recoiling A — 2 system is denoted by m_, and N, is an appropriate
normalization factor. We started from the VMC two-nucleon momentum distribution
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Nyt (k,K') of Ref. [130], but in order to isolate the contribution of short-range correlated
nucleons we performed cuts in the relative momentum of the pairs, requiring that the
overall normalization and shape of the one-nucleon momentum distributions were correctly
recovered. Below in Figure 5, we show the 12¢C single-nucleon momentum distribution
derived using the above procedure. Figure 5 shows the effect of the different prescriptions
for calculating the s-wave overlaps, with the above prescription resulting in an increased
normalization of the SF compared to the harmonic oscillator and Wood—-Saxon potentials. In
Figure 6, we directly compare the QMC and CBF !2C spectral functions by comparing their
one-dimensional momentum and removal energy distributions. While the two SFs have
very similar removal energy distributions, their momentum distributions show distinct
behavior at small and large nucleon momenta. Although these discrepancies only cause
minor variations in the inclusive cross section, it is anticipated that they will be more

significant in exclusive cross sections where the outgoing nucleon is measured. This will be
explored in future studies.

400 Yy
p—o—-%. ® VMCn(k
3501 ~"" = (k)
“s p-wave
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Figure 5. 12C single-proton QMC spectral function (blue points). The solid orange line shows the sum
of the p-wave overlaps between the 12C and 11B+p QMC wave functions. The momentum distribu-
tions obtained by adding to the p-wave overlaps the different prescription for the s-wave contribution
are displayed by the green dashed line (harmonic oscillator), dotted red line (Wood-Saxon) and
dash-dotted purple line (s-wave overlaps between “He and the 3H+p QMC wave functions). The high
momentum contributions of long- and short-range correlations are not visible on this linear scale.
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Figure 6. Comparison of nucleon momentum distribution (left) and removal energy distribution
(right) in 12C using QMC techniques (solid cyan) vs. CBF theory (dashed red).

For the contribution of multi-nucleon currents to the cross section, a two-nucleon spec-
tral function is needed. As mentioned previously, in infinite nuclear matter a factorization
of the two-nucleon momentum distribution into the product of two single-nucleon momen-
tum distributions can be made. This factorization assumes no long-range correlations are
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present and throws away correlations between the two struck particles. We go beyond this
approximation by explicitly by using the two-nucleon spectral momentum distribution to
build the two-nucleon spectral function. We include only the mean field contribution, e.g.,
we neglect contributions where more than two nucleons are emitted, which reads
MF
PTk/T]; (k, k/, E) — Vl-rk,-fk, (k, k/)
2

X(S(E—Bo—FBA,z— ), (58)

2mp—
where K = k + K/ is the total momentum of the pair.

6. GFMC and SF Comparisons

Recently, the authors of Ref. [37] computed flux-folded differential cross sections for
MiniBooNE and T2K experiments [131,132] using the QMC spectral function outlined
above. Under control systematics, the calculation of the two-body contribution is required
for disentangling the effect of the axial form factor. The QMC spectral function can be
directly compared with GFMC predictions because it is derived from the same underlying
Hamiltonian and currents. Comparisons with experiments have shown that the predictions
are consistent with the data and show tension between the results obtained from adopting
the LQCD and phenomenological form factors displayed in Figure 1 [75]. The results for
selected angular bins for T2K kinematics are shown in Figure 7. The shown uncertainty
bands propagate the uncertainty on the axial nucleon form factor derived using the z ex-
pansion, where the different coefficients have been fitted to the deuterium bubble chamber
data of Ref. [69]. In the case of the GFMC, the uncertainty coming from the inversion of
Euclidean responses is also included. Both approaches provide a similar description of the
data, albeit the contribution of two-body currents peaks is shifted in the two approaches.
This can be ascribed to different motivations. Firstly, the SF results include explicitly
the contribution of A excitations in the two-nucleon knockout process, leading to a peak
at smaller lepton momenta, while the GFMC results use a static A treatment. Secondly,
the GFMC results also account for the interference between the two-body and one-body
currents, which would also lead to an enhancement in the vicinity of the quasi-elastic
peak. Such an enhancement is clearly seen in Figure 7, and in the electromagnetic and
electroweak responses [27,28]. While these observations support the one- and two-body
current interference, it is impossible to disentangle this contribution directly in the GFMC
results. The calculations in the nuclear matter and relativistic mean field calculations of
Refs. [115,116] also find that the transverse enhancement observed in electron scattering is
primarily due to the constructive interference between one- and two-body currents, leading
to single-nucleon knockout final states.

Recently [34], relativistic corrections to GFMC calculations for flux-averaged neutrino cross
sections have been determined using the method described in Section 3.1.1. The influence on
the T2K results shown in Figure 7 is small and generally falls within the uncertainty bands due
to the axial form factor. For MINERvA data [38] taken with the medium-energy NuMI beam,
which peaks at around 6 GeV [133], relativistic corrections are crucial. The charged-current flux-
averaged cross section is presented in terms of muon momentum parallel and perpendicular to
the beam direction

P = |pulcosby, (59)

p1 = |pulsin, = \/P;% - Pﬁr (60)

and

respectively.
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Figure 7. Comparison with T2K data, adapted from Ref. [37]. Breakdown into one- and two-body
current contributions of the v, flux-averaged differential cross sections for T2K: 1b and 2b denote one-
and two-body current contributions while 12b denotes the total sum of these contributions. The top
panel shows QMC SF predictions in three bins of cos 9;, with the one-body contributions in orange,
two-body contributions in red and the total in blue. The lower panel shows GFMC predictions with
the same breakdown between one- and two-body current contributions, although the two-body
results include interference effects only in the GFMC case. The D2 Meyer et al. z expansion results for
F4 are used in both cases [69].

In this comparison, the routinely used dipole parameterization of the axial form
factor with A 4 = 1.03 GeV has been used. For the GFMC results, the error band includes
statistical errors combined with the error from the inversion of Euclidean responses. The
SF results do not include an error estimate. Relativistic corrections are included in the
GFMC results by performing the calculation in the active-nucleon Breit frame (ANB) as
discussed in Section 3.1.1. The incorporation of relativistic effects leads to a nearly halved
cross section for low p|, with the discrepancy gradually decreasing as p| increases. We
observe that the momentum transfer is constrained such that ¢ > p, and smaller p| bins
generally permit higher energy and consequently larger g contributions at small p |, thus
explaining this behavior. The emergence of high-p (i.e., high-g) tails can be understood as
the response’s narrowing in terms of energy transfer compared to nonrelativistic outcomes,
resulting in strength redistribution within the available phase space at large 4.

Given the inclusion of large g values in the MINERVA calculations and the substantial
impact of relativistic corrections, a consistency check is warranted. In Ref. [34], the GFMC
results for MINERvA kinematics obtained including only the one-body current contribution
have been compared to other approaches that are either manifestly relativistic [134] or
include relativistic corrections [13,40,135,136] and found to agree with the theoretical curves.
Here, Figure 8 compares the GFMC results to the SF calculations including both the one-
and two-body contributions in Figure 8. The agreement between the one-body contribution
in the GFMC and SF approaches is evident when the former are computed in the ANB.
The total increase in the cross section due to two-body contributions is twice as large in
the SF calculations compared to the GFMC. This difference can be attributed to the same
motivations discussed for the T2K results.

Lastly, we note that the GFMC nonrelativistic calculations exhibit better conformity
with experimental data compared to those incorporating relativistic effects. However,
considering the energy distribution of the medium-energy NuMI beam in the MINERVA
experiment, it is expected that contributions beyond quasi-elastic scattering are significant,
even when events with detectable mesons are excluded from the experimental analysis.



Universe 2023, 9, 367

20 of 27

Specifically, there are instances where pions produced at the interaction vertex are either
absorbed or remain undetected. Thus, theoretical calculations that neglect pion-production
mechanisms should yield results lower than experimental data. This aligns with the case
where relativistic effects are considered, while their omission leads to un-physically large
cross sections.
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Figure 8. Comparison with MINERvA Medium-Energy CCQE-like data on CH. Cross section per
nucleon is measured double-differential against pr (momentum transverse to beam direction) in
bins of p|| (momentum parallel to beam direction). Top panels show QMC SF prediction broken
down into one-body (red) and one+two-body (blue) in different bins of pj- Bottom panels show
GFMC predictions again broken down into one- and one+two-body results, with response functions
computed in the LAB frame (dashed lines) and ANB frame (solid line). This thickness of the ANB
curves corresponds to the error from the inversion procedure.

In this review, we also consider inclusive electron scattering data on '?C in Figure 9,
which allows one to disentangle the different energy regions more clearly. The two kine-
matics under consideration have been deliberately selected to include only responses with
g < 700 MeV. These specific values align with the range for which the GFMC responses
have already been computed. Similarly to the neutrino case, in the GFMC calculations two-
body currents provide an enhancement in the quasi-elastic region. A comparison between
the LAB frame results using purely relativistic kinematics (depicted by the blue dotted
curve) and the ANB curve (solid blue) reveals important insights. Relativistic corrections
cause a shift of the peak towards smaller w values, a reduction in width and an increase
in the height of the quasi-elastic peak. The one-body contribution computed in the ANB
frame, displayed by a solid red line, agrees fairly well with the SF one-body contribution
displayed in the upper panels. Overall agreement with the data improves by including
relativistic corrections to the GFMC results. However, it is worth noting that the absence
of rr-production contributions makes it difficult to draw definitive conclusions without
considering that term.

The static treatment of the A propagator restricts the significance of two-body cur-
rents in the “dip” region, located between the quasi-elastic and pion-production peaks.
Incorporating explicit dynamical degrees of freedom in GFMC calculations is more chal-
lenging, particularly in terms of evaluating the Euclidean responses while fixing the current
operator’s dependence at multiple values of w.

The total QMC SF results encompass the incoherent sum of one-nucleon and two-
nucleon contributions. We include in the calculation the effect of final-state interactions
by convoluting the computed cross sections with a folding function which both shifts and
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redistributes strength from the peak to the tails [136]. Two-body currents give a minor
enhancement in the quasi-elastic peak region, but a strong enhancement in the “dip” region.
Additionally, we include CBF SF results for the one-body cross section for comparison,
which show similar trends to the QMC one-body cross section as expected. However, the
QMC SF result notably under-predicts the data in the region of the quasi-elastic peak at
Epeam = 620 MeV. Investigating the interference between one -and two-body currents and
its impact on these results will be a subject of future investigation.

As a general remark, one can choose to apply either the GFMC or the spectral function
approach depending on the kinematics and process under investigation. The selection
depends on the specific requirements of the study. However, it is important to ensure that
the results obtained from both methods are consistent in the transition regions where both
approaches are expected to work.

E, = 620 MeV, 6y = 60.0° E, = 730 MeV, 6y = 37.1°

— QMC SF 1b
e S 7 A X T L S L CBF SF 1b
% g QMC SF 2b
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0.4
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Figure 9. Inclusive electron scattering comparisons at two different kinematics. Left: Epeqy, = 620MeV,
0y = 60°. Right: Epeama, = 730MeV, 6, = 37.1°. Data are from Refs. [137-139]. Upper panels are
for SF with one-body QMC (CBF) in solid (dashed) red, two-body QMC in orange and one+two-body
OMC in blue. GFMC predictions are in the lower panel with dashed lines corresponding to response
functions computed in the LAB frame, and solid for response functions in the ANB frame. Error bars on
GFMC calculations include only errors from the inversion of the Euclidean response function, but neglect
uncertainty due to interpolation of the responses as discussed in the text.

7. Conclusions

Neutrino oscillation experiments cover a broad range of energies, from a few MeV to
tens of GeV, where different reaction mechanisms involving various degrees of freedom
(nucleons, pions, quarks, etc.) are active. Microscopic approaches such as Green’s Function
Monte Carlo (GFMC) and Coupled Cluster have been successful in describing lepton—
nucleus cross sections in the MeV energy region [140-142]. However, to address the higher
energies relevant for DUNE and include explicit pion degrees of freedom, different methods
relying on a factorization of the hadronic final state, such as the Spectral Function (SF),
the Short-Time Approximation [143,144] and the Relativistic Mean Field approach [12,134],
have proven successful in reproducing electron scattering data for different kinematics.

Providing a realistic estimate of the theoretical uncertainty of the prediction in the
neutrino-nucleus cross section, which must be propagated in the extraction of neutrino
oscillation parameters, requires assessing the error associated with the input used in the
calculations and with the many-body method used. In this review, we highlight that
different choices can be made to define the nuclear forces adopted to describe the wave
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function of the target and remnant nuclei, either using semi-phenomenological approaches
or chiral effective field theories. Following the choice of the nuclear forces, different
current operators can also be constructed. Another source of uncertainty is connected
to the form factors entering these currents. In Ref. [37] a study of the dependence of the
neutrino—nucleus cross section results from the axial form factor adopted in the one-body
current operator has been carried out using the GFMC and the SF approaches and a tension
between the results obtained for the LQCD and phenomenological form factors has been
observed. The results of Ref. [37] indicate that while significant progress has been made
in the determination of the axial and vector form factors entering in the one-body current
operator, more work will be required in the future for the determination of the form
factors entering the two-body currents, particularly for those contributions with A degrees
of freedom.

A two-fold strategy can be employed to comprehend the error associated with using
a factorization scheme in the spectral function approach and nonrelativistic kinematics
in GFMC. Firstly, relativistic corrections can be incorporated by working in a reference
frame that minimizes them in the GFMC responses [34,140]. Secondly, Quantum Monte
Carlo (QMC) techniques can be used to derive one- and two-nucleon spectral functions.
Comparing the results obtained from these two approaches can help estimate the error
associated with the many-body method. Numerous studies have investigated this compari-
son. In this review, we present unpublished results that demonstrate electron—carbon cross
section comparisons and neutrino—nucleus cross sections for the MINERVA experiment. In
the comparison with MINERvA Medium-Energy CCQE-like data, the effect of relativistic
corrections to the GFMC results are substantial, yielding a quenching of the results up to
50% of the initial strength. We observe a reasonable agreement between the GFMC and
QMC SF results. For the electron scattering cross section, we also analyzed the dependence
of the results from the many-body method adopted to derive the spectral function; in partic-
ular, we compared the QMC and Correlated Basis Function results and found a very good
agreement between them. Looking at a fixed energy beam allows one to better separate
the contribution of the different reaction mechanisms. In this case, the difference between
the two-body contributions obtained within the two approaches is apparent and it has to
be attributed to the different treatment of the A propagator in the GFMC and the lack of
one- and two-body current interference in the SF approach. The inclusion of relativistic
corrections in the GFMC results leads to better agreement with data. As there is a large
amount of electron scattering data in the region of 300 < g < 700 MeV, future studies that
directly compare the GFMC results with differential electron scattering data for carbon can
be performed. A robust method for estimation of the uncertainty able to account for all
the different aspect of the calculation is required to match the unprecedented accuracy of
neutrino experiments, some preliminary steps toward this direction have been discussed in
this review using the GFMC and SF methods.
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