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Abstract: Recently, in Benetti et al. (Astrophys. J. 2023, 949, 65), we suggested that the dark
matter (DM) component in galaxies may originate fractional gravity. In such a framework, the DM
component exists, but the gravitational potential associated to its density distribution is determined
by a modified Poisson equation including fractional derivatives (i.e., derivatives of noninteger type),
which are meant to describe nonlocal effects; as such, this scenario is different from theories where
baryonic matter emulates DM-like effects via modifications of gravity (e.g., MONDian frameworks).
In Benetti et al., we showed that fractional gravity worked very well for reproducing the kinematics
of disk-dominated galaxies, especially dwarfs; there is also preliminary evidence that the strength
of fractional effects tends to weaken toward more massive systems. Here, we aim to test fractional
gravity in galaxy clusters, with a twofold aim: (i) perform an independent sanity check that it can
accurately describe such large and massive structures; (ii) derive a clear-cut trend for its strength
in systems with different DM masses. To this purpose, we forward model the density and pressure
distributions of the intracluster medium (ICM), working out the hydrostatic equilibrium equation
in fractional gravity. Then, we perform a Bayesian analysis of the X-COP galaxy cluster sample
and infer constraints on the fractional gravity parameters, for individual clusters as well as stacked
clusters. We find that fractional gravity performs remarkably well in modeling the ICM profiles for
the X-COP sample. We also check that the DM concentration vs. mass relation is still consistent
with the expectations of N-body simulations in the standard cosmological scenario. Finally, we
confirm the weakening of the fractional gravity effects toward more massive systems and derive
the overall scaling of the fractional gravity parameters from dwarf galaxies to massive clusters,
spanning six orders of magnitude in DM mass. Such an overall trend implies that fractional gravity
can substantially alleviate the small-scale issues of the standard DM paradigm, while remaining
successful on large cosmological scales.

Keywords: dark matter; galaxy formation

1. Introduction

Galaxy clusters constitute the largest bound structures in the Universe, with dark
matter (DM) masses M ∼ 1014–15 M� and sizes extending out to R ∼ a few Mpcs. Most
of the baryons are in the form of a hot diffuse gas, referred to as the intracluster medium
(ICM), with a mass ratio over the DM very close to the cosmic fraction Ωb/ΩM ≈ 0.16 [1].

The density n(r) and temperature T(r) distributions of the ICM throughout the cluster
can be probed thanks to the copious X-ray powers LX ∝ n2

√
T R3 ∼ 1044–46 erg s−1 emitted

by the ICM via thermal Bremsstrahlung and high-excitation lines [2,3]. The inferred high av-
erage temperatures kBT ∼ several keVs and low average number densities n ∼ 10−3 cm−3

make the ICM the best plasma in the Universe ever, with thermal to electrostatic energy
ratios kBT/e2 n1/3 ∼ 1012.
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In addition, the pressure distribution p(r) can be probed thanks to the Sunyaev–
Zel’dovich (SZ; [4,5]) effect, arising when the hot ICM electrons Compton upscatter the
CMB photons crossing the cluster, tilting the latter’s black-body spectrum toward high
energies. In the microwave band, such a tilt mimics a diminution of the CMB temperature
proportional to the Comptonization parameter y ∝

∫
d` p(r), which encompasses the

line-of-sight integral of the pressure profile. Combining X-ray and SZ data allows one to
reconstruct the ICM thermodynamic profiles throughout most of the cluster volume, from
the center to a few times R500 or even beyond the virial boundary1.

In massive and sufficiently relaxed clusters, the ICM is expected to settle in hydrostatic
equilibrium within the overall gravitational potential well mainly provided by the DM com-
ponent. Under this assumption, the gas density profile reconstructed from X-rays and the gas
pressure profile from SZ data can be combined to probe the shape of the DM gravitational
potential and check whether this is consistent with the DM density run extracted from N-body
simulations in the ΛCDM cosmology. This is the rationale of many investigations aimed at
exploiting galaxy clusters to probe modified gravity scenarios [6–12], which have been devel-
oped to solve cosmological problems such as the origin of dark energy [13–15], and/or to
alleviate small-scales issues of the standard cold DM paradigm [16–21]. In the latter vein, a
prototypical example of such theories is the modified Newtonian dynamics (MOND) frame-
work, which was originally designed to explain galactic dynamics through a modification
of Newtonian gravity (or, more generally, Newton’s second law) that comes into action at
accelerations well below a definite universal threshold; in its original formulation, DM was
not included, and baryons were the only source of the gravitational field. Although MOND
can properly fit galactic RCs [22,23], its performances at the scales of galaxy clusters are
somewhat debated [24,25].

More connected with the present work, in the last few years, various authors have put
forward the idea that fractional calculus (i.e., the field of mathematics dealing with differen-
tiation and integration of noninteger order) could be exploited to formulate modified grav-
ity theories [26–33]. A relevant example is the theory of Newtonian fractional–dimensional
gravity by [28,29], which introduces a generalized law of Newtonian gravity in a spatial
dimension smaller than three, representing the local effective Hausdorff dimension of
the matter distribution. Another approach by [26,27] relies on multifractional spacetimes
with variable Hausdorff and spectral dimensions directly inspired from quantum gravity
theories. The framework by [30,31] directly modifies the Laplacian operator in the Poisson
equation to alter the dynamics followed by a test particle in a given gravitational well;
a similar route is followed by [33], using fractional Fourier derivatives. All these theo-
ries adopt a MONDian viewpoint where DM is not present, and the galaxy kinematics is
interpreted as a pure geometrical effect.

Recently, in [34], we suggested that the DM component itself may originate fractional
gravity. In such a framework, the DM component exists, but the gravitational potential as-
sociated to its density distribution is determined by a modified Poisson equation including
fractional derivatives (i.e., derivatives of noninteger type), which are meant to describe
nonlocal effects; as such, this scenario is substantially different from the above theories
where baryonic matter emulates DM-like effects via modifications of gravity. In [34], we
showed that DM in fractional gravity worked very well for reproducing the kinematics
of disk-dominated galaxies, especially dwarfs. In addition, we found preliminary evi-
dence that the strength of fractional effects tends to weaken toward more massive systems;
however, the latter finding is still subject to large uncertainties since the rotation curves
of massive spirals were not probed out to radii large enough for the DM contribution to
clearly emerge.

In the present work, we aim to extend our previous investigation to much larger
scales and test fractional gravity in galaxy clusters. Our aim is twofold: (i) perform an
independent sanity check that it can accurately describe the distributions of the ICM in
clusters; (ii) derive a clear-cut trend for the strength of its effects over an extended DM
mass range, from dwarf galaxies to galaxy clusters. To this purpose, we forward model the
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density and pressure distributions of the ICM, working out the hydrostatic equilibrium
equation in fractional gravity. Such theoretical framework is then compared with data
from the XMM-Newton Cluster Outskirts Project (X-COP2; [35–38]), which consists of
12 clusters with well-observed X-ray and SZ data, providing density and pressure profiles
over an extended radial range of ∼0.2–2 Mpc. We then perform a Bayesian analysis of the
thermodynamic profiles of the X-COP sample and infer constraints on the fractional gravity
parameters, for individual clusters and also for clusters stacked together.

The structure of the paper is straightforward: in Section 2, we describe our methods
and analysis; in Section 3, we present and discuss our results; in Section 4, we summarize
our findings and highlight future perspectives. Throughout the work, we adopt the
standard, flat ΛCDM cosmology [39] with rounded parameter values: a matter density
ΩM ≈ 0.3, a baryon density Ωb ≈ 0.05, the Hubble constant H0 = 100 h km s−1 Mpc−1,
with h ≈ 0.7.

2. Theoretical Background and Data Analysis

In this section, we recall the basics of the fractional gravity framework, illustrate how
this can be exploited to derive the pressure profile of the ICM in hydrostatic equilibrium,
and describe our Bayesian analysis to constrain the fractional gravity parameters.

2.1. DM in Fractional Gravity

The density distribution of virialized halos for collisionless DM as extracted from
N-body simulations in the standard ΛCDM model is routinely described via the Navarro–
Frenk–White profile [40]:

ρ(r) =
ρs r3

s
r (r + rs)2 , (1)

where rs is a scale radius and ρs a characteristic density. The associated cumulative mass is
given by

M(< r) = 4π
∫ r

0
dr′ r′2 ρ(r′) = Ms

[
ln
(

1 +
r
rs

)
− r/rs

1 + r/rs

]
, (2)

with Ms ≡ 4π ρs r3
s .

In the standard (Newtonian) case, the potential ΦN(r) associated to a given density
distribution ρ(r) is computed from the Poisson equation supplemented with appropriate
boundary conditions (usually taken as a vanishing potential at infinity):

∆ΦN(r) = 4πG ρ(r) (3)

where ∆ is the Laplacian operator; this is an inherently local equation, in that the potential
at a point depends only on the value of the density there. For the spherically symmetric
NFW profile, one easily finds that

ΦN(r) = −
GMs

r
log
(

1 +
r
rs

)
; (4)

from the above expressions of the mass and potential, it is straightforward to verify that
|dΦN/dr| = G M(< r)/r2, as a direct consequence of Birkhoff’s theorem.

In fractional gravity, the potential ΦF(r) is instead derived from the modified Poisson
equation [30]

(−∆)s ΦF(r) = −4πG `2−2s ρ(r) (5)

where (−∆)s is the fractional Laplacian operator (see [30,34] for details), s ∈ [1, 3/2] is the
fractional index (this range of values for s is required to avoid divergences; see Appendix A
in [34]), and ` is a fractional length scale that must be introduced for dimensional reasons.
At variance with the standard case, the fractional Laplacian is inherently nonlocal; the index
s measures the strength of this nonlocality, while the length scale ` can be interpreted as
the typical size below which gravitational effects are somewhat reduced and above which
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they are instead amplified by nonlocality (around r ≈ `, the dynamics is almost unaffected
and indistinguishable from the standard case).

In [34], we solved the fractional Poisson equation sourced by the NFW density distri-
bution. For s ∈ [1, 3/2), the solution reads

ΦF(r) =−
GMs

rs

1
22s
√

π

(
`

rs

)2−2s Γ
( 3

2 − s
)

Γ(s + 1)
rs

r

{
2πs

sin(2πs)

[(
1 +

r
rs

)2s−2

−
(

1− r
rs

)2s−2
]
+

(r/rs)2s

1− (r/rs)2

[(
1 +

r
rs

)
2F1

(
1, 1, 2s + 1,

r
rs

)

+

(
1− r

rs

)
2F1

(
1, 1, 2s + 1,− r

rs

)
− 4s

2s− 1

]}
, s ∈ [1, 3/2)

(6)

with Γ(s) =
∫ ∞

0 dx xs−1 e−x being the Euler Gamma function and 2F1(a, b, c; x) = ∑∞
k=0

(a)k (b)k xk/(c)k k! being the ordinary hypergeometric function in terms of the Pochammer
symbols (q)k defined as (q)0 = 1 and (q)k = q (q+ 1) . . . (q+ k− 1); plainly, ΦF(r) for s = 1
coincides with the usual expression ΦN(r) of Equation (4). For the limiting case s = 3/2,
the computation requires some principal-value regularization and the solution reads

ΦF(r) =−
G Ms

`

1
π

rs

r

{
2

r
rs

[
log
(

r
rs

)
− 1
]
−
(

1 +
r
rs

)
log
(

r
rs

)
log
(

1 +
r
rs

)

+

(
r
rs
− 1
)

Li2

(
1− r

rs

)
−
(

1 +
r
rs

)
Li2

(
− r

rs

)
+

π2

6

}
, s = 3/2

(7)

with Li2(x) = ∑∞
k=1 xk/k2 being the dilogarithm function.

Being a nonlocal framework, in fractional gravity, the Birkhoff theorem does not hold,
but one can insist in writing |dΦF/dr| = G MF(< r)/r2 in terms of an effective mass
MF(< r), which plainly will be a function of the fractional gravity parameters s and `. We
illustrate the effective mass profile in Figure 1, suitably normalized so as to remove the
dependence of dimensional quantities (including `), for different values of the fractional
index s. With s increasing from unity, the effective mass profile steepens: in the inner region,
a uniform sphere behavior (corresponding to a cored density profile) tends to be enforced,
while in the outskirts the effective profile resembles that of an isothermal sphere. Note that
all the normalized mass profiles intersect at very close values of r/rs; more in detail, the
profile with a given s crosses the one with s = 1 at r/rs ≈ 1.58 for s = 1.1, at r/rs ≈ 1.49 for
s = 1.3, and at r/rs ≈ 1.36 for s = 1.5; plainly, in log scale, all these points appear clustered
around log r/rs ≈ 0.15 and are barely discernible by eye.

To have a quantitative grasp on the overall effect of fractional gravity, consider the
s = 3/2 case where the effective mass can be computed in terms of a relatively simple
analytical expression; it reads

MF(< r) =
Ms rs

π `

{
2

r
rs

[
log
(

r
rs

)
− 1
]
− log

(
r
rs

)
log
(

1 +
r
rs

)

− Li2

(
1− r

rs

)
− Li2

(
− r

rs

)
+

π2

6

}
, s = 3/2 ,

(8)

and it is easily found to behave as MF(< r) ∝ [1 − 3 log(r/rs)] r3 for r � rs and as
MF(< r) ∝ r ln(r/rs) for r � rs; besides minor logarithmic corrections, the overall
behavior is very similar to that of a cored isothermal sphere.
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Figure 1. Effective DM mass profile (appropriately normalized in units of Ms (`/rs)2−2s) in frac-
tional gravity as a function of the radial coordinate (normalized to the NFW scale radius rs). The
profile is shown for different values of the fractional index s (color-coded) from 1 (solid black line,
corresponding to Newtonian gravity) to the limiting value s = 1.5 (dotted black line).

2.2. Forward Modeling of the ICM Thermodynamics

Assuming hydrostatic equilibrium and spherical symmetry, the distribution of the
ICM in the overall gravitational potential well is ruled by the equation

1
ρgas

dPgas

dr
= −

∣∣∣∣∣dΦ
dr

∣∣∣∣∣ , (9)

where Φ = ΦDM + Φgas is the total gravitational potential with main contributions from
DM and gas, ρgas is the gas mass density, and Pgas is the gas pressure.

One can conveniently write ρgas = µmp ngas in terms of the mean molecular weight
µ ≈ 0.6 and of the gas number density ngas, which is in turn easily related to the elec-
tron density by the expression ngas ≈ 1.8 ne, applying for a fully ionized plasma at high
temperatures and a subsolar chemical composition typical of the ICM. The observed elec-
tron density profile ne(r) of individual clusters inferred from X-ray observations is often
empirically rendered by the (simplified version of the) Vikhlinin profile [41]

ne(r) = n0
(r/rc)−α/2 [1 + (r/rt)−ε/6]

[1 + (r/rc)2]3 β/2−α/4 ; (10)

where n0 is the central density, rc and rt are a core and a transition radius (rc < rt), α, β,
and ε < 5 are three slopes characterizing the inner, intermediate, and outer radial behavior.
The gas mass can then be computed as Mgas(< r) = 4π

∫ r
0 dr′ r′2 ρgas(r′) and the gas

contribution to the hydrostatic balance is fully specified by |dΦgas/dr| = G Mgas(< r)/r2.
As to the DM contribution, we can exploit the results of the previous section and write

|dΦDM/dr| = G MF(< r)/r2 in terms of the fractional gravity’s effective mass MF(< r)
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illustrated in Figure 1, which depends on the parameters s and `; in the standard case
(corresponding to s = 1), this is just the DM mass profile of Equation (2). The mass
profile is also a function of the NFW scale radius rs and mass Ms; for the present analysis,
it is convenient to trade off these parameters for the mass M500 and the concentration
c500 ≡ R500/rs at the reference radius R500. The conversion between these variables can be
performed easily using the relations M500 = 4π 500 ρc(z) R3

500/3 and M500 = Ms/[ln(1 +
c500)− c500/(1 + c500)] stemming from the definition of R500 and from the adopted NFW
mass distribution.

Then, the solution to the hydrostatic equilibrium equation is given by

Pgas(r) = −1.8 µmp

∫ ∞

r
dr′ ne(r′)

G [MF(< r′) + Mgas(< r′)]
r′2

, (11)

where the zero pressure at infinity has been taken as a boundary condition.3 Observationally,
X-ray surface brightness and spectroscopic data can probe the electron density ne(r) and
the temperature Tgas(r) profiles, whence the pressure profile Pgas(r) ∝ ngas(r) Tgas can be
derived, although sensitivity and background issues make such a determination robust only
in the region out to R500. In the outskirts, SZ observations can complement X-ray data in
probing the pressure profile, though with some caveats about conversion from line-of-sight-
integrated to spherically averaged quantities. The rationale of the above forward modeling
of the hydrostatic equilibrium is to test the fractional gravity parameters entering in the
effective mass profile MF(< r) by simultaneously fitting the observed electron density
profile via Equation (10) and the observed pressure profile via Equation (11).

2.3. Bayesian Data Analysis

We tested the fractional gravity framework by exploiting the X-COP sample [35–38] of
12 massive galaxy clusters. The clusters are in the redshift range 0.04 . z . 0.1 and feature
typical sizes R500 ∼ 1–1.5 Mpc and masses M500 ∼ 1014–1015 M�. The X-COP clusters
were selected to allow a robust reconstruction of the electron density and gas pressure
profiles out to R200 via a joint analysis of high-quality X-ray data from XMM-Newton and
of high signal-to-noise SZ observations from Planck. Another important property of the
sample is that the hydrostatic equilibrium holds to a high accuracy, with at most mild
levels on nonthermal pressure support in the outermost regions, as demonstrated by the
analysis of [36,38]; this is particularly important, since nonthermal effects can appreciably
affect the mass estimation in the outer regions [42,43] and potentially induce spurious
effects in constraining modified gravity parameters [44]. All in all, X-COP is currently the
largest cluster sample available so far for robust mass-modeling studies over an extended
radial range, and as such it has been extensively exploited to probe modified-gravity
scenarios [9–12].

To estimate the parameters θF ≡ (s, `, c500, M500) describing the effective mass profile
MF(< r), alongside with those θne ≡ (n0, α, β, ε, rc, rt) describing the electron density
profile ne(r), we adopted a Bayesian framework and built the joint log-likelihood

logL(θ) = logLPgas(θF, θne) + logLne(θne) . (12)

Each term in the log-likelihood reads logL(θ) = −χ2(θ)/2, where the chi-square χ2(θ) =

∑i[M(θ, ri)−D(ri)]
2/σ2
D(ri) was obtained by comparing our empirical model expectations

M(θ, ri) to the data valuesD(ri) with their uncertainties σD(ri), summing over the different
radial coordinates ri of the data (approximately 65 points for ne and 20 points per Pgas, with
small variations around these numbers from cluster to cluster); note that for the pressure
data from SZ observations, we took into account the full covariance matrix.

We adopted flat priors π(θ) on all the parameters; specifically, for those entering
the effective mass profile in fractional gravity we took s ∈ [1, 3/2], log ` (Mpc) ∈ [−3, 3],
log c500 ∈ [−2, 2], log M500(M�) ∈ [13, 16]. We then sampled the parameter posterior
distributions P(θ) ∝ L(θ)π(θ) via the MCMC Python package emcee [45], running it



Universe 2023, 9, 329 7 of 17

with 104 steps and 200 walkers for every individual cluster; each walker was initialized
with a random position uniformly sampled from the (flat) priors. After checking the auto-
correlation time, we removed the first 20% of the flattened chain to ensure burn-in; the
typical acceptance fractions of the various runs were in the range 30–40%.

3. Results

In Figures 2 and 3, we illustrate the outcome of the fitting procedure on the 12 in-
dividual pressure and density profiles of the X-COP sample. In each panel, the best fit
(solid lines) and the 2σ credible intervals sampled from the posterior (shaded areas) are
shown. The reduced χ2

r value of the joint fit to the pressure and density profiles is also
reported in Figure 2. Overall, the fits in the fractional gravity framework are very good. In
a few cases (such as A3266 and A2319), the reduced χ2

r is somewhat large, but this should
not raise any alarm, since the outcome is caused by some peculiar feature in the density
profile reconstructed from X-ray data (oscillation in the data points at intermediate radii)
or because of some outlier data in the pressure profile reconstructed from SZ (especially
in the innermost or outermost radii); note that we retained all data points in our analysis,
including them in the reduced χ2

r computation.
In Figure 4, we illustrate the MCMC posterior distributions for two representative

clusters in the sample, namely A2255 and ZW1215; for clarity, we restricted the plot to the
subspace of parameters entering the effective mass profile. Magenta/contour lines display
the results in our fiducial setup, where no mass prior was imposed; the white cross marks
the best-fit value of the parameters.

The corner plots illustrate a clear degeneracy between the fractional length-scale
parameter ` and the DM mass M500. This is somewhat expected since the effective mass
profile entering the hydrostatic equilibrium equation scales like M500 `

2−2s. Therefore, it is
possible to obtain the same normalization of the pressure profile, at a given density profile,
by changing M500 and ` in the same direction. Since s does not deviate much from unity,
the ` dependence is weak, implying that to compensate a rather small change in mass
requires a substantial variation in `; on the other hand, this is also at the origin of the rather
loose constraints that can be derived on the parameter ` with the present cluster sample.

The situation is expected to improve if a mass prior from other probes such as weak
lensing (WL) is introduced in the analysis. However, one must be careful and use WL mass
estimates that are independent from assumptions on the shape of the lensing potential;
this is because in fractional gravity, the lensing potential corresponding to a given mass
distribution would be different from the standard case, thus causing an inconsistency. For
five X-COP clusters (A85, A1795, A2029, A2142, and ZW1215), such nonparametric WL
mass determinations are available in the literature [46].4 The outcome of exploiting the
WL mass prior on the marginalized distributions of the parameters is illustrated by the
cyan contours/lines in Figure 4. The DM mass posterior estimate of ZW1215 is made
considerably more precise, and as a consequence of the above degeneracy, the estimate
of the fractional length scale ` is also appreciably tightened. In any case, the posterior
distributions on all the parameters for the analysis without and with the WL mass prior are
consistent within 1σ.

We also tested the performance of fractional gravity by stacking the X-COP data of
all the clusters in the sample. Specifically, we built stacked electron density and pressure
profiles by normalizing the individual profiles of the 12 clusters at a reference radius
R500, by co-adding them in radial bins of normalized radii r/R500, and by computing the
corresponding mean and standard deviation. The outcome of this procedure is illustrated
in Figure 5: the crosses mark the stacked profiles, and for reference, the gray lines show the
individual ones. All in all, the fractional gravity frameworks fit the stacked profiles to a
remarkable accuracy.
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Figure 2. Fits to the individual pressure profiles of the X-COP clusters in fractional gravity, according
to the Bayesian analysis described in Section 2. Circles refer to X-ray and squares to SZ data. Solid
lines illustrate the median, and the shaded areas show the 2σ credible interval from sampling the
posterior distribution of the fits. The vertical dotted lines mark the reference radius R500. The reduced
χ2

r value of the joint fit to the pressure and density profiles is reported in each panel.

Figure 6 summarizes the posterior distributions of the fractional index s, fractional
length scale `, concentration c500, and DM mass M500. Table 1 reports the marginalized pos-
terior estimates (mean and 1σ credible intervals) of these parameters for all the individual
X-COP clusters (including the WL mass prior when available), and for the stacked sample.
On average, it is seen that the deviations of the fractional index s from unity are modest
in clusters, and this originates rather loose constraints on the length scale `. The inferred
values of the DM mass M500 and concentration c500 are reasonable and consistent with that
estimated by a variety of other methods in standard gravity [38]; we also checked that the
same agreement applied for the gas fraction, as expected given the very good fits to the gas
density profiles.
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Table 1. Marginalized posterior estimates (mean and 68% confidence limits are reported) for the
parameters from the MCMC analysis of the X-COP sample in fractional gravity. Columns report
the values of the fractional parameter s, the fractional length scale `, the DM mass M500, the halo
concentration c500, and the reduced χ2

r of the joint fit to the density and pressure profiles. The different
portions of the table refer to the fit to individual clusters with no mass prior, to individual clusters
with weak lensing mass priors (marked WL, and only available for five clusters from [46]), and to the
stacked sample. For reference, the last column reports the best-fit DM mass M500 from [38].

Cluster s log `
(Mpc) log c500

log M500
(M�) χ2

r
log MEck22

500
(M�)

A85 1.11+0.04
−0.08 −1.2+0.5

−0.8 0.49+0.07
−0.1 14.27+0.37

−0.23 2.02 14.70

A644 1.02+0.01
−0.01 −0.8+1.6

−1.6 0.66+0.03
−0.03 14.56+0.09

−0.04 1.94 14.89

A1644 1.19+0.05
−0.09 −0.4+0.5

−0.9 0.49+0.09
−0.09 14.19+0.46

−0.35 3.01 14.49

A1795 1.05+0.01
−0.05 −1.9+0.2

−1.1 0.54+0.02
−0.04 14.28+0.29

−0.12 1.46 14.65

A2029 1.03+0.05
−0.05 −0.4+1.6

−1.6 0.55+0.02
−0.06 14.70+0.18

−0.07 1.36 14.84

A2142 1.03+0.02
−0.02 −0.2+1.4

−2.1 0.42+0.04
−0.07 14.76+0.15

−0.11 2.91 14.95

A2255 1.15+0.04
−0.06 +0.5+0.7

−0.9 0.420.09
−0.10 14.81+0.31

−0.31 0.89 14.69

A2319 1.01+0.02
−0.02 −0.2+1.6

−1.6 0.59+0.02
−0.03 14.69+0.04

−0.02 6.46 14.90

A3158 1.11+0.03
−0.09 −0.9+0.6

−1.2 0.48+0.07
−0.12 14.18+0.43

−0.25 1.72 14.63

A3266 1.09+0.02
−0.09 +0.8+0.4

−0.9 0.36+0.09
−0.21 14.93+0.07

−0.07 6.86 14.87

RXC1825 1.03+0.01
−0.02 +1.4+0.6

−1.1 0.56+0.04
−0.06 14.59+0.04

−0.04 2.92 14.59

ZW1215 1.15+0.05
−0.08 −0.3+0.6

−1.0 0.41+0.11
−0.11 14.61+0.40

−0.31 0.68 14.85

A85
+WL 1.04+0.01

−0.02 +1.3+0.8
−0.9 0.49+0.06

−0.06 14.79+0.09
−0.09 2.02 14.70

A1795
+WL 1.04+0.01

−0.01 +2.3+1.5
−1.5 0.68+0.05

−0.05 14.81+0.08
−0.08 1.47 14.65

A2029
+WL 1.03+0.01

−0.01 +2.0+0.9
−0.3 0.61+0.05

−0.05 14.95+0.06
−0.06 1.36 14.84

A2142
+WL 1.04+0.01

−0.02 +1.9+0.8
−0.5 0.51+0.05

−0.06 15.01+0.06
−0.06 2.91 14.95

ZW1215
+WL 1.10+0.04

−0.05 +0.3+0.3
−0.5 0.38+0.09

−0.09 14.86+0.08
−0.08 0.68 14.85

Stacked 1.03+0.02
−0.02 +0.3+1.3

−1.3 0.43+0.04
−0.07 14.76+0.08

−0.08 0.84 14.75

In Figure 7, we checked the concentration vs. the DM mass relation for the X-COP
sample in fractional gravity. To fairly compare with the relation expected from N-body
simulations in the ΛCDM framework, we converted our fitting variables c500 and M500 at
a reference radius R500 to the corresponding values c200 and M200 at R200; this is a trivial
rescaling given the adopted NFW density profile. In Figure 7, we show as filled magenta
circles the outcome for individual X-COP clusters and with a magenta cross that for the
stacked sample. It is seen that the estimates of c200 and M200 in fractional gravity are fairly
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consistent in shape and scatter with the concentration vs. mass relation extracted from
N-body simulations [47].
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Figure 3. Same as Figure 2 for the density profiles.

In passing, we note that the clusters A644, A1644, A2255, and A2319 have been shown
not to favor an NFW mass profile, but rather a cored Burkert-like one (e.g., a Burkert,
Hernquist, or pseudo-isothermal distribution) [36]. When forward modeling the pressure
profiles in standard gravity with the NFW density distribution, this causes inconsistent
results (especially in mass and concentration values) and/or a poor fit [9]. Contrariwise,
such values and fits in fractional gravity stay reasonable and good, since the mass profile
entering the hydrostatic equilibrium equation is not the true NFW mass, but the effective
mass, which, as mentioned in Section 2, mirrors that of a cored profile. For these four
clusters, we also checked that using a cored Burkert-like density distributions in place
of the NFW one as an input in our fractional gravity framework did not substantially
improve the fits to pressure profiles, and rather forced the fractional index to values s ≈ 1
compatible with pure Newtonian gravity. In fact, fractional gravity actually reconciles the
NFW density distribution from simulations with the observed galactic dynamics, which
are empirically described via cored, Burkert-like profiles. Moreover, A2319 have been
shown to be characterized by an appreciable nonthermal support in the outskirts [48],
which causes some difficulties in forward modeling and fitting the pressure profiles via the
usual hydrostatic equilibrium equation in standard gravity. Instead, curiously, in fractional
gravity, the fits stay good, suggesting that such a nonlocal framework may constitute an
effective rendition for the effects of a nonthermal support on the pressure distribution.
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Figure 4. MCMC posterior distributions of the fractional parameter s, the fractional length scale `, the
DM concentration c500, and the DM mass M500, for two representative clusters of the X-COP sample:
A2255 (top) and ZW1215 (bottom). Magenta contours/lines refer to the analysis with no mass prior,
and cyan contours/lines to that with a weak lensing mass prior (only available for ZW1215 in the
bottom panel). The contours show 1, 2, and 3σ confidence intervals, white crosses mark the maximum
likelihood estimates, and the marginalized distributions are in arbitrary units (normalized to unity at
their maximum value).
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Figure 5. Fits to the stacked sample profiles of the X-COP clusters in fractional gravity, according to
the Bayesian analysis described in Section 2. Crosses show the stacked sample profiles, while gray
lines show the individual ones. Colored solid lines illustrate the median, and the shaded areas show
the 2σ credible interval from sampling the posterior distribution of the fits. The vertical dotted lines
marks the average reference radius R500 of the sample. The χ2

r value of the joint fit to the density and
pressure profile is reported in the right panel.
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Figure 6. Posterior distributions (normalized to unity at their maximum values) of fractional index
s (top left), fractional length-scale ` (top right), concentration c500 (bottom left) and DM mass
M500 (bottom right), from the fits to the X-COP density and pressure profiles in fractional gravity.
Colored areas refer to individual clusters (as detailed in the legend), and the black dashed line to the
stacked sample.
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Figure 7. Concentration c200 vs. DM mass M200 relation for the X-COP sample in fractional gravity.
Gray shaded area is the relation predicted from N-body simulations in the ΛCDM cosmology [47].
Filled magenta circles refer to individual clusters and the magenta cross to the stacked sample, while
open magenta circles show (with no error bars for clarity) the corresponding c500 and M500 values
that are the actual fitting parameters.

In Figure 8, we explore the scaling of the fractional gravity parameters with the DM
mass. For this purpose, we put together the analysis of the X-COP clusters from this work,
and the constraints coming from the fitting of stacked galaxy rotation curves by [34]. These
joint datasets covered six orders of magnitude in DM mass from M200 ∼ 109 M� to 1015 M�.
As to the fractional index s, we confirmed the decreasing trend with the DM mass, passing
from values around s ≈ 1.4 in dwarf galaxies, to s ∼ 1.2–1.3 in intermediate mass galaxies,
to s ∼ 1.1 in massive galaxies and clusters. We described the s vs. M200 relation by a linear
fit (dashed line) with shape s = a + b (log M200(M�) − 11) via an orthogonal distance
regression (ODR) algorithm that took into account the error bars on both axis; we obtained
the best-fit parameters a = 1.24± 0.02 and b = −0.057± 0.006 and a reduced χ2

r ≈ 1.87;
a nonlinear fit (solid line) s = (5/4) + (1/4) tanh[c (log M200(M�) − d)] interpolating
between asymptotic values s = 1 and 1.5 at small and large masses yielded the best-
fit parameters c = −0.39± 0.06, d = 10.76± 0.25 and a reduced χ2

r ≈ 1.34. As to the
fractional length scale, there was an increasing trend with the DM mass, extending the
finding by [34] at the cluster scales. We fit the ` vs. M200 relation with a linear shape `
(Mpc) = a + b (log M200(M�)− 11) via an ODR algorithm, to obtain the best-fit parameters
a = −2.66± 0.09, b = 0.66± 0.06 and a reduced χ2

r ≈ 1.09. This relation was somewhat
steeper than the scaling with the DM mass of the NFW scale radius rs, in such a way that in
dwarf galaxies `/rs ≈ 0.25 but this ratio increased to around one at the cluster scales.
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Figure 8. Scaling relations in fractional gravity from galaxies to clusters: fractional index s (left) and
length-scale ` (right) vs. DM mass M200. Magenta circles refer to individual clusters and magenta
crosses to the stacked cluster sample from this work, while cyan stars refer to the stacked rotation
curve of galaxies from [34]. Dashed lines display an ODR linear fit to the overall data, while a solid
line in the left panel shows a nonlinear ODR fit with limiting values 1 and 1.5 from large to small
masses, and a dotted line in the right panel illustrates the scale radius rs of the NFW profile (see
Section 3 for further details).

4. Summary and Outlook

Extending the analysis carried out by [34] on galactic scales, in this paper, we tested
fractional gravity in galaxy clusters. Our aim was twofold: (i) to perform an independent
sanity check that fractional gravity can accurately describe such large and massive struc-
tures; (ii) to derive a clear-cut trend for the strength of fractional gravity effects in systems
with different DM masses.

To fulfill this program, we forward modeled the density and pressure distributions
of the intracluster medium (ICM), working out the hydrostatic equilibrium equation in
fractional gravity. Then, we performed a Bayesian analysis of the X-COP galaxy cluster
sample to infer constraints on the fractional gravity parameters for individual clusters and
also by stacking them.

We found that fractional gravity performed remarkably well in modeling the ICM
profiles for the X-COP sample. We also checked that the relationship between the concen-
tration of the DM profile and the DM mass still remained consistent with the expectations
of N-body simulations in the ΛCDM framework. Finally, we confirmed the weakening of
the fractional gravity effects toward more massive systems and derived the overall scaling
of the fractional gravity parameters from dwarf galaxies to massive clusters, over six orders
of magnitude in DM mass. Such an overall trend implies that fractional gravity can sub-
stantially alleviate the small-scale issues of the standard DM paradigm, while remaining
successful on large cosmological scales.

In future work, we plan to investigate a theoretical explanation for the empirical
scaling of fractional gravity parameters with the DM mass. Hints may come from the
connection of these parameters with different MONDian and fractional gravity theories,
as partly explored by [30,33,34]. In fact, it has been pointed out that all these frameworks
are characterized by an index (in our case s) interpolating between the Newtonian and
a MOND-like regime, and by a length scale ` ∼

√
G M/a0 that dimensionally can be

written in terms of a MOND-like characteristic acceleration scale a0 and of the system’s
mass M (baryons in the basic MOND theory, total mass dominated by DM in our case).
However, the empirical scaling between ` ∝ M∼2/3 found here is barely consistent with
this law within the uncertainties, and an ab initio explanation of the inverse dependence
of s with mass M is difficult to be envisaged even in simple terms. This indicates that
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some crucial ingredient is missing to build a robust theoretical background behind DM in
fractional gravity.

On the observational side, the present work clearly shows that whatever the ultimate
origin of the fractional gravity behavior in the DM component is, most of its effects manifest
in small DM masses; according to the canonical structure formation scenario, these objects
must have formed at early cosmic times. Therefore, in the near future, we plan to look for
signs of fractional gravity via kinematic (and possibly gravitational lensing) observations
of low-mass galaxies at intermediate/high redshift, and of their relics in the local Universe;
this could shed light on the mechanisms responsible for the origin and the emergence of
fractional gravity across cosmic times.
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Notes
1 Hereafter, R∆ indicates the radius where the average DM density is ∆ times the critical density ρc(z) at the redshift z of the cluster.
2 See https://dominiqueeckert.wixsite.com/xcop/about-x-cop (accessed on 30 May 2023).
3 Note that in computing the overall gravitational potential Φ, we have neglected the stellar contribution Φ?, mainly originated

by the brightest central galaxy; this would add a term dΦ?/dr = G M?(< r)/r2 to the integrand on the right-hand side of
Equation (11). For the X-COP cluster sample exploited in this work (stellar profiles were available for 5 out of 12 clusters), the
related contribution has been shown by [38] to become relevant only for r . 0.02 R500 ∼ 20 kpc and as such can barely influence
the innermost available data point of the pressure profile; as a consequence, our results were negligibly affected, as we also
checked numerically.

4 Actually, in principle, fractional gravity can also alter somewhat the total depth of the gravitational potential, thus biasing the
overall WL mass estimates; however, given that the fractional gravity masses estimated without WL prior and the Newtonian
ones are consistent with each other within 2σ (see fifth and last column in Table 1), we ignored such a small bias and used the
Newtonian WL masses as prior, with their uncertainties, in the fractional gravity analysis.
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