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Abstract: Based on the five-dimensional Einstein–Maxwell theory, Bah et al. constructed a singularity-
free topology star/black hole [Phys. Rev. Lett. 126, 151101 (2021)]. After performing the Kaluza–Klein
reduction, i.e., integrating the extra space dimension, it can obtain an effective four-dimensional
spherically static charged black hole with scalar hair. In this paper, we study the quasinormal modes
(QNMs) of the scalar, electromagnetic, and gravitational fields in the background of this effective four-
dimensional charged black hole. The radial parts of the perturbed fields all satisfy a Schrödinger-like
equation. Using the asymptotic iteration method, we obtain the QNM frequencies semianalytically.
For low-overtone QNMs, the results obtained using both the asymptotic iteration method and the
Wentzel–Kramers–Brillouin approximation method agree well. In the null coordinates, the evolution
of a Gaussian package is also studied. The QNM frequencies obtained by fitting the evolution data
also agree well with the results obtained using the asymptotic iteration method.

Keywords: magnetic charged black hole; quasinormal modes; gravitational waves

PACS: 04.70.-s; 04.70.Bw

1. Introduction

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo
detected the gravitational wave of a binary black hole system [1], which opened the
window to gravitational wave astrophysics. Subsequently, the Event Horizon Telescope
(EHT) took the first pictures of the supermassive black hole at the center of Galaxy M87
in 2019 [2–7] and the black hole in our Milky Way in 2022 [8–13]. This enhanced our
ability to test fundamental physical problems. One is whether a singularity exists [14,15].
The search for black hole alternatives has attracted a lot of interest. Ultra-compact ob-
jects, such as gravastars [16], boson stars [17], and wormholes [18–21], have been con-
structed. More details can be found in the review by [22] and the references therein.
However, these models usually need some exotic matter and their UV origin is not clear.
On the other hand, from string theory, which is the most important candidate for unify-
ing quantum theory and gravity theory, some horizonless models have been constructed.
One of these, a fuzzball, has a smooth microstate geometry and is similar to classical
black holes up to the Planck scale [23]. However, constructing a fuzzball requires many
degrees of freedom, and it is difficult to study astrophysical observations [24–26]. To
address these disadvantages, Bah and Heidmann proposed a topological star/black hole
model, which can be constructed from type-II B string theory and is similar to classical
black holes in macrostate geometries [27,28]. So, studying astrophysical observations is
not too challenging. They further carefully analyzed the thermodynamic stability of the
solution [29]. In addition, the motion of a charged particle on the background of this
topological star/black hole model has been studied [30]. Based on this solution, a four-
dimensional spherically static charged black hole with scalar hair could be obtained by
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integrating an extra dimension [27,28]. We will study the quasinormal modes (QNMs) of
the scalar, electromagnetic, and gravitational fields in the background of the black hole in
this paper.

Quasinormal modes are characteristic of dissipative systems and play important roles
in various physical areas. Classically, everything that falls into the interior of the black hole
cannot escape because of the event horizon; therefore, black holes are dissipative systems.
The quasinormal modes of black holes dominate the ringdown stage, which is the final
stage of gravitational waves for a binary black hole merging system [31]. A big difference
between QNMs and normal modes is that the eigenfunctions of normal modes form a
complete set, whereas those of QNMs do not [32]. Moreover, the eigenfunctions of QNMs
are not normalizable [32]. Quasinormal modes have complex frequencies, where the real
parts are the vibration frequencies and the imaginary parts are the inverse of the decay time
scale of the perturbation. Therefore, it is very important to study the QNMs of black holes.
The mass and angular momentum can be inferred from QNMs, and the no-hair theorem can
also be tested using QNMs [33–35]. For horizonless compact objects, there could be echoes
in the ringdown signal, which is the smoking gun for the existence of the horizonless
compact objects [15,22,36]. One can also use the QNMs to constrain modified gravity
theories [37–45]. It has also been found that the QNM spectrum is unstable under a
small perturbation of the potential [46,47]. Furthermore, the QNM frequencies can also
partly reveal the stability of the background space-time under small perturbations [48,49].
QNMs play very important roles in other physical systems, for example, leaky resonant
cavities [50], and brane world models [51–53], which have been widely studied [54–62].

In this paper, we will study the QNMs in the background of a four-dimensional
spherically static black hole with scalar hair. The remainder of this paper is organized as
follows. In Section 2, we provide a brief overview of the charged black hole with scalar
hair, as well as the KK reduction. In Section 3, we study small perturbations in the scalar,
electromagnetic, and gravitational fields. By expanding the perturbation fields in the
spherical harmonic function, we can derive the master equations of the perturbations.
In Section 4, we compute the QNM frequencies using the asymptotic iteration method
(AIM) and Wentzel–Kramers–Brillouin (WKB) approximation method, as well as the time
evolution of a Gaussian package. Finally, we present the conclusions in Section 5.

2. The Charged Black Hole

The nonsingular black hole/topology star proposed by I. Bah and P. Hedmann [27,28]
originates from the action of a five-dimensional Einstein–Maxwell theory

S =
∫

d5x
√
−ĝ

(
1

2κ2
5

R̂− 1
4

F̂MN F̂MN

)
, (1)

where F̂MN is the five-dimensional electromagnetic field tensor, and κ5 is the five-dimensional
gravitational constant. We use the hat symbol to denote the five-dimensional quantities. The
five-dimensional coordinates are denoted by M, N . . . . The metric is considered spherically
symmetric [63].

ds2 = − fS(r)dt2 + fB(r)dy2 +
1

fS(r) fB(r)
dr2

+ r2dθ2 + r2 sin2 θdφ2. (2)

The extra dimension coordinate is denoted by y. The field strength of the magnetic
field is

F̂ = P sin θdθ ∧ dφ. (3)
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The solution can be solved according to [63].

fB(r) = 1− rB
r

, fS(r) = 1− rS
r

, P = ± 1
κ2

5

√
3rSrB

2
. (4)

Metric (2) is symmetric under a double rotation, which transforms the coordinate (t,
y, rS, rB) to (iy, it, rB, rS). At r = rS, the space-time features a horizon, where fS(r) = 0,
whereas at r = rB, a degeneracy of the y-circle occurs. Bah and Heidmann showed that
there are smooth bubbles at r = rB, which terminate the space-time [27,28]. The space-time
has two configurations. One is a black string, where rS ≥ rB because the bubble hides
behind the horizon, and the other is a topology star, where the horizon disappears when
rS < rB because the space-time terminates at r = rB [27,28].

We rewrite the metric (2) as

ds2
5 = e2Φds2

4 + e−4Φdy2, (5)

ds2
4 = f

1
2

B

(
− fSdt2 +

dr2

fB fS
+ r2dθ2 + r2 sin2 θdφ2

)
, (6)

where
e2Φ = f−1/2

B , (7)

and Φ is a dilaton field. After performing the Kaluza–Klein reduction, i.e., integrating the
extra dimension, we can obtain a four-dimensional theory known as the Einstein–Maxwell
dilaton theory

S4 =
∫

d4x
√
−g
( 1

2κ2
4

R4 −
3
κ2

4
gµν∂µΦ∂νΦ

− 2πRye−2ΦFµνFµν
)

, (8)

where Ry is the radius of the extra dimension. We use µ, ν . . . to label the four-dimensional
coordinates. Here, the quantities without the hat symbol are constructed in the four-
dimensional space-time. The four-dimensional gravitational constant is defined as

κ4 =
κ5√
2πRy

. (9)

We can solve the four-dimensional field strength of the magnetic field as follows:

F = ± 1
κ4
√

2πRy

√
3rBrS

2
sin θdθ ∧ dφ. (10)

The ADM mass M and magnetic charge Qm can be solved as follows:

M = 2π

(
2rS + rB

κ2
4

)
,

Qm =
1
κ4

√
3
2

rBrS. (11)

Or, in terms of M and Qm,

r(1)S =
κ2

4
8π

(M−M4), r(1)B =
κ2

4
4π

(M + M4), (12)

r(2)S =
κ2

4
8π

(M + M4), r(2)B =
κ2

4
4π

(M−M4), (13)
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where M2
4 = M2 −

(
8πQm√

3κ4

)2
. From Solution (4), we know that when r < rB, f 1/2

B be-
comes imaginary, and the metric is unphysical. So, the coordinate r cannot be smaller
than rB. Moreover, the black string scenario has Gregory–Laflamme instability [64]. How-
ever, models with compact extra dimensions that result in a discrete KK mass spectrum
can potentially avoid this instability. Stotyn and Mann have demonstrated that when
Ry > 4

√
3

3 Qm, Solution (13) is stable. It is important to note that the space-time at r = rB is
singular. Thus, when rS ≥ rB, Metric (6) describes a charged black hole with scalar hair. We
only study this case in this paper. it is important to note that magnetically charged black
holes have been studied in [65–67].

3. Perturbation Equations

In this section, we analyze the linear perturbation equations of the scalar, electromag-
netic, and gravitational fields in the background of a charged black hole with scalar hair.
For simplicity, we consider the three types of perturbed fields separately, that is, when
one field is perturbed, the background of the other two fields is unaffected. However, it
is important to note that perturbations of the electromagnetic and gravitational fields are
typically coupled together for charged black holes.

3.1. Scalar Field

We consider a free massless scalar field in the background of this charged black hole.
The equation of motion for the scalar field is the Klein–Gordon equation

1√−g
∂µ

(√
−g∂µ ϕ

)
= 0. (14)

Because of the spherical symmetry and time independence of the background, we can
decompose the scalar field as follows:

ϕ(t, r, θ, φ) = ∑
l,m

e−iωt f−1/4
B

1
r

ψs(r)Yl,m(θ, φ), (15)

where Yl,m is the spherical harmonics that satisfies

4Yl,m = −l(l + 1)Yl,m, (16)

where 4 is the Laplace–Beltrami operator. By substituting this into Equation (14), we
obtain the radial part of the perturbation equation for the scalar field

f 2
S fBψ′′s + fS( f ′S fB +

1
2

f ′B fS)ψ
′
s + (ω2 −Vs(r))ψs = 0, (17)

where

Vs(r) = fS

(
l(l + 1)

r2 +
1
4

fS f ′′B + f ′B f ′S −
fS f ′2B
4 fB

)

+
fS
r
( fS f ′B + fB f ′S) (18)

is the effective potential for the scalar field. Hereafter, we use a prime to denote the
derivative with respect to the coordinate r. In order to obtain the Schrödinger-like equation,
we require the tortoise coordinate r∗, which can be obtained from the following relation:

dr∗ =
1√
fB fS

dr. (19)
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In this way, Equation (17) can be written as

d2ψ(r∗)
dr2∗

+ (ω2 −Vs(r∗))ψ(r∗) = 0. (20)

3.2. Electromagnetic Field

For an electromagnetic field, the Maxwell equation is given by

1√−g
∂µ

(√
−gF̃µν

)
= 0, (21)

where F̃µν = ∂µ Ãν − ∂ν Ãµ is the field-strength tensor of the perturbed electromagnetic
field Ãµ. To separate the perturbed electromagnetic field, we require the vectorial spherical
harmonics, which are defined as [68–70]

(V1
l,m)a = ∂aYl,m(θ, φ), (22)

(V2
l,m)a = γbcεac∂bYl,m(θ, φ). (23)

Here, a, b, c denote the angular coordinates θ and φ. γ refers to the induced metric
on the sphere with radius 1, and ε is the totally antisymmetric tensor in two dimensions.
It is important to note that (V1

l,m)a and (V2
l,m)a behave differently under space inversion,

i.e., (θ, φ) → (π − θ, π + φ). (V1
l,m)a is even or polar, that is, it acquires a factor of (−1)l

under space inversion. (V2
l,m)a is odd or axial, that is, it acquires a factor of (−1)l+1 under

space inversion. Thus, the perturbed electromagnetic field Ãµ can be decomposed as

Ãµ(t, r, θ, φ) = ∑
l,m

e−iωt


0
0

ψv(r)
sin θ

∂Yl,m
∂φ

−ψv(r) sin θ
∂Yl,m

∂θ



+ ∑
l,m

e−iωt


h1(r)Yl,,m
h2(r)Yl,,m

h3(r)
∂Yl,m

∂θ

h3(r)
∂Yl,m

∂φ

. (24)

Owing to the spherical symmetry of the background metric, the perturbation equations
do not mix polar and axial contributions. Moreover, the axial and polar parts contribute
equally to the final result [68,69]. So, we only need to deal with the axial part. By substi-
tuting the background metric from (6) into the Maxwell equation in (21), we obtain the
perturbation equation for the radial part ψv

f 2
S fBψ′′v + fS( f ′S fB +

1
2

f ′B fS)ψ
′
v + (ω2 −Vv(r))ψv = 0, (25)

where the effective potential is

Vv(r) =
fS(r)l(l + 1)

r2 , (26)

which does not depend on the parameter rB. However, the effective potential depends on
the parameter rS, which is related to the magnetic charge Qm. Using the tortoise coordi-
nate r∗, the perturbation equation can also be transformed into a Schrödinger-like form.
From Equation (19), we know that the tortoise coordinate r∗ depends on the parameter rB
so the QNMs will also be affected by the parameter rB.
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3.3. Gravitational Field

Considering a perturbation on the background metric (6), the perturbed metric is

ḡµν = gµν + hµν, (27)

where hµν is the perturbation. The separation of the perturbation for the gravitational field
is more complicated. In addition to the vectorial spherical harmonics, we also need to
consider the tensorial harmonics, which are defined as [71]

(T1
l,m)ab = (Yl,m);ab , (28)

(T2
l,m)ab = Yl,mγab, (29)

(T3
l,m)ab =

1
2
[εc

a(Yl,m);cb +εc
b(Yl,m);ca ], (30)

where the semicolon denotes the covariant derivative on the sphere. Among them, T3
l,m

is odd under space inversion, whereas the other two are even. Based on the principle of
general covariance, the theory should maintain covariance under an infinitesimal coordi-
nate transformation. Thus, we can choose a specific gauge to simplify the problem. In the
Regge–Wheeler gauge [71], the perturbation hµν can be written as

hµν = ∑
l

e−iωt


0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

h0(r) h1(r) 0 0

 sin θ∂θYl,0(θ) (31)

for the odd parity, and

hµν = ∑
l

e−iωt


H0(r) H1(r) 0 0
H1(r) H2(r) 0 0

0 0 r2K(r) 0
0 0 0 r2K(r) sin2 θ

Yl,0(θ) (32)

for the even parity. For simplicity, we have chosen m = 0 because the perturbation
equations do not depend on the value of m [71]. For the Schwarzschild black hole, the
odd and even parities have the same QNM spectrum [72], whereas other black holes may
not possess this property. In this paper, we focus on the odd parity for simplicity. By
substituting the decomposition into Einstein’s equation and performing some algebraic
operations, the perturbation equations for the odd parity perturbation can be combined
into a single equation for the variable ψg, which is defined as

ψg(r) =
f 1/4
B (r) fS(r)

r
h1(r). (33)

The variable ψg satisfies the Schrödinger-like Equation (20), with the effective potential

Vg(r) = fS

(
3
4

f ′B f ′S + fB f ′′S −
fB f ′S

r
+

l(l + 1)
r2

)
− f 2

S

(
9 f ′2B
16 fB

−
3 f ′′B

4

)
. (34)

The effective potential plays an important role in determining the value of the QNMs.
We plot the effective potentials for the scalar, electromagnetic, and gravitational fields in
Figure 1. All of the effective potentials approach zero at the horizon and infinity, which is
similar to the Schwarzschild black hole. In addition, the effective potentials for the scalar
and gravitational fields depend on the parameter rB.
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Figure 1. The effective potentials in the tortoise coordinate r∗. The parameter rB is set to rB = 0.1rS

(black solid lines), rB = 0.5rS (blue dashed lines), and rB = 0.9rS (red dashed lines). (a) The scalar
field with l = 0. (b) The electromagnetic field with l = 1. (c) The gravitational field with l = 2.

4. Computing QNMs

In this section, we present the solutions for the QNMs of the charged black hole with a
scalar field, considering both the frequency and time domains. Additionally, we compare
the results using two different methods.

4.1. Solving Frequency

First, we compute the frequencies of the QNMs for the three types of fields using the
AIM and WKB approximation method. Here, we provide a brief overview of the AIM.

Consider a homogeneous linear second-order differential equation given by

χ′′(x) = λ0(x)χ′(x) + s0(x)χ(x), (35)

where λ0(x) and s0(x) are smooth functions. Based on the symmetric structure of the
right-hand side of Equation (35), we can find a general solution to this equation [73]. By
differentiating Equation (35) with respect to the variable x, we obtain

χ′′′(x) = λ1(x)χ′(x) + s1(x)χ(x), (36)

where

λ1(x) = λ′0(x) + s0(x) + (λ0)
2,

s1(x) = s′0(x) + s0(x)λ0(x). (37)

By differentiating Equation (36) with respect to x, we find that

χ′′′′(x) = λ2(x)χ′(x) + s2(x)χ(x), (38)
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where

λ2(x) = λ′1(x) + s1(x) + λ0λ1,

s2(x) = s′0(x) + s0(x)λ1(x). (39)

By continuing this process, the (n + 1)-th and (n + 2)-th derivatives give us the
following relations

λn(x) = λ′n−1(x) + sn−1(x) + λ0(x)λn−1(x),

sn(x) = s′n−1(x) + s0(x)λn−1(x). (40)

When n is sufficiently large, the asymptotic aspect can be introduced as

sn(x)
λn(x)

=
sn−1(x)
λn−1(x)

. (41)

Then, the QNMs can be obtained from the “quantization condition”

snλn−1 − sn−1λn = 0. (42)

This is equivalent to giving the iteration number n a truncation. This method is good,
but one needs to differentiate the s(x) and λ(x) terms for each iteration, which may create
problems for numerical precision. To make the process more efficient, Cho et al. [74]
improved this method. The improved method does not need to take derivatives at each
step, which greatly improves accuracy and speed. What they do is expand the λn and sn in
a Taylor series around a fixed point ξ,

λn(x) =
∞

∑
i=0

ci
n(x− ξ)i,

sn(x) =
∞

∑
i=0

di
n(x− ξ)i, (43)

where ci
n and di

n are the i-th Taylor coefficients of λn and sn, respectively. Using these
expressions, one can obtain a set of recursion relations:

ci
n = (i + 1)ci+1

n−1 + di
n−1 +

i

∑
k=0

ck
0ci−k

n−1,

di
n = (i + 1)di+1

n−1 +
i

∑
k=0

dk
0ci−k

n−1. (44)

Thus, the “quantization condition” can be re-expressed in terms of the coefficients as

d0
nc0

n−1 − d0
n−1c0

n = 0. (45)

The boundary conditions are pure ingoing waves at the event horizon

ψ ∼ e−iωr∗ , r∗ → −∞, (46)

and pure outgoing waves at spatial infinity

ψ ∼ eiωr∗ , r∗ → +∞. (47)

It is helpful to transform infinity to be finite, so we perform the following coordinate
transformation

u = 1− rS
r

, (48)
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such that, the range of u is 0 ≤ u < 1. The boundary conditions in terms of u are

ψ(u) =

(
−2(rS − rB) + 2

√
rs − rB

r5/2
S u

)iωr3/2
S /
√

rS−rB

(49)

at the horizon, i.e., u = 0, and

ψ(u) = eiω(rS/(1−u)+(rS+rB/2))
(

4rS
1− u

− rB

)iω
(50)

at infinity, i.e., u→ 1. Thus, we can define

ψ(u) =

(
−2(rS − rB) + 2

√
rs − rB

r5/2
S u

)iωr3/2
S /
√

rS−rB

×
(

4rS
1− u

− rB

)iω
eiω

(
rS

(1−u)+(rS+
rB
2 )
)

χ(u). (51)

Then, the perturbation equations can be rewritten as

χ′′(u) = λ0(u)χ′(u) + s0(u)χ (52)

where λ0 and s0 are functions of u depending on the effective potential. The functions
λ0 and s0 are complicated so we do not show them explicitly. The first twenty modes
for the scalar, electromagnetic, and gravitational fields are shown in Figure 2. The WKB
method is powerful in solving frequencies of low-overtone QNMs. We compare the results
obtained using the AIM and the WKB method in Tables 1–3 for the scalar, electromagnetic,
and gravitational fields, respectively. For low-overtone QNMs, the results obtained using
the AIM are in good agreement with those obtained using the WKB method. When the
multipole number l increases, the real parts of the QNM frequencies change more noticeably
than the imaginary parts, which can be seen in Figure 2 and Tables 1–3. It is important to

note that rB = 0.5rS is equivalent to Qm = 2
√

2
3 M̄, where M̄ ≡

√
3κ4

8π M.

-1.0 -0.5 0.0 0.5 1.0

0

2

4

6

8

10

Re( rS)

-
Im

(
r S
)

(a)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0

2

4

6

8

10

Re( rS)

-
Im

(
r S
)

(b)

Figure 2. Cont.
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(
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Figure 2. The first twenty QNMs for the charged black hole with scalar hair. The parameter rB is set
to rB = 0.5rS. (a) QNMs for the scalar field with l = 0 (black dots), l = 1 (blue dots), l = 2 (red dots).
(b) QNMs for the electromagnetic field with l = 1 (black dots), l = 2 (blue dots), l = 3 (the red dots).
(c) QNMs for the gravitational field with l = 2 (black dots), l = 3 (blue dots), l = 4 (red dots).

Table 1. Frequencies of low-overtone QNMs for the scalar field. The parameter rB is set to rB = 0.5rS.

l n AIM WKB

Re(ωrS) Im(ωrS) Re(ωrS) Im(ωrS)

0 0 0.220856 −0.166592 0.219664 −0.166443
1 0.186884 −0.534457 0.193004 −0.537457

1 0 0.586476 −0.158533 0.586679 −0.158525
1 0.554754 −0.488295 0.556358 −0.487138

2 0 0.967669 −0.157641 0.967666 −0.157648
1 0.946096 −0.478040 0.946082 −0.478076

Table 2. Frequencies of low-overtone QNMs for the electromagnetic field. The parameter rB is set to
rB = 0.5rS.

l n AIM WKB

Re(ωrS) Im(ωrS) Re(ωrS) Im(ωrS)

1 0 0.513377 −0.152855 0.513302 −0.153142
1 0.476438 −0.474101 0.476701 −0.537457

2 0 0.924716 −0.155637 0.924714 −0.155649
1 0.901934 −0.472399 0.901941 −0.472447

3 0 1.32049 −0.156374 1.32049 −0.156375
1 1.30408 −0.471908 1.30408 −0.471914

Table 3. Frequencies of low-overtone QNMs for the gravitational field. The parameter rB is set to
rB = 0.5rS.

l n AIM WKB

Re(ωrS) Im(ωrS) Re(ωrS) Im(ωrS)

2 0 0.810272 −0.147554 0.810467 −0.147398
1 0.785979 −0.449209 0.787063 −0.447841

3 0 1.24218 −0.152877 1.24220 −0.152875
1 1.22506 −0.461665 1.22529 −0.461580

4 0 1.65149 −0.154694 1.65149 −0.154694
1 1.63833 −0.465851 1.63831 −0.465856

From Equation (13) we know that the mass M and magnetic charge Qm are closely
related to the parameters rB and rS. When we fix the mass M and increase the magnetic
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charge Qm, rS decreases and rB increases. So, the effect of the magnetic charge Qm on
the QNMs can be obtained by qualitatively analyzing the effect of the parameter rB on
the QNMs. We study the effect of the parameter rB on the fundamental QNMs for the
three types of perturbed fields. The range of the parameter rB is 0 ≤ rB ≤ 0.5rS, which
is equivalent to 0 ≤ Qm ≤ 2

√
2

3 M̄. We find that the real parts of the overtone QNMs’
frequencies for the scalar and vector fields approximately increase linearly with rB, whereas
the absolute value of the imaginary parts approximately decreases linearly with rB, which
can be seen in Figure 3a–d. As for the gravitational field, both the real parts and the absolute
value of the imaginary parts of the overtone QNM frequencies change slightly with rB for
smaller rB. After a short decrease stage, they then increase rapidly with rB.
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Figure 3. The effect of the parameter rB on the frequencies of fundamental QNMs. (a) Real parts of
frequencies for the scalar field with l = 0. (b) Imaginary parts of frequencies for the scalar field with
l = 0. (c) Real parts of frequencies for the electromagnetic field with l = 1. (d) Imaginary parts of
frequencies for the electromagnetic field with l = 1. (e) Real parts of frequencies for the gravitational
field with l = 2. (f) Imaginary parts of frequencies for the gravitational field with l = 2.

4.2. Time Evolution

In order to intuitively show the evolution of the perturbed field, we study the QNMs
in the time domain, i.e., we do not use the ansatz ψ ∝ e−iωt. Using the null coordinates
u = t− r∗ and v = t + r∗, the perturbation equations can be written in the following form:

4
∂2Φs,v,g

∂u∂v
+ Vs,v,g(r∗)Φs,v,g = 0. (53)
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We choose the initial data as a Gaussian package

Φ(0, v) = e−
(v−vc)2

2σ2 ,

Φ(u, 0) = 0. (54)

We choose the package located at vc = 10rS, with a width σ = 1rS. The evolution
range is (0, 200rS), and the results are extracted at r∗ = 20rS. The results are shown in
Figure 4. By fitting the evolution data, we can also obtain the QNM’s frequency. For
example, the frequency obtained by fitting the evolution data of the electromagnetic field
is 0.512894–0.152494i, which agrees well with the results of the AIM 0.513377–0.152855i.
Although the fundamental QNM dominates the evolution of the perturbation, the evolution
data are the superpositions of all the QNMs, so this result is good. All three methods obtain
the same results, enhancing the credibility of the findings.
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Figure 4. Time evolution of the Gauss package extracted at r∗ = 20. The parameter rB is set to
rB = 0.2rS (black lines), rB = 0.5rS (blue lines), and rB = 0.8rS ( red lines). (a) Time evolution of the
scalar field with l = 0. (b) Time evolution of the electromagnetic field with l = 1. (c) Time evolution
of the gravitational field with l = 2.

5. Conclusions

Through the KK reduction, the five-dimensional Einstein–Maxwell theory reduces to
a four-dimensional Einstein–Maxwell dilaton theory, which supports a spherically static
charged black hole solution. We studied the linear perturbation equations of the scalar,
electromagnetic, and gravitational fields in the background of this spherically static charged
black hole. Because of the spherical symmetry of the background, the radial parts of the
perturbed fields can be decomposed from the angular parts. Using the tortoise coordinate
r∗, every perturbation equation can be written in a Schrödinger-like form. The effective
potentials for the scalar, electromagnetic, and gravitational fields are shown in Figure 1. In
this figure, we can see that the effective potentials, except for that of the electromagnetic
field, depend on the parameter rB.

Using the AIM, we computed the QNM frequencies for the three types of perturbed
fields. As the multipole number l increased, the real parts of the QNM frequencies changed
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more noticeably than the imaginary parts, which can be seen in Figure 2 and Tables 1–3.
We also compared the results obtained using the AIM and the WKB method and found
that for low-overtone QNMs, the results obtained using the AIM were in good agreement
with those obtained using the WKB method. The effect of the parameter rB was also
studied. Using the null coordinates u and v, the evolution of a Gaussian package was
also investigated. The results showed that the QNM frequencies obtained by fitting the
evolution data agreed well with the results obtained using the AIM.

It is important to note that we only studied the QNMs for a charged black hole. For
the topological star, there is no event horizon so the ingoing boundary condition cannot be
imposed. Thus, it should be treated separately. We will study this in the future.

Author Contributions: W.-D.G. did the calculation and wrote the draft of the paper, Q.T. offered the
method for solving the QNFs, discussed the details and improved the draft. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (Grant No. 2020YFC2201503), the National Natural Science Foundation of China (Grant Nos.
12205129, 12147166, 11875151, 12075103, and 12247101), the China Postdoctoral Science Foundation
(Grant No. 2021M701529), the 111 Project (Grant No. B20063), and Lanzhou City’s scientific research
funding subsidy to Lanzhou University.

Data Availability Statement: Data available on request from the authors.

Acknowledgments: We thank the referees’suggestions for improving this paper, and we thank the
editor’s effort and time during the publication process.

Conflicts of Interest: No potential conflict of interest was reported by the authors.

References
1. LIGO Collaboration and Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys. Rev.

Lett. B 2016, 116, 061102. [CrossRef] [PubMed]
2. EHT Collaboration. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett.

2019, 875, L1. [CrossRef]
3. EHT Collaboration. First M87 event horizon telescope results. II. Array and instrumentation. Astrophys. J. Lett. 2019, 875, L2.

[CrossRef]
4. EHT Collaboration. First M87 event horizon telescope results. III. Data processing and calibration. Astrophys. J. Lett. 2019, 875, L3.

[CrossRef]
5. EHT Collaboration. First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett.

2019, 875, L4. [CrossRef]
6. EHT Collaboration. First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 2019,

875, L5. [CrossRef]
7. EHT Collaboration. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J.

Lett. 2019, 875, L6. [CrossRef]
8. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the

Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [CrossRef]
9. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data

Processing, and Calibration. Astrophys. J. Lett. 2022, 930, L13. [CrossRef]
10. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black

Hole. Astrophys. J. Lett. 2022, 930, L14. [CrossRef]
11. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass.

Astrophys. J. Lett. 2022, 930, L15. [CrossRef]
12. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center

Black Hole. Astrophys. J. Lett. 2022, 930, L16. [CrossRef]
13. EHT Collaboration. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett.

2022, 930, L17. [CrossRef]
14. Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T. Testing general

relativity with present and future astrophysical observations. Class. Quantum Grav. 2015, 32, 243001. [CrossRef]
15. Cardoso, V.; Franzin, E.; Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 2016, 116,

171101. [CrossRef]

http://doi.org/10.1103/PhysRevLett.116.061102
http://www.ncbi.nlm.nih.gov/pubmed/26918975
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/ab0c96
http://dx.doi.org/10.3847/2041-8213/ab0c57
http://dx.doi.org/10.3847/2041-8213/ab0e85
http://dx.doi.org/10.3847/2041-8213/ab0f43
http://dx.doi.org/10.3847/2041-8213/ab1141
http://dx.doi.org/10.3847/2041-8213/ac6674
http://dx.doi.org/10.3847/2041-8213/ac6675
http://dx.doi.org/10.3847/2041-8213/ac6429
http://dx.doi.org/10.3847/2041-8213/ac6736
http://dx.doi.org/10.3847/2041-8213/ac6672
http://dx.doi.org/10.3847/2041-8213/ac6756
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1103/PhysRevLett.116.171101


Universe 2023, 9, 320 14 of 15

16. Mazur, P.O.; Mottola, E. Gravitational condensate stars: An alternative to black holes. arXiv 2001, arXiv:abs/gr-qc/0109035.
https://arxiv.org/abs/gr-qc/0109035.

17. Schunck, F.E.; Mielke, E.W. Topical review: General relativistic boson stars. Class. Quant. Grav. 2003, 20, R301. [CrossRef]
18. Solodukhin, S.N. Restoring unitarity in BTZ black hole. Phys. Rev. D 2005, 71, 064006. [CrossRef]
19. Dai, D.-C.; Stojkovic, D. Observing a Wormhole. Phys. Rev. D 2019, 100, 083513. [CrossRef]
20. Simonetti, J.H.; Kavic, M.J.; Minic, D.; Stojkovic, D.; Da, D.-C. Sensitive searches for wormholes. Phys. Rev. D 2021, 104, L081502.

[CrossRef]
21. Bambi, C.; Stojkovic, D. Astrophysical Wormholes. Universe 2021, 7, 136. [CrossRef]
22. Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. Living Rev. Relativ. 2019, 22, 4. [CrossRef]
23. Gibbons, G.W.; Warner, N.P. Global structure of five-dimensional BPS fuzzballs, Class. Quant. Grav. 2014, 31, 025016. [CrossRef]
24. Bena, I.; Eperon, F.; Heidmann, P.; Warner, N.P. The great escape: Tunneling out of microstate geometries. JHEP 2021, 4, 112.

[CrossRef]
25. Bena, I.; Mayerson, D.R. A new window into black holes. Phys. Rev. Lett. 2020, 125, 221602. [CrossRef]
26. Bena, I.; Mayerson, D.R. Black holes lessons from multipole ratios. JHEP 2021, 3, 114. [CrossRef]
27. Bah, I.; Heidmann, P. Topological stars and black holes. Phys. Rev. Lett. 2021, 126, 151101. [CrossRef]
28. Bah, I.; Heidmann, P. Topological stars, black holes and generalized charged weyl solutions. arXiv 2020, arXiv:abs/2012.13407.

https://arxiv.org/abs/2012.13407.
29. Bah, I.; Dey, A.; Heidmann, P. Stability of topological solitons, and black string to bubble transition. JHEP 2022, 4, 168. [CrossRef]
30. Lim, Y.-K. Motion of charged particles around a magnetic black hole/topological star with a compact extra dimension. Phys. Rev.

D 2021, 103, 084044. [CrossRef]
31. Berti, E.; Cardoso, V.; Gonzalez, J.A.; Sperhake, U. Mining information from binary black hole mergers: A Comparison of

estimation methods for complex exponentials in noise. Phys. Rev. D 2007, 75, 124017. [CrossRef]
32. Nollert, H.P.; Price, R.H. Quantifying excitations of quasinormal mode systems. J. Math. Phys. 1999, 40, 980. [CrossRef]
33. Berti, E.; Cardoso, V.; Will, C.M. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA.

Phys. Rev. D 2006, 73, 064030. [CrossRef]
34. Berti, E.; Cardoso, J.; Cardoso, V.; Cavaglia, M. Matched-filtering and parameter estimation of ringdown waveforms. Phys. Rev. D

2007, 76, 104044. [CrossRef]
35. Isi, M.; Giesler, M.; Farr, W.M.; Scheel, M.A.; Teukolsky, S.A. Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 2019,

123, 111102. [CrossRef]
36. Cardoso, V.; Pani, P. Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 2017, 1, 586. [CrossRef]
37. Wang, B.; Lin, C.-Y.; Molina, C. Quasinormal behavior of massless scalar field perturbation in Reissner-Nordstrom anti-de Sitter

spacetimes. Phys. Rev. D 2004, 70, 064025. [CrossRef]
38. Blázquez-Salcedo, J.L.; Macedo, C.F.B.; Cardoso, V.; Ferrari, V.; Gualtieri, L. Perturbed black holes in Einstein-dilaton-Gauss-

Bonnet gravity: Stability, ringdown, and gravitational-wave emission. Phys. Rev. D 2016, 94, 104024. [CrossRef]
39. Franciolini, G.; Hui, L.; Penco, R.; Santoni, L.; Trincherini, E. Effective Field Theory of Black Hole Quasinormal Modes in

Scalar-Tensor Theories. JHEP 2019, 2, 127. [CrossRef]
40. Aragón, A.; González, P.A.; Papantonopoulos, E.; Ferrari, V.; Vásquez, Y. Quasinormal modes and their anomalous behavior for

black holes in f (R) gravity. Eur. Phys. J. C 2021, 81, 407. [CrossRef]
41. Liu, H.; Liu, P.; Liu, Y.-Q.; Wang, B.; Wu, J.-P. Echoes from phantom wormholes. Phys. Rev. D 2021, 103, 024006. [CrossRef]
42. Karakasis, T.; Papantonopoulos, E.; Vlachos, C. f(R) gravity wormholes sourced by a phantom scalar field. Phys. Rev. D 2022, 105,

024006. [CrossRef]
43. Cano, P.A.; Fransen, K.; Hertog, T.; Maenaut, S. Gravitational ringing of rotating black holes in higher-derivative gravity. Phys.

Rev. D 2022, 105, 024064. [CrossRef]
44. González, P.A.; Papantonopoulos, E.; Saavedra, J.; Vásquez, Y. Quasinormal modes for massive charged scalar fields in Reissner-

Nordström dS black holes: Anomalous decay rate. arXiv 2022, arXiv:abs/2204.01570. https://arxiv.org/abs/2204.01570
45. Zhao, Y.; Xin, R.; Ilyas, A.; Saridakis, E.N.; Cai, Y.-F. Quasinormal modes of black holes in f (T) gravity. arXiv 2022. https:

//arxiv.org/abs/2204.11169.
46. Jaramillo, J.; Macedo, R.P.; Sheikh, L.A. Pseudospectrum and Black Hole Quasinormal Mode Instability. Phys. Rev. X 2021, 11,

031003. [CrossRef]
47. Cheung, M.H.; Destounis, K.; Macedo, R.P.; Berti, E.; Cardoso, V. Destabilizing the Fundamental Mode of Black Holes: The

Elephant and the Flea. Phys. Rev. Lett. 2022, 128, 111103. [CrossRef] [PubMed]
48. Ishibashi, A.; Kodama, H. Stability of higher dimensional Schwarzschild black holes. Prog. Theor. Phys. 2003, 110, 901. [CrossRef]
49. Chowdhury, A.; Devi, S.; Chakrabarti, S. Naked singularity in 4D Einstein-Gauss-Bonnet novel gravity: Echoes and (in)-stability.

arXiv 2022, arXiv:abs/2202.13698. https://arxiv.org/abs/2202.13698.
50. Kristensen, K.; Ge, R.-C.; Hughes, S. Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators.

Phys. Rev. A 2015, 92, 053810. [CrossRef]
51. Seahra, S.S. Ringing the Randall-Sundrum braneworld: Metastable gravity wave bound states. Phys. Rev. D 2005, 72, 066002.

[CrossRef]
52. Seahra, S.S. Metastable massive gravitons from an infinite extra dimension. Int. J. Mod. Phys. D 2005, 14, 2279. [CrossRef]

https://arxiv.org/abs/gr-qc/0109035
http://dx.doi.org/10.1088/0264-9381/20/20/201
http://dx.doi.org/10.1103/PhysRevD.71.064006
http://dx.doi.org/10.1103/PhysRevD.100.083513
http://dx.doi.org/10.1103/PhysRevD.104.L081502
http://dx.doi.org/10.3390/universe7050136
http://dx.doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1088/0264-9381/31/2/025016
http://dx.doi.org/10.1007/JHEP04(2021)112
http://dx.doi.org/10.1103/PhysRevLett.125.221602
http://dx.doi.org/10.1007/JHEP03(2021)114
http://dx.doi.org/10.1103/PhysRevLett.126.151101
https://arxiv.org/abs/2012.13407
http://dx.doi.org/10.1007/JHEP04(2022)168
http://dx.doi.org/10.1103/PhysRevD.103.084044
http://dx.doi.org/10.1103/PhysRevD.75.124017
http://dx.doi.org/10.1063/1.532698
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.76.104044
http://dx.doi.org/10.1103/PhysRevLett.123.111102
http://dx.doi.org/10.1038/s41550-017-0225-y
http://dx.doi.org/10.1103/PhysRevD.70.064025
http://dx.doi.org/10.1103/PhysRevD.94.104024
http://dx.doi.org/10.1007/JHEP02(2019)127
http://dx.doi.org/10.1140/epjc/s10052-021-09193-7
http://dx.doi.org/10.1103/PhysRevD.103.024006
http://dx.doi.org/10.1103/PhysRevD.105.024006
http://dx.doi.org/10.1103/PhysRevD.105.024064
https://arxiv.org/abs/2204.01570
https://arxiv.org/abs/2204.11169
https://arxiv.org/abs/2204.11169
http://dx.doi.org/10.1103/PhysRevX.11.031003
http://dx.doi.org/10.1103/PhysRevLett.128.111103
http://www.ncbi.nlm.nih.gov/pubmed/35363003
http://dx.doi.org/10.1143/PTP.110.901
https://arxiv.org/abs/2202.13698
http://dx.doi.org/10.1103/PhysRevA.92.053810
http://dx.doi.org/10.1103/PhysRevD.72.066002
http://dx.doi.org/10.1142/S0218271805007887


Universe 2023, 9, 320 15 of 15

53. Tan, Q.; Guo, W.-D.; Liu, Y.-X. Sound from extra dimension: Quasinormal modes of thick brane. arXiv 2022, arXiv:abs/2205.05255.
https://arxiv.org/abs/2205.05255.

54. Cai, Y.-F.; Cheng, G.; Liu, J.; Wang, M.; Zhang, H. Features and stability analysis of non-Schwarzschild black hole in quadratic
gravity. JHEP 2016, 1, 108. [CrossRef]

55. Cardoso, V.; Kimura, M.; Maselli, A.; Berti, E.; Macedo, C.F.B. Parametrized black hole quasinormal ringdown: Decoupled
equations for nonrotating black holes. Phys. Rev. D 2019, 99, 104077. [CrossRef]

56. McManus, R.; Berti, E.; Macedo, C.F.B.; Kimura, M.; Maselli, A.; Cardoso, V. Parametrized black hole quasinormal ringdown. II.
Coupled equations and quadratic corrections for nonrotating black holes. Phys. Rev. D 2019, 100, 044061. [CrossRef]

57. Cardoso, V.; Guo, W.-D.; Macedo, C.F.B.; Pani, P. The tune of the Universe: The role of plasma in tests of strong-field gravity. Mon.
Not. Roy. Astron. Soc. 2021, 503, 563. [CrossRef]

58. Hatsuda, Y. Quasinormal modes of Kerr-de Sitter black holes via the Heun function. Class. Quant. Grav. 2020, 38, 025015.
[CrossRef]

59. Noda, S.; Motohashi, H. Spectroscopy of Kerr-AdS5 spacetime with the Heun function: Quasinormal modes, greybody factor,
and evaporation. Phys. Rev. D 2022, 106, 064025. [CrossRef]

60. Guo, G.; Wang, P.; Wu, H.; Yang, H. Quasinormal Modes of Black Holes with Multiple Photon Spheres. arXiv 2021,
arXiv:abs/2112.14133. https://arxiv.org/abs/2112.14133.

61. Guo, W.-D.; Wei, S.-W.; Liu, Y.-X. Shadow of a charged black hole with scalar hair. arXiv 2022, arXiv:abs/2203.1347. http:
//arxiv.org/abs/2203.13477.

62. Echeverria, F. GravitationalWave Measurements of the Mass and Angular Momentum of a Black Hole. Phys. Rev. D 1989, 40, 3194.
[CrossRef]

63. Stotyn, S.; Mann, R.B. Magnetic charge can locally stabilize kaluza-klein bubbles. Phys. Lett. B 2011, 705, 269. [CrossRef]
64. Gregory, R.; Laflamme, R. Black strings and p-branes are unstable. Phys. Rev. Lett. 1993, 70, 2837. [CrossRef]
65. Ghosh, D.; Thalapillil, A.; Ullah, F. Astrophysical hints for magnetic black holes. Phys. Rev. D 2021, 103, 023006. [CrossRef]
66. Diamond, M.D.; Kaplan, D.E. Constraints on relic magnetic black holes. JHEP 2022, 3, 157. [CrossRef]
67. Karas, V.; Stuchlik, Z. Magnetized black holes: Interplay between charge and rotation. Universe 2023, 9, 267. [CrossRef]
68. Wheeler, J.A. Geometrodynamics; Academic Press: New York, NY, USA, 1973.
69. Ruffini, A.R. Black Holes: Les Astres Occlus; Gordon and Breach Science Publishers: New York, NY, USA, 1973.
70. Ruffini, A.R. Angular Momentum in Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1996.
71. Regge, T.; Wheeler, J.A. Stability of a Schwarzschild Singularity. Phys. Rev. 1957, 108, 1063. [CrossRef]
72. Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: New York, NY, USA, 1983.
73. Ciftci, H.; Hall, R.L.; Saad, N. Perturbation theory in a framework of iteration methods. Phys. Lett. A 2005, 340, 388. [CrossRef]
74. Cho, H.-T.; Cornell, A.S.; Doukas, J.; Huang, T.-R.; Naylor, W. A New Approach to Black Hole Quasi-normal Modes: A Review of

the Asymptotic Iteration Method. Adv. Math. Phys. 2012 2012, 281705. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/2205.05255
http://dx.doi.org/10.1007/JHEP01(2016)108
http://dx.doi.org/10.1103/PhysRevD.99.104077
http://dx.doi.org/10.1103/PhysRevD.100.044061
http://dx.doi.org/10.1093/mnras/stab404
http://dx.doi.org/10.1088/1361-6382/abc82e
http://dx.doi.org/10.1103/PhysRevD.106.064025
https://arxiv.org/abs/2112.14133
http://arxiv.org/abs/2203.13477
http://arxiv.org/abs/2203.13477
http://dx.doi.org/10.1103/PhysRevD.40.3194
http://dx.doi.org/10.1016/j.physletb.2011.10.015
http://dx.doi.org/10.1103/PhysRevLett.70.2837
http://dx.doi.org/10.1103/PhysRevD.103.023006
http://dx.doi.org/10.1007/JHEP03(2022)157
http://dx.doi.org/10.3390/universe9060267
http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1016/j.physleta.2005.04.030
http://dx.doi.org//10.1155/2012/281705

	Introduction
	The Charged Black Hole
	Perturbation Equations
	Scalar Field
	Electromagnetic Field
	Gravitational Field

	Computing QNMs
	Solving Frequency
	Time Evolution

	Conclusions
	References

