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Abstract: We investigate the evolution of gravitational waves through discontinuous evolution
(transition) of the Hubble expansion rate H(z) at a sudden cosmological singularity, which may be
due to a transition of the value of the gravitational constant. We find the evolution of the scale factor
and the gravitational wave waveform through the singularity by imposing the proper boundary
conditions. We also use existing cosmological data and mock data of future gravitational wave
experiments (the ET) to impose current and anticipated constraints on the magnitude of such a
transition. We show that mock data of the Einstein Telescope can reduce the uncertainties by up to a
factor of three depending on the cosmological parameter considered.
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1. Introduction

The standard cosmological model (ΛCDM) [1–7] provides a good fit to a wide range
of cosmological data despite its relatively small number of parameters. However, some
important parameters of the model like the Hubble parameter H0 and parameters related
to the growth rate of cosmological perturbations appear to have conflicting best-fit val-
ues depending on the type of cosmological observations used for their estimation (for a
review, see [8]). Thus, there are tensions among the best-fit values of ΛCDM cosmological
parameters. The most important such tension is the Hubble tension at a level of 5σ [9]. In
particular, Planck 2018 CMB measurements and BAO measurements (if combined) give a
best-fit value for the Hubble parameter H0 = (67.4± 0.5) km

s Mpc [1], while “local” measure-
ments using mainly type Ia supernovae as standard candles [10] give a best-fit value for
the Hubble flow H0 = (73.04± 1.04) km

s Mpc [8,9,11]. A wide range of extensions of ΛCDM
has been implemented to address this tension. These approaches may be divided into
three categories

• Early time models [12–16] (see also [17] for a review) that implement new degrees of
freedom (e.g., Early Dark energy [12–14,18], New Early Dark Energy [15,16], etc.) to
decrease the scale of the sound horizon at recombination. This scale can be used
as a standard ruler to measure the Hubble parameter [19,20] after calibration from
the CMB angular power spectrum peak locations [1]. These models, however, have
two problems: 1. They require significant fine tuning in order to avoid conflict with
cosmological observations after the time of recombination [21,22]. 2. They should
also decrease the horizon scale at the time of equal time matter and radiation density,
which can also be calibrated using the matter power spectrum [23,24].

• Late time models [25–33] that attempt to deform the Planck 18 best-fit ΛCDM form of
the Hubble free expansion rate E(z) ≡ H(z)/H0 between the time of recombination
and the present time so that the present-time value H(z = 0) becomes consistent
with the SH0ES best-fit value [10]. The problem of this class of models is that the
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significant level of E(z) deformation needed is not consistent with a wide range of
other observations constraining the form of E(z) like BAO and SnIa data [34–37].

• Ultra-late time models [36,38–42] that investigate the possible presence of either an
unaccounted-for systematic effect and/or a change in the fundamental physics taking
place during the last 150 Myrs (redshift z < 0.01) when the calibration of standard
candles like SnIa is performed [11]. The problems of this class of models includes fine
tuning since the change in physical laws should not only occur at very late times but
also should be consistent with other local observations [43].

In the context of ultra-late time models [11,41,43,44], there is an abrupt transition of
the SnIa absolute luminosity and/or of their calibrators (e.g., Cepheids and TRGB [44]) that
becomes realized at a specific distance dc ∈ [10, 60] Mpc due to either a physics transition
taking place globally in the Universe during the last 150 Myrs or locally in our local
Universe within distances smaller than 60 Mpc. A smoking-gun prediction of this class
of models is a sudden change in the SnIa absolute magnitude at a distance dc < 60 Mpc.
Recent analyses have indicated hints for hidden signals in the SH0ES [11] and Pantheon+
SnIa data that are consistent with such a transition [40]. A physical mechanism for the
realization of such a transition includes an explicit symmetry breaking in the context
of the symmetron-screening mechanism (the asymmetron [45]) as well as a first-order
phase transition in the context of a scalar–tensor theory [46]. In the context of such a
mechanism it would be expected that the Hubble expansion rate H(z) could also receive a
step-like discontinuity due to the anticipated transition. Such a transition, however, would
be difficult to observe in the context of SnIa standard-candle probes of H(z) due to the
peculiar velocity noise that prohibits the precise measurement of H(z) at redshifts z < 0.01.
However, it is still possible to investigate the anticipated constraints on such a physics
transition using forthcoming gravitational-wave data and existing cosmological data. This
is the goal of the present analysis.

We thus impose constraints on a transition in the value of the effective gravitational
constant Geff, which would induce a sudden change in the Hubble flow rate. If such
a change is advocated through a phenomenological parametrization of the form H(t) ∝
[1+ σΘ(t− ts)], where σ is a dimensionless parameter and Θ is the Heavyside step function,
then it is deemed to exhibit the characteristics of a sudden cosmological singularity [47–52].
For instance, in sudden cosmological singularities or type II, at the time t = ts we have a
divergence of pressure t = ts =⇒

∣∣p(ts)
∣∣ → ∞ with a finite density ρ(ts) < ∞ and

scale factor a(ts) < ∞, while the scale factor is continuous at ts [47,49,51,53]. The Hubble
flow is finite, or H(ts) < ∞, but the its derivative diverges, or Ḣ(ts) → ∞. In this case,
the divergence of pressure leads to a violation of the dominant energy condition [54]. A
geodesically complete singularity (like the sudden cosmological singularity [49,51,52]) involves
a divergence of a derivative of the scale factor while a 6= 0 and a < ∞ through the moment
that occurs.

In this paradigm, the generalized sudden cosmological singularities can be considered [55],
where the order-r derivative of the scale factor diverges, leading to divergence of the corre-
sponding r− 1 derivative of pressure. Our universe could confront a sudden singularity in
the near future that would not be the “end” of it [56] and could even mimic in the present
day standard dark-energy models [56].

Extensions of ΛCDM predict the existence of a wide range of singularities [57,58]. These
include the Big Rip singularities or type I [59,60] where at a finite cosmic time, the scale factor,
Hubble flow, energy density and pressure diverge. For these singularities there is geodesic
incompleteness, except for some values of the barotropic index w for which there is null geodesic
completeness [51]. The type III-IV singularities involve a finite scale factor at the moment of the
singularity or a(ts) < ∞. Type III singularities (or finite scale factor singularities) [61,62] endure
that ρ(ts)→ ∞,

∣∣p(ts)
∣∣→ ∞ in finite cosmic time while the scale factor is discontinuous at

ts. In addition, type IV singularities [60] admit that ρ(ts) = 0,
∣∣p(ts)

∣∣ = 0 and the barotropic
index, the first derivative of pressure, the second of Hubble flow and the third of scale factor
diverge. Other singularities include w-singularities (p(ts) = ρ(ts) = 0 while w(ts)→ ∞) [63],
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the Little Rip (all the bound structures dissociate when a(ts) → ∞, ρ(ts) → ∞ while
ts → ∞) [64] and the Pseudo-Rip (all the bound structures below a corresponding threshold
dissociate when H(ts) = cosnt. while ts → ∞) [65].

A measure of the strength of a singularity is the strong curvature criterion by Krolak [66],
which measures the time integrals of the tidal forces along geodesics [52] obtained by Krolak
integral [52,66]:

∫ τ
0 |R

i
0j0(τ

′)|dτ′ where τ is the affine parameter along the geodesic. A causal
geodesic hits to a strong curvature singularity by Krolak [66] for some value τs of the affine
parameter iff by taking the limit τ → τs the integral

∫ τ
0 |R

i
0j0(τ

′)|dτ′ diverges1 [49,51,52,68].
A geodesically complete singularity could be induced by a rapid transition of the

effective gravitational constant. Such a transition is motivated by the ultra-late time models
for the resolution of the Hubble tension. It could also help resolve the growth tension, as it
would reduce the growth of density perturbations without affecting the Planck/ΛCDM
background expansion [38,41,45]. An abrupt shift of Geff is weakly constrained and the
current bounds allow an abrupt change in Geff by up to about 5–10% at some cosmological
time in the past between the present time and the time of nucleosynthesis [45]. This is
demonstrated in Table 1 [41], where we show some current constraints on an overall change
in Geff.

Table 1. Constraints on the evolution of the gravitational constant. Methods with star (*) constrain
G∗ (Planck-mass-related), while the rest constrain Geff (see Table 1 in [41]).

Method
∣∣∣∆Geff

Geff

∣∣∣
max

Time Scale (Yr) References

Hubble diagram SnIa—1σ confidence level 0.1 ∼108 [69]
Gravitational waves 8 5× 10−8 [70]

Paleontology 0.1 2× 10−11 [71]
Big Bang Nucleosynthesis—2σ confidence level * 0.05 1.4× 1010 [72,73]

Anisotropies in CMB—2σ confidence level * 0.095 1.4× 1010 [74]

Since H2(z)∼Geff(z), a sudden change in Geff(z) would be connected to a transition
of the Hubble expansion rate H(z), thus leaving interesting signatures in the cosmological
data. The goal of the present analysis is to identify these signatures in present and future
data and impose a constraint on the amplitude and redshift of such a transition from the
anticipated gravitational-wave data from the Einstein Telescope (ET) [75–83] and from
other existing data including the Pantheon+ dataset and the BAO-CMB data. The imprints
of a potential transition in fundamental physics during the evolution of the Universe could
be detectable within the gravitational-wave spectrum. The current investigation primarily
directs its attention towards the ultra-late stages of the Universe, distinct from situations
such as the gravitational waves marked by a potential transition between dimensions
during the very early stages, as discussed in [84].

The structure of this paper is the following: In the next section we discuss some
theoretical models that could induce such a gravitational transition in the context of scalar–
tensor theories. In addition, we discuss the effects of an evolving Geff on the propagation
of gravitational waves with an emphasis on the particular evolution corresponding to
an abrupt transition. In Section 3.1 we construct mock data based on the anticipated
ET [75,77,78,80], which is a third-generation ground-based gravitational-wave observatory
designed to significantly improve the sensitivity and frequency range compared to the
current second-generation detectors [85], such as LIGO [86], Virgo [87] and KAGRA [88].
We then use these data to derive the anticipated level of constraints to be imposed by these
data on the amplitude of a gravitational transition. In Sections 3.2 and 3.3 we focus on the
existing SnIa, BAO and CMB data to impose constraints on such a gravitational transition.
We also discuss the anticipated improvement of these constraints in the context of the ET
data in Section 3.4. Finally, in Section 4 we conclude, summarize and discuss possible
future extensions of our analysis.
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2. Evolving Gravitational Constant and Gravitational Waves in a
Cosmological Background
2.1. Effective Gravitational Strength in Scalar–Tensor Theories with a Gravitational Transition

A natural theoretical setup for the realization of evolution of the strength of gravity
includes scalar–tensor gravitational theories. These modified gravity theories are based on
the metric gµν and a scalar field Φ directly coupled to the Ricci scalar R [17,89]. Thus, the
gravitational interaction is mediated by both the metric tensor gµν, the scalar field Φ and an
arbitrary coupling that determines the relative strength of the scalar field. The Lagrangian
density is written as

L =
1
2

F(Φ)R− gµν∂µΦ∂νΦ−U(Φ) + Lmatter (1)

in the Jordan frame [90], where F(Φ) is the dimensionless nonminimal coupling function of
the scalar field Φ, U(Φ) is the corresponding potential and Lmatter depends on the metric
and on the matter fields (coupled to the metric). In these theories the strength of gravity is
determined by the effective gravitational constant

Geff
GN

=
1

F(Φ)

2F(Φ) + 4
( dF(Φ)

dΦ

)2

2F(Φ) + 3
( dF(Φ)

dΦ

)2 (2)

where GN is the value of Newton’s constant in the context of general relativity. We define
G∗(Φ) ≡ GN

F(Φ)
. This is the inverse of the Planck mass squared, M2

∗ = G−1
∗ [90], and it

appears in the Friedmann equations. We now consider a gravitational-strength transition
taking place at a redshift zs in a flat universe, leading to a sudden change in the strength
of gravity

Geff
GN

= 1 + αΘ[z(Φ)− zs] (3)

This assumption leads to a discontinous nonminimal coupling function

F−1(Φ) = 1 + αΘ[z(Φ)− zs] (4)

and thus, to a discontinuous Hubble expansion rate

H2

H2
0
= [1 + αΘ(z− zs)][1−Ωm,0 + Ωm,0(1 + z)3] (5)

Using this information about F(Φ), it is straightforward to reconstruct the redshift
dependence of Φ(z) and U(z) using the reconstruction approach of Refs [90–92], leading to

U(z) = 3(1−Ωm,0)[1 + ∆0(α)δ(z− zs)] (6)

Φ(z) = Φ0[1 + ∆1(α)Θ(z− zs)] (7)

where ∆0(α) and ∆1(α) are proper functions of α. Thus, in this context, it is a spike feature
of the potential that can lead to a sudden change in the value of the scalar field Φ in the
context of a flat potential. A similar effect would be induced in the context of a first-order
phase transition involving the decay of a false vacuum of the scalar field potential.

2.2. Luminosity Distance from Gravitational Waves in Modified Gravity

In modified gravity theories, the luminosity distance as measured with gravitational
waves may deviate from the standard general relativistic case due to several factors
(see [93,94]):
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• Modifications to the cosmological expansion history: Some modified gravity theories
predict a different cosmic expansion history compared to general relativity, which
can lead to changes in the luminosity distance–redshift relationship. As a result,
the measured luminosity distance using gravitational waves may differ in these
theories [95].

• Additional gravitational-wave polarization modes: In some modified gravity theories,
gravitational waves can have additional polarization modes [96], such as scalar or
vector modes, in addition to the standard tensor modes found in general relativity.
The presence of these additional modes can affect the amplitude and phase evolution
of the gravitational-wave signal, leading to a different measured luminosity distance.

• Propagation effects: The propagation of gravitational waves in modified gravity theories
can be affected by changes in the effective gravitational constant or the presence
of additional fields. These effects can alter the gravitational-wave amplitude and,
consequently, the inferred luminosity distance [93,97].

By comparing the luminosity distance measurements obtained from gravitational
waves with those obtained from electromagnetic observations, such as type Ia supernovae
or galaxy surveys, it is possible to test and constrain modified gravity theories [98,99]. Any
significant discrepancy between the two sets of measurements could provide evidence for
deviations from general relativity and help identify the correct gravitational theory.

The luminosity distance in general relativity plays a crucial role in determining the
relationship between the intrinsic luminosity of an astrophysical source and its observed
flux. For both electromagnetic and gravitational-wave signals, the amplitude of the signal
is expected to decay inversely with the luminosity distance. In general relativity, the
electromagnetic and gravitational-wave luminosity distances are the same, as they both
depend in the same way on the underlying cosmological model [98,99].

However, in some modified gravity theories, the effective gravitational constant Geff
can evolve with time or cosmic redshift z. This can lead to a difference in the propagation
of gravitational waves compared to electromagnetic waves, and thus, a difference in the
luminosity distances [95].

To derive the relation between the gravitational-wave and electromagnetic luminosity
distances, we can use the following assumptions:

• The energy carried by gravitational waves is proportional to the square of the am-
plitude of the wave, which, in turn, is proportional to the time-varying effective
gravitational constant Geff(z).

• The energy carried by electromagnetic waves is not affected by the time-varying
effective gravitational constant, as it is primarily determined by the electromagnetic
interaction.

From these assumptions, we can write the ratio of the energy carried by gravitational
waves to the energy carried by electromagnetic waves as:

Egw

Eem
∝

Geff(z)
Geff(0)

(8)

Since the amplitude of the signal is inversely proportional to the luminosity distance,
the ratio of the energy carried by the waves also relates to the ratio of the square of the
luminosity distances:

Egw

Eem
∝

(
dem

L (z)
)2(

dgw
L (z)

)2 (9)
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Combining these two expressions, we obtain the relation between the gravitational-
wave and electromagnetic luminosity distances [95,97]:

dgw
L (z) = dem

L (z)

√
Geff(z)
Geff(0)

(10)

This relation shows that the gravitational-wave luminosity distance depends on the
electromagnetic luminosity distance and the ratio of the effective gravitational constant
at redshift z to its present-day value. By measuring the luminosity distances of grav-
itational waves and electromagnetic signals from the same astrophysical sources, we
can test and constrain modified gravity theories that predict an evolving gravitational
constant [79,80,93,100–102].

2.3. Gravitational Waves in an Expanding Universe

In an FRW universe, the metric tensor can be written as the sum of the background
metric and perturbations:

gµν(t, x) = g(0)µν (t) + hµν(t, x) (11)

where g(0)µν (t) is the background FRW metric and hµν(t, x) represents the perturbations. In
a vacuum, the energy–momentum tensor is zero and the linearized Einstein equations for
the perturbations reduce to the linearized vacuum equations. To focus on the tensor pertur-
bations, we can decompose the perturbations into scalar, vector and tensor modes [103].
Tensor perturbations are transverse and traceless, satisfying:

hµνkµ = 0, hµ
µ = 0 (12)

The tensor perturbations can be expanded in terms of a complete set of polarization
tensors e(c)µν (k) with c = +,×:

hµν(t, x) = ∑
c=+,×

∫
d3k hc(t, k)e(c)µν (k)eik·x (13)

Substituting the perturbed metric into the linearized Einstein equations and projecting
out the tensor modes using the polarization tensors, we obtain a wave equation for each
polarization mode [103]:

ḧc(t, k) + 3
ȧ
a

ḣc(t, k) +
k2

a2 hc(t, k) = 0, (c = +,×) (14)

This wave equation describes the evolution of the tensor perturbations in the FRW
vacuum. The first term represents the acceleration of the perturbation, the second term
accounts for the effect of the expansion of the universe (Hubble damping) and the third
term corresponds to the spatial gradient term (restoring force).

The solutions to this equation can be used to study the generation and evolution of
gravitational waves in cosmology, as tensor perturbations represent the propagation of
gravitational waves in the FRW background. By analyzing the solutions to Equation (14),
we can gain insights into the behavior of gravitational waves in various cosmological
scenarios, such as the early universe, inflation and structure formation [103].

In the present subsection we focus on the predicted evolution in the presence of a
gravitational transition that induces a transition in the background Hubble expansion rate.
We start from a simple power-law evolution of the scale factor.

In the presence of a cosmological fluid with an equation of state p = wρ, where w is a
constant parameter, the Friedmann equation can be written as:

H2 =
8πG

3
ρ (15)
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Using the relation ρ ∼ a−3(1+w), we can deduce the scale factor’s behavior:

a(t) ∼ t
2

3(1+w) (16)

The different values of w correspond to various types of cosmological fluids or energy
components:

• w = 0: Dust
• w = 1

3 : Radiation
• w = − 1

3 : Curvature or cosmic strings
• w = − 2

3 : Domain walls
• w→ −1: Vacuum energy

In order to solve the differential Equation (14), we assume the power-law form of the
scale factor a(t) =

( t
ts

)β and we have:

ḧc(t, k) + 3
β

t
ḣc(t, k) +

k2t2β
s

t2β
hc(t, k) = 0 (17)

The solution may be expressed in terms of the spherical Bessel functions as:

hc(t, k) =
t1−β

a(t)

[
Ak j− 1

2+
1−3β

2(β−1)

(
ktβ

s
1− β

t1−β

)
+ Bk y− 1

2+
1−3β

2(β−1)

(
ktβ

s
1− β

t1−β

)]
(18)

where jn, yn are written in terms of the Bessel functions of the first and second kind Jn, Yn,

respectively, via the relations jn(x) =
√

π
2xJn+ 1

2
(x) = xn

(2n+1)!! Σ
∞
s=0

(−1)s

s!(n+ 3
2 )s

( x
2 )

2s and also

yn(x) =
√

π
2xYn+ 1

2
(x) = − (2n−1)!!

xn+1 Σ∞
s=0

(−1)s

s!( 1
2−n)s

x2s and (...)s denotes Pochhammer’s sym-

bol [104].

2.4. The Imprints of a Sudden Cosmological Singularity

By making the ansatz of the gravitational transition and also that a(t) =
( t

ts

)β, the
discontinuity at the Hubble flow is written as:

H(t) =
ȧ
a
= [1 + σΘ(t− ts)]

β

t
(19)

where σ is a constant that “measures” the transition leap. If we solve the differential
equation in the distributional sense, we obtain for the scale factor:

a(t) =
(

t
ts

)β[1+σΘ(t−ts)]

(20)

Thus, we define
β̃(t) = β[1 + σΘ(t− ts)] (21)

Setting hc,k(t, x) = hc(t, k)eik·x we obtain the “generalized” wave equation [79]:

ḧc(t, k) + 3
β̃(t)

t
ḣc(t, k) +

k2( t
ts

)2β̃(t)
hc(t, k) = 0 (22)

The boundary conditions are obtained by integration in the interval (ts − ε, ts + ε) and
lead to continuity for both the gravitational-wave amplitude and its time derivative. To
describe the solution of the differential Equation (22), we consider it as comprising two
distinct parts, each of which has the form (18). The first component corresponds to the time
interval t < ts, during which β̃ equals β. The second component corresponds to the time
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interval t > ts, during which β̃ equals β(1 + σ). Both components constitute the complete
solution of the differential Equation (22), if the appropriate boundary conditions

h(+)
c (ts, k) = h(−)c (ts, k) (23)

ḣ(+)
c (ts, k) = ḣ(−)c (ts, k) (24)

are imposed. Then, the imprints of the sudden cosmological singularity on the gravitational-
wave waveform for different parameters may be obtained. The differential Equation (22) in
the two distinct regions of spacetime is expressed in the following manner: if t < ts, the
differential Equation (22) matches to

ḧc(t, k) + 3
β

t
ḣc(t, k) +

k2t2β
s

t2β
hc(t, k) = 0 (25)

while if t > ts, the Equation (22) matches to a different form

ḧc(t, k) + 3
β(1 + σ)

t
ḣc(t, k) +

k2t2β(1+σ)
s

t2β(1+σ)
hc(t, k) = 0 (26)

The solution in each region can be seen below:

hc(t, k) =


t

1−3β
2
[
AJ 1−3β

2(1−β)

( kts
1−β t1−β

)
+ BY 1−3β

2(1−β)

( kts
1−β t1−β

)]
t < ts

t
1−3β(1+σ)

2
[
ΓJ 1−3β(1+σ)

2[1−β(1+σ)]

( ktst1−β(1+σ)

1−β(1+σ)

)
+ ∆Y 1−3β(1+σ)

2[1−β(1+σ)]

( ktst1−β(1+σ)

1−β(1+σ)

)]
t > ts

(27)

Assuming a system of initial conditions for hc, ḣc and the boundary conditions (23)
and (24), a system of algebraic equations is generated. The model accounts for the propaga-
tion of a gravitational wave, as predicted by general relativity.

2.5. Effects of a Gravitational Transition: A δ-Function Impulse

In the context of a scalar–tensor theory, which induces a gravitational transition, the
expansion-rate transition may be attributed to the gravitational transition as described at
Section 2.1, i.e.,

H(t) =

√
8πGeff(t)

3
ρ(t) =

√
8πGN

3
ρ(t)

∣∣1 + σΘ(t− ts)
∣∣ (28)

The effective Newton’s constant transition is expressed as Geff(t) = GN [1 + σΘ(t−
ts)]2. By using that Θ2 = Θ and setting α ≡ σ(σ + 2),

Geff(t) = [1 + αΘ(t− ts)]GN (29)

Thus, the differential equation of the modified propagation of gravitational waves
may be written as [105,106]:

ḧc(t, k) + (3 + αM)
ȧ
a

ḣc(t, k) +
k2

a2 hc(t, k) = 0, (c = +,×) (30)

where αM = d ln G−1
∗

d ln a = −H−1 Ġ∗
G∗ , where G∗ = M−2

P (the effective Planck mass) [107,108].
Setting G∗ ' Geff = [1 + αΘ(t− ts)]GN we find

αM = H−1 αδ(t− ts)

1 + αΘ(t− ts)
(31)
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leading to

ḧc(t, k) +
[

3 +
(

β̃

t

)−1
αδ(t− ts)

1 + αΘ(t− ts)

]
β̃(t)

t
ḣc(t, k) +

k2( t
ts

)2β̃(t)
hc(t, k) = 0 (32)

In this framework, the differential Equation (32) is integrated within the interval
(ts − ε, ts + ε) to derive the boundary conditions, resulting in the gravitational-wave
amplitude hc being continuous at ts as

h(+)
c (ts, k) = h(−)c (ts, k) (33)

but the first time derivative of the tensor perturbations exhibits a discontinuity that is
induced by the δ-function. The boundary condition of the ḣc at ts is written as follows

lim
ε→0

[ḣc(ts + ε, k)− ḣc(ts − ε, k)] = − α

1 + α
2

ḣc(ts, k) (34)

We have set the zero value of the Heaviside function to be Θ(0) = 1
2 .

2.6. Numerical Solutions

As a working example, we consider a scenario where the value of the scale factor at the
present time t0 is set to a(t0) = 1, and we hypothesize a sudden cosmological singularity
that occurred in the past (ts < t0). In order to incorporate those conditions, we normalize
the scale factor as

a(t) = as

(
t
ts

)β[1+αΘ(t−ts)]

(35)

After rescaling to a dimensionless time τ = kt, we can express the value of the

scale factor at the moment of singularity, denoted by as, as as =
( τs

τ0

)β(1+α). Under this
transformation, the corresponding differential Equation (22) can be written as:

d2

dτ2 hc(τ) + 3
β̃(τ)

τ

d
dτ

hc(τ) +
1

a2
s
(

τ
τs

)2β̃(τ)
hc(τ) = 0 (36)

The appropriate boundary conditions must be applied to obtain the solutions for
each scenario. In the case of general relativity, the boundary conditions (23) and (24) are
necessary, while in the case of scalar–tensor gravity, the boundary conditions (33) and (34)
are required.

The waveform of the system exhibits a sudden change in behavior during the transition
from the initial phase, which is represented by the gray waveform and occurs when the
scale factor a is less than as, to the final phase that occurs when a is greater than as. At the
value of the scale factor as, a sudden cosmological singularity arises, leading to an abrupt
shift in the system’s behavior.

Even though the factor β̃
τ of the term ḣ in differential Equation (22) may be neg-

ligible at late times, any sudden change in β would result in observable effects at all
anticipated scales.

As a concrete example, we use the initial conditions hc(τ = 200) = 1 and h′c(τ =
200) = 0. Moreover, we assign specific values to the parameters, such as β = 2

3 , τs =
500, σ = 0.1. We thus find the waveform evolution over the dimensionless rescaled time
τ in the context of both general relativity and the scalar–tensor theory of gravitational
transition frameworks. These are illustrated in Figures 1 and 2.
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Figure 1. The presented figures illustrate a scenario involving a transition from a matter-dominated
phase (τ < τs) with a fixed value of β = 2

3 to a phase (τ > τs) with β = 2
3 (1+ σ). The dimensionless τ is

plotted along the x-axis, and the following parameters for each case, τs = 500, β = 2
3 , σ = 0.1, as = 0.995,

are fixed. We chose as initial conditions hc(τ = 200) = 1 and h′c(τ = 200) = 0, just for illustration.
The red waveforms correspond to the gravitational waves after the singularity in the context of general
relativity (αM = 0) and the blue waveforms correspond to the propagation of gravitational waves with
a modification that is incorporated by the friction term αM. The figures, denoted as 1 (a) and (b), depict
an identical scenario, albeit corresponding to different ranges of the parameter τ ≡ kt. It is also assumed
that Θ(0) = 1

2 .
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Figure 2. The long-term effects on the amplitude of the gravitational wave due to friction, as opposed
to the initial gravitational wave (gray waveform). This behavior is due to a transition from a matter-
dominated phase (τ < τs) with a fixed value of β = 2

3 to a phase (τ > τs) with β = 2
3 (1 + σ). The

dimensionless parameter τ is plotted along the x-axis, and the following parameters are fixed for
each case: τs = 500, β = 2

3 , σ = 0.1, as = 0.995. To illustrate this behavior, we selected the initial
conditions hc(τ = 200) = 1 and h′c(τ = 200) = 0. The red waveforms represent the gravitational
waves after the singularity within the context of general relativity (αM = 0), while the blue waveforms
depict the propagation of gravitational waves with a modification, which is incorporated by the extra
friction term αM through a gravitational transition. Additionally, we assume that Θ(0) = 1

2 .
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The impulse induced by the Hubble flow through the friction term amplifies (or
reduces) the amplitude at the moment of the transition (Figure 1) and results in a slightly
faster (or slower) decay of the amplitude compared to the initial phase, depending on the
sign of the Hubble rate discontinuity (Figure 2). In the given context, the value of σ is
positive, and there is an increase in damping, which arises from the interaction between
the gravitational waves and the expanding universe. Therefore, if the damping becomes
stronger (weaker), the amplitude of the gravitational wave strain would decay more
(less) quickly. The third term in the dynamical equation for gravitational waves affects
the wavelength of the oscillating waves. Thus, a sudden increase in the expansion rate
would lead to a larger scale factor at later times in the final phase and thus, to a larger
gravitational-wave wavelength and period.

In summary, in the general relativistic transition scenario, the cosmological friction
term and the third (driving) term in the gravitational wave equation act in different ways,
where the former affects the rate of decay of the gravitational wave strain, while the latter
affects the wavelength and period of the oscillations.

In the context of modified gravity, which involves modifying the propagation of gravi-
tational waves by introducing an additional term αM [93,107] (illustrated in Figures 1 and 2),
the amplitude of the gravitational waves (blue waveforms) after the gravitational transition
through the scalar–tensor theory of gravity is altered compared to the red waveforms, cor-
responding to transitions in the context of general relativity. This amplitude may increase
or decrease depending on the phase of the gravitational wave at the time of the transition
and also on the sign of the δ-function impulse determined by the transition amplitude α.

3. Observational Constraints on the Transition Amplitude from Gravitational Waves
and Other Cosmological Data
3.1. Monte Carlo Data: Cosmological Parameters from the Einstein Telescope

The ET [75,76,81] is expected to significantly increase the number of detectable stan-
dard siren events due to its enhanced sensitivity and broader frequency range compared
to current detectors like LIGO [86] and Virgo [87]. Although it is difficult to provide exact
numbers, as the event rates depend on various factors such as the population of merging
compact objects and their distribution in the universe, estimates suggest that the ET could
detect thousands of standard sirens per year.

The ET’s increased sensitivity will allow it to observe gravitational-wave events from
much larger distances, reaching higher redshifts than current detectors [109–114]. While
LIGO and Virgo can detect binary neutron star mergers up to a redshift of z∼0.1, the ET is
expected to observe such events up to redshifts of z∼2 or even higher [81,115]. This will
enable the ET to probe the expansion history of the universe over a significant fraction of
its age, thus deriving constraints on cosmological parameters that are competitive with
those obtained with electromagnetic waves.

It is important to note, however, that measuring the Hubble constant and other cosmo-
logical parameters using standard sirens not only requires detecting the gravitational wave
signal but also identifying an electromagnetic counterpart to obtain the redshift [116,117].
This may be challenging for high-redshift events, as the associated electromagnetic signals
could be fainter and harder to detect. Nevertheless, the significant increase in the number of
standard siren events detected with the ET will provide a larger sample for Hubble-constant
measurements, even if only a fraction of the events have identifiable electromagnetic coun-
terparts. A possible method to measure the redshift without the associated electromagnetic
signals is to use the statistical redshift estimation, which relies on galaxy catalogues and
the probability of finding the source in each galaxy considering its mass and star-formation
rate [118–120].

The ET will measure cosmological parameters using gravitational waves (GW) from
compact binary mergers, such as those involving neutron stars or black holes. One key
aspect of this method is the determination of the GW luminosity distance.
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The emitted GW waveform hc(t) resulting from the merger of two compact objects
is reliant on various parameters, including the masses and spins of the merging objects,
as well as the distance to the source and the inclination angle. Specifically, in the context
of a gravitational wave originating from a compact binary coalescence, the amplitude
of the strain in the gravitational wave can be expressed using the post-Newtonian (PN)
approximation (the actual relationship can be more complex [121–125], especially when
considering the full waveform of the gravitational-wave signal), which incorporates PN
corrections to the phase φ(t) but not to the amplitude and can be expressed as [98,99,108]:

h+(t) =
2(1 + cos2i)

dL(z)

(
GNMc

c2

) 5
3
(

π f (t)
c

) 2
3

cos
[
φ(t)

]
(37)

h×(t) =
4cosi
dL(z)

(
GNMc

c2

) 5
3
(

π f (t)
c

) 2
3

sin
[
φ(t)

]
(38)

The redshifted chirp mass of a compact binary coalescence system is denoted asMc
and is related to the chirp mass Mc through the expressionMc = (1 + z)Mc. The chirp
mass Mc is a combination of the individual masses, m1 and m2, of the binary system and
is defined

Mc =
(m1 m2)

3
5

(m1 + m2)
1
5

(39)

The time-varying gravitational-wave frequency f (t) evolves during the inspiral phase
of the binary coalescence, and the inclination angle i is defined as the angle between
the unit vector normal to the orbital plane and the line of sight [98,108]. By observing
the gravitational waves and comparing the detected signal to theoretical templates, it is
possible to extract these parameters, as well as the luminosity distance dL to the source.
In particular, the amplitude of the gravitational waves decreases with the distance to the
source. By comparing the calculated intrinsic amplitude (which depends on the chirp mass)
with the observed amplitude (which depends on the distance), the luminosity distance to
the source can be estimated.

The luminosity distance dL can be expressed in terms of the scale factor a(t), the
Hubble parameter H(z) and the redshift z in a flat universe as:

dL(z) = (1 + z)
∫ z

0

c
H(z′)

dz′ (40)

where c is the speed of light and H(z) is the Hubble parameter as a function of the redshift
z. The Hubble parameter for a flat universe is parameterized by the density parameter
Ωm,0 for matter, as

H2(z) = H2
0

[
Ωm,0(1 + z)3 + 1−Ωm,0

]
(41)

Here, H0 is the Hubble constant and z is the redshift. By combining the expressions
for dL(z) and H(z), we can relate the luminosity distance to cosmological parameters:

dL(z) = (1 + z)
∫ z

0

c
H0
√

Ωm,0(1 + z′)3 + 1−Ωm,0
dz′ (42)

By measuring the luminosity distance dL from gravitational-wave events and obtaining
the redshift z (e.g., from the electromagnetic counterpart), we can fit this expression to a
sample of standard siren events to estimate the cosmological parameters, such as the Hubble
constant H0, the matter density parameter Ωm,0 and the dark energy density parameter ΩΛ.
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In order to estimate the anticipated constraints to be imposed on cosmological param-
eters from luminosity distance measurements of the ET, we construct a mock dataset of
1000 standard sirens that could be obtained by GW observations of the ET [80] assuming
an underlying Planck18/ΛCDM model. We thus derive Monte Carlo measurements of
dL(zi) of binary systems and the corresponding redshifts zi of each binary system. Then,
we use these data to fit the Hubble flow H(z) assuming an underlying ΛCDM model or a
sudden-leap model that has two additional parameters (the transition amplitude and the
transition redshift).

Following [80], we generate a catalogue of 1000 events in the redshift range z ∈ [0.07, 2].
The interval has a zmax = 2, which leads to an angle-averaged signal-to-noise ratio above
8 [77,80]. There is a minimum redshift cut off, depending on the sensitivity of the detector
(ET), which is taken as zmin = 0.07 [80], in order to exclude galaxies with peculiar velocities
comparable to their recessional velocities due to the Hubble flow.

The probability for finding a standard siren with the ET in the redshift range [z, z + dz]
is given by the number density function [77,80]:

f (z)dz = N0
4πrcoal(z)d2

L(z)
H(z)(1 + z)3 dz (43)

where rcoal(z) is the coalescence rate at redshift z [77]:

rcoal(z) =


1 + 2z i f z ≤ 1
15−3z

4 i f 1 < z < 5
0 i f z ≥ 5

(44)

The normalization constant of Equation (43) N0 is determined by requiring that the

integral N0
∫ 2

0.07
4πr(z)d2

L(z)
H(z)(1+zi)3 dz = 1000. Using (43), we thus construct the “cumulative dis-

tribution” function N(z) (see Figure 3) of the 1000 standard sirens through the integral
N(z) =

∫ z
0.07 f (z′)dz′ in order to generate the redshifts z = zi. Our approach involves the

use of the Newton–Raphson method to solve a set of 1000 equations of the form N(zi) = i
for i ∈ 1, 2, . . . , 1000. The objective is to obtain the corresponding redshift zi, which lies in
the interval [0.07, 2], for each equation solved.

In this manner, the redshifts are distributed through the interval [0.07, 2] with respect
to the number density function (43). In accordance with the discussion presented in [80],
a set of 1000 sources is generated. The luminosity distance of each source at redshift zi is
obtained by randomly varying normally distributed luminosity distances around a mean
value d̄L(zi). The value of d̄L(zi) is predicted by the hypothesized Planck18/ΛCDM model
with Ωm,0 = 0.3166 and H0 = 67.27 km

s Mpc−1 [1]. The resulting luminosity distance is
calculated as follows

d̄L(zi) =
c(1 + zi)

H0

∫ zi

0

dz′√
1−Ωm,0 + Ωm,0(1 + z′)3

(45)
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Figure 3. Let N0 be the normalization constant, which is approximately equal to 1.42198× 10−9,
and let f (z) be the number density function (see Figure 8 in [80] or Figure 2 in [77]). We define the
non-standard cumulative distribution function N(z). To generate a list of non-uniformly distributed
zi values, we solve the equation N(zi) = i for i = 1, 2, . . . , 1000, where i is an integer.

We assume that the luminosity distance dL(zi) of each source is normal distributed
across an interval of the mean luminosity distance, centered at d̄L(zi) with standard devia-
tion [77,80,126]

σi ≡ ∆dL(zi) ≈ d̄L(zi)
√
(0.1449zi − 0.0118z2

i + 0.0012z3
i )

2 + (0.05zi)2 (46)

where the term 0.05zi is the uncertainty induced by weak lensing [126] and the term
0.1449zi − 0.0118z2

i + 0.0012z3
i is the uncertainty due to instrumental error calculated using

Monte Carlo simulations (see [77]). The Gaussian probability density function (PDF), with
a standard deviation given by the relation (46), is written as

PDF(Xi) =
1

σi
√

2π
e−

1
2

( Xi−d̄L(zi)
σi

)2

(47)
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where Xi corresponds to the randomly generated luminosity distance of a standard
siren i. Figure 4 provides a visual representation of a realization of the resulting data
luminosity distance.

0.5 1.0 1.5 2.0
z

5000

10000

15000

20000

25000

30000

dL(Mpc)

Figure 4. The cosmology model assumed is ΛCDM with Ωm,0 = 0.3166 and H0 = 67.27 km
s Mpc−1,

the blue curve corresponds to the mean value or else d̄L(z) = (1 + z)
∫ z

0
c

H0
√

Ωm,0(1+z′)3+1−Ωm,0
dz′,

while the yellow and red curves correspond to d̄L(z)± σ(z), respectively (see Figure 7 [80]). The dots
constructed are the 1000 standard sirens, which are distributed through the relation (43).

Using these data generated under the assumption of an underlying Planck18/ΛCDM
model we can test the type of constraints that would be imposed on a cosmological model
involving a discontinuity of H(z) due to a transition of the gravitational constant Geff(z).
The predicted luminosity distance for this class of models is:

dL(z; Ωm,0, h, α, zs) = (1 + z)
∫ z

0

c dz′

H0[1 + αΘ(z′ − zs)]
1
2
√

1−Ωm,0 + Ωm,0(1 + z′)3
(48)

where the Hubble constant is H0 = 100h km
s Mpc . In the context of a modified theory of

gravity, the hypothesized transition of the gravitational constant would be associated with
a mismatch between the luminosity distance dem

L that the light travels and the gravitational
wave luminosity distance dgw

L [80].
In the context of an evolving Geff the measured dgw

L (z) with standard sirens [80,97,99,108]
would lead to a luminosity distance of the form [80] shown in Equation (10).

Thus, the luminosity distance measured by gravitational waves may be written as

dgw
L (z; Ωm,0, h, α, zs) =

[1 + αΘ(z− zs)]
1
2

(1 + z)−1

∫ z

0

c dz′

H0[1 + αΘ(z′ − zs)]
1
2
√

1−Ωm,0 + Ωm,0(1 + z′)3
(49)

and the cosmological parameters of a cosmological model involving a gravitational tran-
sition with amplitude α occuring at redshift zs may be constrained by minimizing χ2,
defined as

χ2
sirens =

1000

∑
i=1

[
dgw

L (zi; Ωm,0, h, α, zs)− d̄L(zi)
]2

σ2
i

(50)
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Since the assumed underlying model is Planck18/ΛCDM and involves no transition,
this fit to the Monte Carlo data is useful only in predicting the level of uncertainties in the
anticipated constraints on the sudden-leap model parameters anticipated from the ET data.
These predicted constraints are shown in Figure 5 and are clearly consistent with α = 0
since the assumed underlying model is Planck18/ΛCDM 2.

0.65 0.66 0.67 0.68
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Figure 5. The black contours on the h− α, Ωm,0 − h and Ωm,0 − h diagrams represent the projected
confidence regions, at 1− 3σ, of the standard sirens using mock data. These contours correspond to
a transition that occurs at the best-fit value of as = 0.401± 0.397 and for the corresponding best-fit
values each time, Ωm,0, h, α, which can be found in Table 2.

Table 2. The χ2 distributions and the best-fit parameters accompanied by their corresponding errors
can be seen below. The parameters are M (absolute magnitude), Ωm,0 (density parameter for matter),
h (parameter related to the Hubble constant H0), α (the transition amplitude) and as (the value of the
scale factor at the event of transition).

Standard Sirens CMB +BAO Pantheon+ Standard
Sirens+Pantheon+ CMB+BAO+Pantheon+ Standard

Sirens+CMB+BAO+Pantheon+

1013.01 5.58 1521.64 2575.55 1570.69 2586.44

Data M Ωm,0 h α as

Standard Sirens — 0.323 ± 0.024 0.673 ± 0.008 0.052 ± 0.123 0.401 ± 0.397
CMB +BAO — 0.323 ± 0.009 0.671 ± 0.004 0.008 ± 0.01 0.299 ± 0.048
Pantheon+ −19.24 ± 0.03 0.325 ± 0.02 0.718 ± 0.023 0.057 ± 0.068 0.995 ± 0.004

Standard Sirens+Pantheon+ −19.42 ± 0.01 0.321 ± 0.015 0.678 ± 0.004 0.039 ± 0.025 0.498 ± 0.015
CMB +BAO+Pantheon+ −19.43 ± 0.01 0.308 ± 0.009 0.678 ± 0.006 −0.004 ± 0.007 0.789 ± 0.2

Standard
Sirens+CMB+BAO+Pantheon+ −19.43± 0.01 0.31 ± 0.005 0.677 ± 0.003 −0.001 ± 0.005 0.812 ± 0.2
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3.2. Real Data: BAO+CMB

In the early universe prior to recombination, initial perturbations evolved into overden-
sities through gravitational interactions with dark matter. Baryonic matter was embedded
within these dark matter overdensities and the collapse of these overdensities was followed
by radiation-induced overpressure. This overpressure, in turn, generated an expanding
sound wave that propagated through plasma at a velocity of

cs =
c√

3(1 + Rs)
(51)

Here, Rs ≡ 3ρb
4ργ

, where ρb represents the baryon density and ργ represents the photon
density. The fluid undergoes damped oscillations in both space and time, wherein the
oscillation period depends on the sound speed. The sound speed cs depends on the density
of baryonic matter. When the density of baryons is considerably lower than that of radiation,
the sound speed assumes the typical value for a relativistic fluid, i.e., cs = c/

√
3. However,

the introduction of baryonic matter increases the mass of the fluid, leading to a decrease in
the sound speed.

If we denote as rs(z) the sound horizon, i.e., the comoving distance traveled by a
sound wave from the Big Bang until a corresponding redshift z, then [53,103]

rs(z) =
1

H0

∫ ∞

z
dz′

cs(z′)
E(z′)

(52)

The sound horizon rs(zdrag) marks the distance over which sound waves propagated.
The redshift zdrag denotes the period of the drag epoch, i.e., the epoch when the baryons
were released from the Compton drag of photons, which occurred slightly after recombina-
tion in the early universe. Eisenstein et al. [127] obtained a suitable fitting formula for the
redshift zdrag as

zdrag =
1291(Ωm,0h2)0.251

1 + 0.659(Ωm,0h2)0.828 [1 + b1(Ωm,0h2)b2 ] (53)

where the parameter b1 is

b1 = 0.313(Ωm,0h2)−0.419[1 + 0.607(Ωm,0h2)0.674] (54)

and b2 is

b2 = 0.238(Ωm,0h2)0.223 (55)

The baryon acoustic oscillation (BAO) measurements, which detect the presence of a
characteristic scale in the matter distribution, offer a standard ruler that is valuable for de-
ducing the expansion history of the universe and estimating other cosmological parameters.
These measurements provide constraints on several quantities, specifically [128]:

dM ×
rfid

s
rs

, dV ×
rfid

s
rs

, dH ×
rfid

s
rs

(56)

In the above equations, rfid
s represents the sound horizon in the fiducial cosmology.

The Hubble distance, denoted by dH , is a characteristic length scale of the universe and can
be expressed as:

dH(z) = cH−1(z) (57)
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We define the angular diameter distance, dA, and proper motion distance, dM. These
distances are related as follows:

dM(z) = (1 + z)dA(z) =
dL(z)
1 + z

(58)

The related effective distance, dV(z) [129], is given by the equation:

dV(z) =
[

cz
d2

M(z)
H(z)

] 1
3

(59)

In terms of measurements, there are two possible directions: the line-of-sight dimen-
sion and the transverse direction. These measurements involve the ratios δzs ≡ rs(z?)H(z)

c

and θs(z) ≡ rs(z?)
dM(z) . The spherically averaged spectrum is connected to the effective distance,

which can be expressed as:

[θ2
s (z)δzs]

1
3 = z

1
3

rs(z?)
dV(z)

(60)

A fitting formula, developed by Hu and Sugiyama, 1995 [130], can be utilized to derive
the redshift z? associated with the photon decoupling surface. For values of the baryon
density parameter Ωb in the range 0.0025 ≤ Ωb ≤ 0.25 and the matter density parameter
Ωm,0 in the range 0.025 ≤ Ωm,0 ≤ 0.64, z? can be expressed as:

z? = 1048
[

1 + 0.00124(Ωbh2)−0.738
][

1 + g1(Ωm,0h2)g2

]
(61)

g1 =
0.0783(Ωbh2)−0.238

1 + 39.5(Ωbh2)0.763 , g2 =
0.560

1 + 21.1(Ωbh2)1.81 (62)

The baryonic acoustic oscillation (BAO) leaves a characteristic imprint on the power
spectrum of the cosmic microwave background (CMB) anisotropies that is observed as a
series of peaks and troughs. The characteristic angle, θA, that defines the location of the
peaks can be calculated by the following equation [53]:

θA =
rs(z?)

dM(z?)
(63)

The angular power spectrum of the CMB is decomposed into its multipole moments,
where the low multipole moments correspond to the large angular scales and the high mul-
tipole moments correspond to the small angular scales. Each multipole l that corresponds
to the characteristic angle θA can be determined by the following equation [53]:

lA =
π

θA
= π

dM(z?)
rs(z?)

(64)

The shift parameter, denoted as R, is a dimensionless parameter that provides a
rescaled representation of the ratio between the proper transverse velocity and the observed
angular velocity of an object at the photon decoupling surface. It encompasses information
related to the comparison of predicted and observed positions of the acoustic peaks in the
cosmic microwave background (CMB). Its formal definition is as follows [53]:

R ≡

√
Ωm,0H2

0 dM(z?)

c
(65)



Universe 2023, 9, 317 19 of 39

To impose constraints on the cosmological parameters, we have followed the work
of [128,131,132]. Throughout the next sections, we incorporate the induced transition in
the Hubble flow, which is

H(z; Ωm,0, h, α, zs) = H0[1 + αΘ(z− zs)]
1
2

√
1−Ωm,0 + Ωm,0(1 + z)3 (66)

3.2.1. CMB Measurements

The analysis incorporates Planck data, consisting of temperature and polarization
data, along with CMB lensing. Zhai et al. [132] provide the CMB data, which is represented
by a data vector and a covariance matrix. The data vector associated with it is expressed
as follows

v =

 1.74963
301.80845
0.02237

 (67)

and also the covariance matrix is written [132]:

[CCMB] = 10−8 ×

 1598.9554 17112.007 −36.311179
17112.007 811208.45 −494.79813
−36.311179 −494.79813 2.1242182

 (68)

The χ2
CMB distribution is [132]:

χ2
CMB = vT [CCMB]

−1v (69)

where in a flat universe the vector is written as [132]

v =

 R− 1.74963
lA − 301.80845
Ωbh2 − 0.02237

 (70)

By adopting the luminosity distance (48) and the proper motion distnce, as defined
in (58), then

lA = π
dM(z?; Ωm,0, h, α, zs)

rs(z?; Ωm,0, h, α, zs)
(71)

and the shift parameter is

R ≡

√
Ωm,0H2

0 dM(z?; Ωm,0, h, α, zs)

c
(72)

3.2.2. BAO Measurements

The distribution of matter exhibits distinct patterns known as baryonic acoustic os-
cillations (BAO), which are reflected in the spatial distribution of galaxies. Numerous
astronomical surveys, such as the six-degree Field Galaxy Survey (6dFGS), the WiggleZ
surveys, the Sloan Digital Sky Survey (SDSS) and the Lyman-alpha (Ly-α) survey, have
been conducted to map out the distribution of galaxies.

To quantify the BAO measurements, the χ2
BAO distribution is computed following the

methodology outlined in [131,133]. The expression for χ2
BAO is given as:

χ2
BAO = χ2

6dFGs,Wiggle + χ2
SDSS + χ2

Ly−a (73)

The surveys 6dFGs [134] and WiggleZ [135] constitute the following distribution

χ2
6dFGs,Wiggle = vi([C6dFGs,Wiggle]

−1)ijvj (74)
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Those surveys give a measurement for the ratio

dz(z) ≡
rs(zdrag)

dV(z)
(75)

which constitutes the components

vi = dz(zi; Ωm,0, h, α, zs)
∣∣
theory − dz(zi)

∣∣
observed (76)

where dz(zi; Ωm,0, h, α, zs) is defined through Equations (48) and (58). The corresponding
data vectors are [131] z

dz
σ

 =

0.106
0.336
0.015

,

 0.44
0.073
0.031

,

 0.6
0.0726
0.0164

,

 0.73
0.0592
0.0185


and also the total covariance matrix is [131]:

[C6dFGs,Wiggle]
−1 =


1

0.0152 0 0 0
0 1040.3 −807.5 336.8
0 −807.5 3720.3 −1551.9
0 336.8 −1551.9 2914.9

 (77)

To analyze the SDSS data by constraining dV ×
rfid

s (zdrag)

rs(zdrag)
we utilize the data vectors

provided in [131] and if the value rfid
s (zdrag) = 149.28 Mpc, then z

1
dz
σ

 =

 0.15
4.465666824

0.1681350461

,

 0.32
8.4673
0.167

,

 0.57
13.7728
0.134


and the corresponding distribution for SDSS data is [131]

χ2
SDSS =

3

∑
i=1

[
1

dz(zi ;Ωm,0,h,α,zs)

∣∣
theory −

dV(zi)
rs(zdrag)

∣∣
observed

]2

σ2
i

(78)

The Ly-α survey constrains dH
rs

and dM
rs

, respectively (see also [131]). The corresponding
data vectors are [131]

v1 =

 z
dM

(1+z)rs(zdrag)
σ

1+z

 =

 2.34
11.20
0.56

, v2 =

 z
dH

rs(zdrag)

σ

 =

2.34
8.86
0.29

 (79)

and they constitute the covariance matrix

[CLy−α]
−1 =

(
1

0.562 0
0 1

0.292

)
(80)

The distribution for Ly-α data χ2
Ly−a = vT [CLy−α]

−1v is constituted by the covariance
matrix (80) and the following vector [131]

v =

 dA(zi)
rs(zdrag)

∣∣
observed −

dA(zi ;Ωm,0,h,α,zs)
rs(zdrag;Ωm,0,h,α,zs)

∣∣
theory

dH(zi)
rs(zdrag)

∣∣
observed −

dH(zi ;Ωm,0,h,α,zs)
rs(zdrag;Ωm,0,h,α,zs)

∣∣
theory

 (81)

The resulting contours3 are shown in Figure 6.
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Figure 6. The blue contours in the h− α, Ωm,0 − h and Ωm,0 − h diagrams represent the projected
1− 3σ confidence regions based on the CMB+BAO data for the sudden-leap model (sLCDM). The
best-fit value for the transition occurring at as = 0.299± 0.048, along with the corresponding best-fit
values of Ωm,0, h and α, can be found in Table 2.

3.3. Real Data: Pantheon+

Type Ia supernovae, characterized by the absence of a spectral line of hydrogen and the
presence of an absorption line attributed to singly ionized silicon, result from the explosion
of a white dwarf in a binary system that surpasses the Chandrasekhar limit due to gas
accretion from a companion star.

Importantly, type Ia supernovae exhibit a nearly constant absolute luminosity at the
peak of their brightness, denoted by an established absolute magnitude of approximately
M ≈ −19. As a result, the distance to a type Ia supernova can be deduced through the obser-
vation of its apparent luminosity. By concurrently measuring the apparent magnitude and
the light curve, it becomes feasible to predict the corresponding absolute magnitude [53].

Brighter supernovae exhibit broader light curves (flux or luminosity of the supernova
as a function of time). It is important to note that when referring to the universal absolute
magnitude of type Ia supernovae hereafter, it is implied that the magnitude has been
appropriately adjusted to account for the light curve width.
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When considering the luminosity distance dL measured in megaparsecs (Mpc), the
concepts of absolute magnitude, apparent magnitude and luminosity distance can be
formally related as follows [53]:

µ ≡ m−M = 5 log10

(
dL

Mpc

)
+ 25 (82)

Here, µ represents the distance modulus, which quantifies the difference between the
apparent magnitude m and the absolute magnitude M of an object.

In the context of modified gravity, an abrupt transition in Geff results in a luminosity
distance as predicted by (48). In the event that the luminosity peak is proportional to
the absolute magnitude M [69] (see Equation (82)), a sudden increase in the effective
gravitational constant Geff would result in a supernova exhibiting diminished brightness
relative to the predictions derived from conventional scenarios [40].

The Pantheon+ dataset comprises a collection of 1550 type Ia supernovae and 1701 cor-
responding light curves, spanning a redshift range of 0.001 < z < 2.26 [136]. To analyze the
Pantheon+ data, we adopt the methodology outlined in the study of Brout et al. (2022) [136].

If we denote the 1701× 1701 covariance matrix as [Cstat+syst], which is provided with
the Pantheon+ data including both statistical and systematic uncertainties, and if we begin
with the minimization a χ2 distribution

χ2 = QT [Cstat+syst]
−1Q (83)

then due to degeneracy, it becomes impossible to estimate H0 as there is a correlation
between H0 and the absolute magnitude of SnIa, denoted as M.

The vector Q represents a quantity with 1701 components and each one is defined as

Qi = mBi −M− µmodel(zi; Ωm,0, h, α, zs) (84)

The predicted distance modulus is denoted as µmodel , which is obtained using the
assumed sudden-leap model. If the luminosity distance dL is given in (48), then

µmodel(zi; Ωm,0, h, α, zs) = 5 log10

(
dL(zi; Ωm,0, h, α, zs)

Mpc

)
+ 25 (85)

The estimate of H0 was not possible in the first Pantheon sample [137] because of the
degeneracy between H0 and the SnIa absolute magnitude M.

To resolve the degeneracy issue in the Pantheon+ dataset, a modification was made to
the vector Q by incorporating the distance moduli of SnIa in Cepheid hosts µCeph, which
can constrain M independently. Thus, the modified vector Q′ is [136]

Q′i =

{
mBi −M− µCeph(zi) i f i ∈ Ceipheid hosts
mBi −M− µmodel(zi; Ωm,0, h, α, zs) otherwise

(86)

and µCeph(zi) is the corrected distance modulus of the Cepheid host of the ith SnIa, which
is measured independently in the context of the SH0ES distance ladder with Cepheid
calibrators [10]. Thus, the degeneracy between M and H0 is shattered and the parameters
M, H0, Ωm,0, α, zs can be estimated by implementation of the

χ2
Pant = Q’T [Cstat+syst]

−1Q’ (87)

The resulting contours4 are shown in Figure 7.
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Figure 7. The red contours in the h− α, Ωm,0 − h and Ωm,0 − h diagrams represent the projected
1− 3σ confidence regions obtained from analyzing the Pantheon+ data within the sudden-leap model
(sLCDM). The best-fit values for the transition occurring at as = 0.995± 0.004 and M = 19.24± 0.03,
along with the corresponding best-fit values of Ωm,0, h and α, can be found in Table 2.

3.4. Combined Data

The previously presented figures are compared in Figure 8. Additionally, by minimiz-
ing the χ2 and considering a range defined as χ2

min ± ∆χ2
n−σ (as described in Appendix B),

we can determine the projected confidence regions for each pair of parameters by fixing the
parameters that are not directly studied to their best-fit values. The confidence levels of 1σ,
2σ and 3σ are indicated by the red and gray contours in Figure 9.

When combining the CMB, BAO, Standard Sirens and Pantheon+ data, the corre-
sponding χ2 distribution is obtained by summing the individual χ2 contributions:

χ2 = χ2
sirens + χ2

BAO + χ2
Panth + χ2

CMB (88)

Specifically, we set the values of as = 0.812 ± 0.2 and M = −19.43 ± 0.015, and
additionally fix Ωm,0 = 0.31± 0.005 or h = 0.677± 0.003 or α = −0.001± 0.005 for each
diagram, respectively. This approach is consistent across all three diagrams. For example,
in the h− α diagram, the fixed best-fit values are Ωm,0 = 0.31± 0.005, as = 0.812± 0.2 and
the absolute magnitude M = −19.43± 0.015.
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Figure 8. A combined plot including the contours of Figure 5 (black contours, which correspond to the
confidence regions of the mock data of the standard sirens for the sudden-leap model); Figure 6 (blue
contours, which correspond to the confidence regions of the assemblage of CMB, BAO data of the
sudden-leap model); and Figure 7 (red contours, which correspond to the confidence regions of the
Pantheon+ data of the sudden-leap model), in contrast to one another.

Table 2 provides the details of the best-fit values. To construct the h− α, Ωm,0 − α and
Ωm,0 − h diagrams presented in Figure 9, certain parameters are fixed. Figure 9 illustrates
the contours in gray, representing the χ2 distribution as defined in Equation (89). These
contours correspond to the combined contributions from χ2

BAO, χ2
Panth and χ2

CMB given by:

χ2 = χ2
BAO + χ2

Panth + χ2
CMB (89)

The resulting contours5 are shown in Figure 9.
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Figure 9. The red contours observed in the h− α, Ωm,0 − α and Ωm,0 − h diagrams represent the
projected 1− 3σ confidence regions obtained through the analysis of the combined χ2 function within
the sudden-leap model (sLCDM). This combined χ2 function comprises contributions from χ2

sirens,
χ2

BAO, χ2
Panth and χ2

CMB. The best-fit values for the transition occurring at as = 0.812± 0.2 and the
absolute magnitude M = −19.43± 0.015, as well as the corresponding best-fit values for Ωm,0, h, and
α, are provided in Table 2. Additionally, the gray contours reflect the contributions from χ2

BAO, χ2
CMB

and χ2
Panth for the corresponding best-fit values of as = 0.789± 0.2 and M = −19.43± 0.015.

3.5. Results

The generated mock data are obtained by assuming the Planck18 values (Planck Col-
laboration, 2018 [1]), which explains the close proximity of the best-fit values for Ωm,0 and
H0 derived from both standard sirens and the combination of CMB+BAO data (Figure 8).
The case where the value of the transition amplitude is α 6= 0 appears to be disfavored by
the data, as the value α = 0 consistently falls within the 1σ range in all cases. It is important
to highlight that the analysis of the Pantheon+ data suggests a potential quasi-degeneracy
between the Hubble constant dimensionless parameter h and the transition amplitude α.
Furthermore, the Pantheon+ dataset indicates that the best-fit value for the scale factor
is as = 0.995 ± 0.004 (zs = 0.005), and the corresponding luminosity distance at zs is
approximately dL(zs) ≈ 20.96 Mpc, as determined by Equation (48). Notably, this luminos-
ity distance value is close to the estimate of a sudden change in the intrinsic luminosity
distance of SnIa by [40,41,44,138], which predicts a value of approximately 20 Mpc.

The present theoretical framework of the sudden-leap model is characterized by the
formation of a true vacuum bubble. This phenomenon arises from a phenomenological
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first-order phase transition of a scalar field, exemplified by Equation (7). The transition
extends over an approximate luminosity distance of 20.96 Mpc. Within the confines of this
true vacuum bubble, there is a transition in the effective gravitational constant, represented
by Geff. Consequently, the encounter of bound systems [52] or gravitational waves with
the boundary of this vacuum bubble gives rise to profound physical effects akin to those
associated with a sudden cosmological singularity.

The assessment of accuracy in parameter estimation entails the evaluation of the ratio
between the projected one-dimensional likelihoods and their corresponding best-fit values.
This ratio acts as a quantification of the constraining power demonstrated by a particular
set of measurements, centered on their respective best-fit values.

The inclusion of the Pantheon+ data alongside the CMB and BAO data appears to
result in a degradation of the predicted accuracy at the best-fit value of h and Ωm,0 for
the sudden-leap model. This can be attributed to a plausible quasi-degeneracy between
the parameters h and α. Conversely, the addition of standard sirens into the parameter-
estimation process results in an enhancement of the accuracy for the sudden-leap model in
all cases considered (see Table 3).

Table 3. Accuracy at the sudden-leap model.

Data ∆M
M

∆Ωm,0
Ωm,0

∆h
h

Standard Sirens — 7.4% 1.2%
CMB +BAO — 2.8% 0.6%
Pantheon+ 0.2% 6.2% 3.2%

Standard Sirens+Pantheon+ 0.1% 4.6% 0.6%
CMB +BAO+Pantheon+ 0.1% 2.9% 0.9%

Standard Sirens+CMB+BAO+Pantheon+ 0.1% 1.6% 0.4%

To identify the best model for future observations, we can use the Akaike Information
Criterion (AIC). Given a set of models, the AIC helps us select the model that best describes
the data. The criterion estimates the expected, relative information loss between the fitted
model and the observed data. The AIC factor is expressed as [139]:

AIC = 2k− 2 ln(L̂) (90)

The likelihood function could be defined as L ≈ e−
1
2 χ2

and has a maximum value of
L̂ ≈ e−

1
2 χ2

min , and the term k represents the number of parameters in the model (see [139]).
When comparing a set of models, it is not the absolute value of the AIC that is important,
but rather the difference between the AIC values of the corresponding pair of models.
In the case of a set of models that includes both the ΛCDM model and the sudden-leap
model, we use the AIC differences, or ∆i = AICsLCDM − AICΛCDM, to assess the empirical
support for each model [139,140].

A ∆i value between 0 and 2 indicates substantial empirical support for the i-model,
while a value between 4 and 7 suggests considerably less support. If ∆i exceeds 10, the
empirical support for the i-model is essentially none. We can compare the hypothesized
model with the ΛCDM model.

To evaluate the relative probability of the i-model occurring, we set e−
1
2 ∆min ≡ 1 for

the estimated best model, and use the ratio e−
1
2 ∆i [139].

For example, the sudden-leap model is about 0.264 times as probable as the ΛCDM
model in minimizing the information loss of Pantheon+ data. The current datasets does
not seem to favor the sudden-leap model over the ΛCDM model in any case (see also
Figures 10 and 11).
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Figure 10. The resulting red contours, which correspond to the confidence regions of the Pantheon+
data, the blue contours to the CMB+BAO data, and the black contours to the SS mock data of the
sudden-leap model, in contrast to the corresponding confidence regions of the (red hue) Pantheon+,
the (blue hue) CMB+BAO and the (dashed) SS mock data of the ΛCDM model (see Appendix C).
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Figure 11. The resulting contours that correspond to the confidence regions sketched around the
minimum of χ2

Pant + χ2
BAO + χ2

CMB (gray) and χ2
Pant + χ2

BAO + χ2
CMB + χ2

sirens (red) of the sudden-
leap model in contrast to the corresponding confidence regions sketched around the minimum of
χ2

Pant + χ2
BAO + χ2

CMB (gray hue) and χ2
Pant + χ2

BAO + χ2
CMB + χ2

sirens (red hue) of the ΛCDM model
(see Appendix C).

The standard sirens, χ2
sirens, when they are added to the data, with χ2

Pant + χ2
BAO +

χ2
CMB, improve the accuracy of the parameter estimation. This improvement would

have been larger if the consistency between the standard sirens and the Pantheon+ data
was higher. Notice that for the generation of the mock siren data we have assumed
Planck18/ΛCDM model parameters, which are not fully consistent with the Pantheon+



Universe 2023, 9, 317 28 of 39

best-fit ΛCDM parameter values. This tension tends to increase the uncertainty of the
best-fit parameter values when these datasets are combined.

Even though the increase in constraint level is relatively small (Figure 9), the stan-
dard sirens have systematic errors completely independent from the rest of the data [80].
For these reasons, standard sirens will have a key role in the parameter constraining in
the future.

4. Conclusions and Discussion

It has been suggested that the Hubble tension, i.e., the disparity in the Hubble constant
measurements at low and high redshifts, could potentially be accounted for by an abrupt
transition in the effective gravitational constant taking place within a range of redshifts
less than zs < 0.01 [38]. Herein, we explored the consequences of such a hypothesis by
considering an underlying scalar–tensor theory of gravity and identifying the effects of such
a transition on propagating gravitational waves and on cosmological data, including mock
standard siren data. We considered a gravitational transition driven by a phenomenological
first-order transition of a scalar field Φ(z), represented as Φ(z) = Φ0[1 + ∆1(α)Θ(z− zs)].
Such a scalar field in the context of a scalar–tensor theory may lead to a gravitational
transition and a Hubble flow of the form H(z) ∝ [1 + σΘ(z− zs)].

This conjecture has the potential to resolve the Hubble tension [17,38,43,141] in the
context of a weak sudden cosmological singularity involving geodesic completeness. Such
singularities have been rigorously explored in diverse studies [47,51,52,142]. They naturally
incorporate the abrupt transition in the Hubble flow as described by the functional form (5).

A physical mechanism for such a gravitational transition may involve the formation of
a true vacuum bubble with a scale of about 20 Mpc. In the context of a scalar–tensor theory,
this vacuum bubble would include a distinct value of the effective gravitational constant
Geff. Consequently, the expansion of the bubble through bound systems or gravitational
waves could be realized with cosmological data as a type II sudden cosmological singularity.

We have shown that the transition and its effects on the Hubble flow would manifest
itself as a detectable pattern within gravitational waveforms, akin to the expectations from
a sudden cosmological singularity. These patterns emerge due to the additional modified
gravity term denoted as αT , which modifies the friction term of the gravitational wave
evolution equation, contributing to gravitational wave amplitude variations, as illustrated
in Figures 1 and 2.

Such a gravitational transition model has been constrained in the context of our anal-
ysis using both real cosmological data (Pantheon+, BAO and CMB) and mock simulated
standard siren data generated in the context of a Planck18/ΛCDM model. In this context,
constraints were imposed on the standard parameters M (SnIa absolute magnitude), Ωm,0
and h, as well as on the sudden-leap transition model parameters α (the transition ampli-
tude) and zs (the corresponding redshift). The examination of the correlation among these
parameters may shed light on the intricate dynamics and potential links between the scalar
field transition, the Hubble flow and the corresponding cosmological parameters.

Future experiments, such as those deploying the ET for detecting standard sirens,
hold promise for constraining modified theories of gravity [80,108]. In specific variants of
modified gravity theories, a discontinuity in the gravitational constant could engender a
discrepancy between light propagation and gravitational waves. With the emergence of
third-generation gravitational-wave observatories, for instance, the ET [77,81,117,123] or
LISA [143–146], it will be feasible to directly examine scenarios encompassing gravitational
transitions utilizing the luminosity distance dgw

L of gravitational waves [81] and comparing
it with the luminosity distance at the same redshift obtained with electromagnetic waves.

We have imposed constraints on the sudden-leap model parameters and demonstrated
that it does not appear to fit the considered cosmological data more effectively than the
ΛCDM model (see, e.g., Table 4). However, this model has the potential to resolve the
Hubble tension via a mechanism that is based on a change in physics that is distinct
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from other proposed approaches. Thus, this class of models remains worthy of further
investigation using both gravitational-wave and electromagnetic-wave cosmological data.

Table 4. The AIC differences between the ΛCDM and the sudden-leap model (sLCDM).

Data ∆ = AICsLCDM − AICΛCDM

Standard Sirens 1.94
CMB +BAO 3.19
Pantheon+ 2.66

Standard Sirens+Pantheon+ 3.82
CMB +BAO+Pantheon+ 3.72

Standard Sirens+CMB+BAO+Pantheon+ 3.9

The potential of the sudden-leap transition class of models to resolve the Hubble
tension is demonstrated by the quasi-degeneracy between the parameters h and α, which
exhibit a significant correlation and are difficult to discriminate using the Pantheon+ dataset
(see Figure 7). Thus, the introduction of the transition amplitude parameter α has the
potential to change the best-fit value of the Hubble parameter of the Pantheon+ data without
a significant change in the quality of fit of the transition model, in contrast with the standard
ΛCDM model. The identified redshift favored by the Pantheon+ data for the transition is
zs = 0.005, where the luminosity distance approximates to dL(0.005) ≈ 20.96 Mpc. This
is consistent with previous studies mildly favoring a sudden shift in the intrinsic SnIa
luminosity, around 20 Mpc [40], and a transition in the projected level of anisotropy of the
SnIa absolute magnitudes, within approximately 30 Mpc [138]. A gravitational transition
taking place at these parameter values [11] could potentially resolve the Hubble tension as

well as the observed tension in S8 ≡ σ8

√
Ωm,0
0.3 [38].

We have also demonstrated that the integration of standard siren data into the sudden-
leap model results in an increase in the precision of the measurements for the parameters
Ωm,0 and h, thereby diminishing their uncertainties from (2.9%, 0.9%) to (1.6%, 0.4%). The
significant merit of incorporating standard siren data is attributed to the fact that the
systematic errors related to them are entirely different from the electromagnetic wave data.

There are two main directions for the extension of the present analysis:

• Construction of a more detailed theoretical model that can induce the gravitational
transition discussed in the present analysis. Such a model could be based on a scalar–
tensor theory involving a false vacuum decay transition or a transition in time due to
features of the potential determination of the dynamics of the scalar field.

• Consideration of additional astrophysical and/or cosmological data at redshifts
z < 0.01 (distances less than 40 Mpc) to impose constraints on such a gravitational
transition or identify hints for its existence (see, e.g., [41]).

• The investigation of the effects of other types of singularities on the propagation of
gravitational waves and on the luminosity distance as measured by either electro-
magnetic or gravitational waves. For instance, in the context of a generalized sudden
cosmological singularity the r = 3 derivative of the scale factor diverges. In this case,
we have ä(t)

a(t)∼[1 + αΘ(t− ts)], while the scale factor a and its derivative ȧ are continu-
ous. Alternatively, a type III singularity can be constructed by admitting that a(t)∼[1+
αΘ(t− ts)], or even a w-singularity by allowing that w(t) = w[1 + αδ(t− ts)].

• The consideration of alternative gravitational-wave mock data corresponding to other
future gravitational-wave observatories including LISA [147,148] and the comparison
of the constraints that can be imposed on the parameters of the sudden-leap transition
model with those of the ET considered in the present analysis. LISA is projected to
detect frequencies spanning from 0.1 mHz to 10−1 Hz, a markedly distinct frequency
range from that of the ET. Within this spectrum of frequencies, the anticipation is to
detect a myriad of GW sources [149], including Galactic binaries [150–153], binary
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systems hosting stellar-origin black holes [154], extreme-mass-ratio inspirals (EM-
RIs) [155], mergers of massive black hole binaries (MBHBs) even at high redshifts
(up to z∼10) [145] and possibly stochastic GW backgrounds [156].
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Appendix A. Sudden-Leap Model (sLCDM)

In this Appendix we show some additional contour plots for parameters not shown in
the main text.
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Figure A1. Gray contours represent the 1− 3σ confidence regions of the standard siren data for the
corresponding best-fit values (Table 2).
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Figure A2. Blue contours represent the projected 1 − 3σ confidence regions in h − zs, Ωm,0 − zs

diagrams of the CMB+BAO data for the sudden-leap model (sLCDM); see Table 2.



Universe 2023, 9, 317 31 of 39

0.02

0.04

0.06

0.08

0.10

z
s

0.71

0.72

0.73

0.74

h

0.20 0.25 0.30 0.35 0.40
-19.35

-19.30

-19.25

-19.20

Ωm,0

M

0.0 0.5 1.0 1.5 2.0

zs

Figure A3. Red contours represent the 1− 3σ confidence regions of the Ωm,0 − zs, Ωm,0 −M, zs −
M, zs − h for the Pantheon+ data and their corresponding best-fit values.

0.670

0.672

0.674

0.676

0.678

0.680

0.682

0.684

h

0.0 0.5 1.0 1.5
0.300

0.305

0.310

0.315

zs

Ω
m
,0

0.0 0.5 1.0 1.5 2.0
zs

Figure A4. Red contours represent the projected 1 − 3σ confidence regions in zs − h, zs − Ωm,0

diagrams of the χ2 = χ2
sirens + χ2

BAO + χ2
Panth + χ2

CMB distribution, while the gray contours represent
the χ2 = χ2

BAO + χ2
Panth + χ2

CMB.



Universe 2023, 9, 317 32 of 39

Appendix B. Maximum Likelihood Method

A brief overview of the maximum likelihood method is presented. To establish the
confidence regions for an unknown parameter in a given distribution, the utilization of the
χ2 distribution is required. Let {xi} denote a collection of measurements, xobs represent the
associated data vector and x = xtheory − xobs be the difference between the theoretical and
observed data vectors. The χ2 distribution is defined [103,131,157,158]

χ2(θ) = xT [C]−1x = [xi,th(θ)− xi,obs]
(
[C]−1)

ij[xj,th(θ)− xj,obs] (A1)

where [C]ij ≡ C(xi, xj) is the covariance and is defined as:

[C] =


σ2

1 ρ12σ1σ2 · · · ρ1nσ1σn
ρ21σ1σ2 σ2

2 · · · ρ2nσ2σn
...

...
. . .

...
ρn1σnσ1 ρn2σnσ2 · · · σ2

n

 (A2)

The likelihood function L of an n-dimensional random variable {Xi} is defined as
L
(
{xi}|θ

)
= f ({xi}; θ), where f denotes the corresponding probability density function of

{Xi} and the unknown parameter θ. In the present context, the likelihood function is

L
(
{xi}|θ

)
= Ne−

1
2 χ2(θ) (A3)

where N denotes a normalization constant. The likelihood function is used to estimate
the most likely “true” parameters θ, which are those that sit at a higher value of the
likelihood function. In this context, the minimal value of the χ2 distribution, represented
as χ2

min ≡ χ2(θ̂), aligns with the maximum of the likelihood function. The maximum
likelihood estimator θ̂ may exist or not and is not necessarily unique.

By defining the curvature matrix of the likelihood function, the Fisher matrix is a
measure of how rapidly χ2 varies away from its minimum in the corresponding directions.
If the corresponding components of the Fisher matrix are large in some directions, then the
likelihood changes rapidly and the data are constraining, i.e., the resulting uncertainties in
the parameters will be small enough. The Fisher matrix is defined:

Fij ≡ −
〈

∂2 lnL
∂θi∂θj

〉
(A4)

The Cramer–Rao inequality posits that σij ≥
√
([F ]−1)ij, and when all parameters are

estimated simultaneously, σθi ≥
√
([F ]−1)ii. In the case that the likelihood is Gaussian, we

have σij =
√
([F ]−1)ij and σθi =

√
([F ]−1)ii [131,157,158].

When dealing with M parameters in the Fisher matrix and requiring 2D plots, marginal-
ization is applied over the uninteresting parameters (M− 2 parameters). This involves
inverting [F ] and selecting the rows and columns corresponding to the desired parameters,
then inverting the resulting “projected” submatrix [53,158].

When the Fisher matrix is singular, no inverse exists, precluding marginalization.
Singularity of the Fisher matrix implies a linear combination of two or more parameters
in the likelihood. For the degenerate parameters θ1, θ2, we postulate a new parameter
Θ = aθ1 + bθ2 to avoid singularity. Notably, a particular case of interest arises when there
is a high degree of degeneracy between the two corresponding parameters, referred to as
quasi-degeneracy. In such situations, a subsequent redefinition of the parameters could
once again be necessitated.

The confidence regions live in a parameter space and by projecting them in 2D, their
mappings are confidence “ellipses”. We use the confidence regions that correspond to
68.27%, 95.45% and 99.73% of the total probability distribution. For example, a confidence
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region of 95.45% for θ means that, if we repeat many times the collection of the data and if
for each sample we calculate the confidence region of 95.45% for θ, by computing

∫ θ+

θ−
dθ
L
(
{xi}|θ

)
P(θ)

P({xi})
= 0.9545 (A5)

where θ−, θ+ correspond to the values on either side of each maximum θ̂ and have the
same probability, then 95.45% of the confidence regions will contain the true value of θ. The
confidence regions are those that “move” as they depend on the corresponding collection
of data that are chosen each time.

The one-to-one correspondence between L and χ2 helps us to estimate the best-fit
values for the parameters of interest and also to define the confidence regions around
the best-fit values of the corresponding parameters. A fixed ∆χ2 corresponds to a certain
confidence region in parameter space M.

The corresponding ∆χ2 for a parameter space M of 3–5 dimensions can be seen below:

∆χ2
n−σ

dim(M) 68.27% 95.45% 99.73%

3 3.52674 8.02488 14.1564
4 4.71947 9.71563 16.2513
5 5.8876 11.3139 18.2053

The projected confidence regions are generated by the intervals of the form χ2
min ± ∆χ2

n−σ.
In the direction of constraining the data, we demonstrate a schematic overview of the
procedure [103]:

Covariance Matrix→ Fisher Forecast→ Parameter Constraints

Appendix C. ΛCDM Model

Here, we present a concise summary of the constraints and the corresponding accuracy
obtained through the data analysis performed for the ΛCDM model.

Table A1. χ2 distributions and the best-fit parameters can be seen below.

Sirens CMB
+BAO Pantheon+ Standrad

Sirens+Pantheon+ CMB+BAO+Pantheon+ Sirens+CMB+BAO+Pantheon+

1015.07 6.39 1522.98 2575.73 1570.97 2586.54

Data M Ωm,0 h
Standard Sirens — 0.305 ±0.019 0.676 ± 0.006

CMB +BAO — 0.318 ± 0.006 0.672 ± 0.004
Pantheon+ −19.25 ± 0.03 0.333 ± 0.018 0.734 ± 0.01

Standard Sirens+Pantheon+ −19.41 ± 0.01 0.298 ± 0.012 0.683 ± 0.004
CMB +BAO+Pantheon+ −19.43 ± 0.01 0.31 ± 0.005 0.677 ± 0.004

CMB+BAO+Pantheon++Standard Sirens −19.43 ± 0.01 0.311 ± 0.004 0.676 ± 0.003

Table A2. Accuracy at the ΛCDM model (see also [80]).

Data ∆M
M

∆Ωm,0
Ωm,0

∆h
h

Standard Sirens — 6.2% 0.9%
CMB +BAO — 1.9% 0.6%
Pantheon+ 0.2% 5.4% 1.4%

Standard Sirens+Pantheon+ 0.1% 4.0% 0.6%
CMB +BAO+Pantheon+ 0.1% 1.6% 0.6%

Standard Sirens+CMB+BAO+Pantheon+ 0.1% 1.6% 0.4%
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Notes
1 There is also a completely analogous characterization with the corresponding Tipler integral [67].
2 Some additional contour plots are presented in Appendix A (Figure A1).
3 Some additional contour plots are presented in Appendix A (Figure A2).
4 Some additional contour plots are presented in Appendix A (Figure A3).
5 Some additional contour plots are presented in Appendix A (Figure A4).
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