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Abstract: About 70% of the Universe is Dark Energy, but the physics community still does not know
what it is. Delta gravity (DG) is an alternative theory of gravitation that could solve this cosmological
problem. Previously, we studied the Universe’s accelerated expansion, where DG was able to explain
the SNe-Ia data successfully. In this work, we computed the cosmological fluctuations in DG that give
rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for
the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations.
This provided the necessary equations to solve the scalar TT power spectrum in a semi-analytical
way. These equations are useful for comparing the DG theory with astronomical observations and
thus being able to constrain the DG cosmology.

Keywords: cosmology; modified gravity; cosmic microwave background; cosmological perturbations;
dark energy

1. Introduction

In the past decade, there has been a surge of interest in cosmology due to the in-
creasingly precise observational constraints that can help elucidate the physics underlying
the Universe. Despite the mounting evidence for cosmological phenomena such as the
acceleration of the Universe attributed to Dark Energy (DE) and the presence of non-visible
matter known as Dark Matter (DM) [1–3], the physics community has yet to provide a
comprehensive explanation for their nature.

The standard cosmological model, known as ΛCDM, describes the composition of
the Universe, where 69% of the energy density corresponds to DE, 26% corresponds to
DM, and the remaining 5% is composed of ordinary matter and light [1]. This model has
successfully accounted for various observations, including those of Type Ia Supernovae
(SNe-Ia) and the cosmic microwave background (CMB), and it has been validated through
cosmological simulations that depict the formation of large-scale structures [4,5].

However, the ΛCDM model exhibits inconsistencies between its description of the
early and late Universe [6]. These inconsistencies manifest in different cosmological param-
eters, such as the Hubble constant [7,8], the curvature [9,10], and the S8 tension [11].

The Planck team measured the local expansion rate through the cosmic microwave
background (CMB) radiation and obtained a value of H0 = 67.37± 0.54 km/s/Mpc, which
aligns with a flat ΛCDM model [1]. However, the SH0ES collaboration independently
measured a higher value of H0 = 73.52± 1.62 km/s/Mpc for the local Universe [7], creating
a discrepancy with the Planck value exceeding 3.5σ. Importantly, this tension between
the early and late Universe persists even without considering the Planck CMB data or the
SH0ES distance ladder [6].
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Furthermore, the H0LiCOW collaboration derived a direct measurement of H0 = 72.5+2.1
−2.3

km/s/Mpc based on lensing time delays, which exhibits a moderate tension with the Planck
value [12]. Additionally, a constraint obtained from the Big Bang nucleosynthesis (BBN) com-
bined with baryon acoustic oscillation (BAO) data yielded H0 = 66.98 ± 1.18 km/s/Mpc,
which is inconsistent with the SH0ES measurement [6].

Other studies have attempted to explain the discrepancy by suggesting that the Hubble
constant determined from nearby SNe-Ia may differ from that measured from the CMB due
to cosmic variance, with a potential difference of ±0.8 percent at 1σ statistical significance.
However, this variation does not account for the observed discrepancy between SNe-Ia
and CMB measurements [13]. In an extreme case, observers situated in the centers of vast
cosmic voids might measure a Hubble constant biased high by 5 percent from SNe-Ia.

Since the initial publication highlighting the H0 tension [2], numerous inquiries have
emerged regarding the source of this discrepancy. One suggestion is that errors in the cali-
bration of Cepheids, which contribute to systematic errors, could be responsible. However,
this potential error has been thoroughly discussed and dismissed by Riess et al. [14].

Other publications have explored possible solutions to the observed acceleration of
the Universe, including anisotropies at local scales. Wang et al. [15], using SNe-Ia data,
found evidence of anisotropies associated with the direction and amplitude of the bulk
flow. Nonetheless, the impact of dipolar distribution of dark energy cannot be ruled
out at high redshifts. Similarly, another publication [16] suggests that the anisotropies
in cosmic acceleration may be linked to the nature of Dark Energy, implying that the
perceived cosmic acceleration deduced from supernovae could be an artifact of our non-
Copernican perspective rather than evidence of a dominant "dark energy” component in
the Universe. Sun et al. [17] conclude that even in the presence of anisotropy, Dark Energy
cannot be entirely ruled out. While such proposals could potentially explain variations in
local measurements, including different values for the local Hubble constant, they could
contradict the analyses conducted by Planck using the ΛCDM model. The Dark Energy
component is crucial for the evolution of CMB photons from the last scattering surface until
the present, and altering the sum over Ω for each component in the Universe would lead to
significant changes. Various other suggestions concerning discrepancies have emerged not
only related to SNe-Ia measurements but also within the Planck data itself. The presence of
anisotropies in these measurements has been a subject of debate due to high uncertainties
and inconsistent results. Hypotheses proposing the possibility of a Universe with less Dark
Energy [18] have also been put forward.

Another potential source of error in local measurements could be the inhomogeneity
in local density [19,20]. However, in this scenario, the presence of local structures does not
seem to impede the possibility of measuring the Hubble constant with a precision of 1%,
and there is no evidence of a Hubble constant change corresponding to an inhomogeneity.

Today, there are different methods to obtain the Hubble constant, including the use of
SNe-II, ref. [21]. In this research, SNe-II were employed as standard candles to obtain an
independent measurement of the Hubble constant. The resulting value was H0 = 75.8+5.2

−4.9
km /s/Mpc. The local H0 value is higher than the value derived from the early Universe,
with a confidence level of 95%. The researchers concluded that there is no evidence that SNe-Ia
are the source of the H0 tension. In another publication analyzing SNe-Ia as standard candles
in the near-infrared, it was concluded that H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic)
km/s/Mpc. This study also suggested that the tension in the competing H0 distance
ladders is likely not a result of supernova systematics.

Other proposals have tried to reconcile Planck and SNe-Ia data, including modifi-
cations to the physics of the DE. In other words, introducing an equation of state of the
interacting dark energy component, where w is allowed to vary freely, could solve the H0
tension [22]. Additionally, a decaying dark matter model has been proposed to alleviate
the H0 and σ8 anomalies [23]; in their work, they reduce the tension for both measurements
when only consider Planck CMB data and the local SH0ES prior on H0. However, when
BAOs and the JLA supernova dataset are included, their model is weakened.
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Other disagreements are related to inconsistencies with curvature (and other pa-
rameters needed to describe the CMB) [10], or they are related to the tension between
measurements of the amplitude of the power spectrum of density perturbations (inferred
using CMB) and directly measured by large-scale structure (LSS) on smaller scales [11].
Extensions of ΛCDM models have been considered [24] in an attempt to solve the tension
of H0. However, they concluded that none of these extended models can convincingly
resolve the H0 tension. For a full scope of the Hubble tension, please see [25]. Through
the time, the tension between Planck and SNe-Ia persists [1,14], where the H0 is the most
significant tension. Furthermore, the Universe is composed principally by DE, but we still
do not know what it is.

Over the past decades, various proposals have been made to explain the observed
acceleration of the Universe. These proposals involve the inclusion of additional fields
in approaches such as Quintessence, Chameleon, Vector Dark Energy or Massive Gravity,
the addition of higher-order terms in the Einstein–Hilbert action, such as f (R) theories
and Gauss–Bonnet terms, and the introduction of extra dimensions for a modification of
gravity on large scales ([26]). Other interesting possibilities include the search for non-
trivial ultraviolet fixed points in gravity (asymptotic safety, [27]) and the notion of induced
gravity ([28–31]). The first possibility uses exact renormalization-group techniques ([32,33])
together with a lattice and numerical techniques, such as Lorentzian triangulation anal-
ysis ([34]). Induced gravity proposes that gravitation is a residual force produced by
other interactions.

Delta gravity (DG) is an extension of General Relativity (GR) where new fields are
added to the Lagrangian through a new symmetry [35–38]. The main properties of this
model at the classical level follow: (a) It agrees with GR outside the sources and with ade-
quate boundary conditions. In particular, the causal structure of delta gravity in a vacuum
is the same as in General Relativity, satisfying all standard tests automatically. (b) When
studying the evolution of the Universe, it predicts acceleration without a cosmological
constant or additional scalar fields. The Universe ends in a BigRip, which is similar to
the scenario considered in [39]. (c) The scale factor agrees with the standard cosmology
at early times and show acceleration only at late times. Therefore, we expect that density
perturbations should not have large corrections at the moment of last scattering (denoted
by tls).

It was noticed in [40] that the Hamiltonian of delta models is not bounded from below.
Phantom cosmological models [39,41] also have this property. The present model could
provide an arena to study the quantum properties of a phantom field, since the model has
a finite quantum effective action. In this respect, the advantage of the present model is
that being a gauge model, it could give us the possibility of solving the problem of lack
of unitarity using standard techniques of gauge theories such as the BRST method ([36]).
However, we are not concerned about this feature in this work, because we are considering
DG as a phenomenological model that interpolates the observations of the early with the
late Universe.

This theory predicts an accelerating Universe without a cosmological constant Λ and
a Hubble parameter H0 = 74.47± 1.63 Km/s/Mpc [42] when fitting SN-Ia Data, which is
in agreement with SH0ES.

On the other hand, temperature correlations provide us with information about the
constituents of the Universe, including baryonic and dark matter. Typically, these calcula-
tions are performed using software such as CMBFast [43,44] or CAMB1 [45]. These codes
employ Boltzmann equations for the fluids and their interactions, yielding well-established
results that are consistent with Planck measurements [1].

Nevertheless, one can obtain a good approximation of this complex problem [46,47].
In this work, we use an analytical method that consists of two steps instead of studying
the evolution of the scalar perturbations using Boltzmann equations. First, we use a
hydrodynamic approximation, which assumes photons and baryonic plasma as a fluid in
thermal equilibrium at recombination time when there is a high rate of collisions between
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free electrons and photons. Second, we study the propagation of photons [35] by radial
geodesics from the moment when the Universe switches from opaque to transparent at
time tls until now.

In this research, we develop the theory of scalar perturbations at first order. We discuss
the gauge transformations in an extended Friedmann–Lemaître–Robertson–Walker (FRLW)
Universe. Then, we show how to obtain an expression for temperature fluctuations, and
we demonstrate that they are gauge invariant, which is crucial from a theoretical point
of view. With this result, we derive a formula for the scalar contribution to temperature
multipole coefficients. This formula is useful to test the theory, and it could indicate the
physical consequence of the “delta matter” introduced in this theory. This work has been
incorporated as a part of the Ph.D. thesis [48], where more details can be found.

The CMB provides cosmological constraints crucial for testing a model. Many cos-
mological parameters can be obtained directly from the CMB power spectrum, such as
h2Ωb, h2Ωc, 100θ, τ, As and ns [1], while others can be derived from constraining CMB
observation with SNe-Ia or BAOs. By studying the CMB anisotropies, we can address two
aspects: the compatibility between the CMB power spectrum and DG fluctuations and
the compatibility between CMB and SNe-Ia in the DG theory. In [49], we already fitted
Planck satellite’s data with a DG model using Markov Chain Monte Carlo analysis. We
also studied the compatibility between SNe Ia and CMB observation in this framework. We
obtained the scalar CMB TT power spectrum and the fitted parameters needed to explain
both SNe-Ia data and CMB measurements. The results are in reasonable agreement with
both observations considering the analytical approximation. We also discussed whether the
Hubble constant and the accelerating Universe are in concordance with the observational
evidence in the DG context. With this in mind, the aim of this work is to present the full
theoretical scheme for the scalar perturbation theory.

The paper is organized as follows: In Section 2, we introduce the definition of DG and
its equations of motion. We then review some implications of the first law of thermody-
namics, which will allow us to interpret the physical quantities of DG. Before finishing this
section, we state the ansatz that the moment of equality between matter and radiation was
equal in both DG and GR, and we discuss its implications. In Section 3, we study the gauge
transformation for small perturbations of both geometrical and matter fields. We choose
a gauge and present the gauge-invariant equations of motion for small perturbations. In
Section 4, we study the evolution of cosmological perturbations, solving the equations
partially when the Universe is dominated by radiation and when it is dominated by matter.
In Section 5, we derive the formula for temperature fluctuation. Here, we find that this
fluctuation can be expressed in three independent and gauge-invariant terms. In Section 6,
we obtain a formula for temperature multipole coefficients for scalar modes. We also
present preliminary numerical results for the power spectrum of the CMB. Finally, we
provide conclusions and remarks.

For notation, we will use the Riemann tensor:

Rα
βµν = ∂µΓ α

νβ − ∂νΓ α
µβ + Γ α

µγΓ γ
νβ − Γ α

νγΓ γ
µβ , (1)

where the Ricci Tensor is given by Rµν = Rα
µαν, the Ricci scalar R = gµνRµν and:

Γ α
µν =

1
2

gαβ(∂νgβµ + ∂µgνβ − ∂βgµν) (2)

is the usual Christoffel symbol. Finally, the covariant derivative is given by:

Dν Aµ ≡ Aµ;ν = Aµ,ν − Γ α
µν Aα. (3)

So, it is defined with the usual metric gµν.
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2. Definition of Delta Gravity

In this section, we will present the action as well all the symmetries of the model
and derive the equations of motion. These approaches are based on the application of a
variation called δ̃, and it has the usual properties of a variation such as:

δ̃(AB) = (δ̃A)B + A(δ̃B),

δ̃δA = δδ̃A,

δ̃(Φµ) = (δ̃Φ)µ, (4)

where δ is another variation. The main point of this variation is that when it is applied on
a field (function, tensor, etc), it produces new elements that we define as δ̃ fields, which
we treat as an entirely new independent object from the original, Φ̃ = δ̃(Φ). We use the
convention that a tilde tensor is equal to the δ̃ transformation of the original tensor when
all its indexes are covariant. (For more detail about δ̃, please see Appendix A.1.)

Now, we will present the δ̃ prescription for a general action. The extension of the new
symmetry is given by:

S0 =
∫

dnxL0(φ, ∂iφ)→ S =
∫

dnx(L0(φ, ∂iφ) + δ̃L0(φ, ∂iφ)), (5)

where S0 is the original action and S is the extended action in Delta Gauge Theories. When
we apply this formalism to the Einstein–Hilbert action of GR, we obtain [35]

S =
∫

d4x
√
−g
(

R
2κ + LM −

1
2κ

(
Gαβ −κTαβ

)
g̃αβ + L̃M

)
, (6)

where κ = 8πG
c4 (hereafter, we set c = 1), g̃µν = δ̃gµν, LM is the matter Lagrangian and:

Tµν =
2√−g

δ

δgµν

[√
−gLM

]
, (7)

L̃M = φ̃I
δLM
δφI

+ (∂µφ̃I)
δLM

δ(∂µφI)
, (8)

where φ̃ = δ̃φ are the δ̃ matter fields or “delta matter” fields. The equations of motion are
given by the variation of gµν and g̃µν. It is easy to see that we obtain the usual Einstein’s
equations varying the action (6) with respect to g̃µν. On the other hand, variations with
respect to gµν give the equations for g̃µν:

F(µν)(αβ)ρλDρDλ g̃αβ +
1
2

Rαβ g̃αβgµν +
1
2

Rg̃µν − Rµα g̃ν
α − Rνα g̃µ

α +
1
2

g̃α
αGµν

=
κ√−g

δ

δgµν

[√
−g
(

Tαβ g̃αβ + 2L̃M

)]
, (9)

with:

F(µν)(αβ)ρλ = P((ρµ)(αβ))gνλ + P((ρν)(αβ))gµλ − P((µν)(αβ))gρλ − P((ρλ)(αβ))gµν ,

P((αβ)(µν)) =
1
4

(
gαµgβν + gανgβµ − gαβgµν

)
, (10)

where (µν) denotes the totally symmetric combination of µ and ν. It is possible to
simplify (9) (see [35]) to obtain the following system of equations:

Gµν = κTµν, (11)

F(µν)(αβ)ρλDρDλ g̃αβ +
1
2

gµνRαβ g̃αβ −
1
2

g̃µνR = κT̃µν , (12)
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where T̃µν = δ̃Tµν. The energy momentum conservation now is given by

DνTµν = 0, (13)

DνT̃µν =
1
2

TαβDµ g̃αβ −
1
2

TµβDβ g̃α
α + Dβ(g̃β

α Tαµ). (14)

Then, we are going to work with Equations (11)–(14). However, as the perturbation theory
in the standard sector is well known (see [47]), we will focus on the DG sector.

One important result of DG is that photons follow geodesic trajectories given by the
effective metric gµν = gµν + g̃µν [35], and for an FRLW Universe, these metrics take the
form (with constant curvature parameter k = 0)

ḡµνdxµdxν = −dt2 + a2(t)(dx2 + dy2 + dz2) , (15)

and

˜̄gµνdxµdxν = −3F(t)dt2 + F(t)a2(t)(dx2 + dy2 + dz2), (16)

where F(t) is a time-dependent function which is determined by the solution of the un-
perturbed equations system, and a(t) is the standard scale factor, which in Section 4 we
will show is no longer the physical scale factor of the Universe. To obtain the form of
ḡµν and ˜̄gµν, first we impose isotropy and homogeneity, and then, we apply the harmonic
gauge gµνΓα

µν = 0 and its tilde version (for details, see [37]). One of the implications of this
effective metric is that geometry is now described by a new tridimensional metric given
by [35]2 (latin indexes run from 1 to 3)

dl2 = γijdxidxj , (17)

γij =
g00

g00

(
gij −

gi0gj0

g00

)
,

while the proper time is defined by gµν. In this case, t is the cosmic time.

2.1. DG and Thermodynamics

Now, we will study some implications of thermodynamics in cosmology for DG.
Equation (17) defines the modified scale factor of this theory:

aDG(t) = a(t)

√
1 + F(t)
1 + 3F(t)

. (18)

Then, the volume of a cosmological sphere is now

V =
4
3

πr3a3
DG .

Any physical fluid has a density given by

ρDG =
U
V

, (19)

where U is the internal energy and V is the volume. From the first law of thermodynamics,
we have

dU
dt

= T
dS
dt
− PDG

dV
dt

. (20)

We will assume that the Universe evolved adiabatically; this means Ṡ = 0. Then, we obtain
the well-known relation for the energy conservation

ρ̇DG = −3HDG(ρDG + PDG) , (21)
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with HDG = ȧDG/aDG. In order to know the evolution of ρ, we need an equation of
state P(ρ). In [38], they showed that HDG(t) replaces the first Friedmann equation. Now,
we know that the second Friedmann equation is the thermodynamics statement that the
Universe evolves adiabatically, so the physical densities must satisfy Equation (21). If we
assume P = ωρ, we found

ρDGa3(1+ω)
DG = ρDG 0a3(1+ω)

DG 0 , (22)

where ρ0 is the density at present. A crucial point in this theory is that the GR field
Equations (11) and (13) are valid; then, we also have a similar relation for the densities of
GR but with the standard scale factor a(t), explicitly

ρGRa3(1+ω) = ρGR 0a3(1+ω)
0 . (23)

Then, we can relate both densities by the ratio between them

ρDG
ρGR

(√
1 + F(t)

1 + 3F(t)

)3(1+ω)

= constant(ω) . (24)

This ratio will be vitally important when we study the perturbations of the system. Because
we will study the evolution of fractional perturbations at the last-scattering time defined as

δGR α =
δρGR α

ρ̄GR α + p̄GR α
, (25)

where α runs between γ, ν, B and D (photons, neutrinos, baryons and dark matter, respec-
tively). If we consider the results from [38], at the moment of last-scattering (T ∼ 3000 K),
we obtain √

1 + F(tls)

1 + 3F(tls)
∼ 1 . (26)

This mean that at that moment, the physical density was proportional to the densities of
GR, and without a loss of generality, we can take

δDG α(tls) = δGR α(tls) ≡ δα(tls) , (27)

as it will be introduced in Section 4. In fact, Equation (26) is valid for a wide range of times,
from the beginning of the Universe (z→ ∞) until z ∼ 10, so this approximation is valid in
the study of primordial perturbations in DG when using the equations of GR. On the other
hand, the number density (number of photons over the volume) at equilibrium with matter
at temperature T is

nT(ν)dν =
8πν2dν

e
hν

kBT − 1
; (28)

After decoupling, photons travel freely from the surface of last scattering to us. So, the
number of photons is conserved

dN = nTls(νls)dνlsdVls = nT(ν)dνdV , (29)

as frequencies are redshifted by ν = νlsaDG(tls)/aDG, and the volume V = Vlsa3
DG/a3

DG(tls).
We find that in order to keep the form of a black body distribution, temperature in the
number density should evolve as T = TlsaDG(tls)/aDG.

2.2. Equality Time tEQ

After concluding this section, there is an ansatz that we need to propose in order to
be completely consistent when solving the cosmological perturbation theory in the next
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section. This is about when the radiation was equal to the non-relativistic matter. We state
that the moment when radiation and matter were equal at some tEQ is the same in GR as
in DG. The implication of this statement is the following: let us consider the ratio of the
matter and radiation densities of GR (23)

ρGR M
ρGR R

=
Y
C

, (30)

We remind that C = ΩR/ΩM. Then, the moment of equality in GR corresponds to YEQ = C.
On the other hand, if we consider the same ratio but now between the physical densities
using (22), we obtain

ρDG;M

ρDG R
=

YDG
CDG

, (31)

where CDG = ΩDG R/ΩDG M. Then, in the equality, we need to impose YDG(YEQ) = CDG,
explicitly

CDG = C

√
1+F(C)

1+3F(C)√
1+F(1)

1+3F(1)

, (32)

if we take the value from [42] (they used L2 instead of L, but these are the same quantity
also), C ∼ 10−4 and L ∼ 0.45 implies F(C) ∼ 10−3 << 1 and F(1) ∼ −L/3, then

CDG = C
√

1− L
1− L/3

. (33)

This means that the total density of matter and radiation today depend explicitly on the
geometry measured with L [42].

3. Perturbation Theory

Now, we perturbed the metric as the following

gµν = ḡµν + hµν , (34)

g̃µν = ˜̄gµν + h̃µν . (35)

Then, we follow the standard method, known as Scalar–Vector–Tensor decomposi-
tion [50]. This decomposition depends on four scalar functions (A, B, E and H), two vector
functions (Ci and Gi), and one tensor function (Dij) (with their respective delta part). This
process allows us to study those sectors independently. Therefore, the perturbations are

h00 = −E hi0 = a
[

∂H
∂xi + Gi

]
hij = a2

[
Aδij +

∂2B
∂xi∂xj +

∂Ci

∂xj +
∂Cj

∂xi + Dij

]
, (36)

where

∂Ci

∂xi =
∂Gi

∂xi = 0
∂Dij

∂xj = 0 Dii = 0 . (37)

This decomposition must be equivalent for h̃µν (by group theory):

h̃00 = −Ẽ h̃i0 = a
[

∂H̃
∂xi + G̃i

]
h̃ij = a2

[
Ãδij +

∂2B̃
∂xi∂xj +

∂C̃i

∂xj +
∂C̃j

∂xi + D̃ij

]
, (38)

with
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∂C̃i

∂xi =
∂G̃i

∂xi = 0
∂D̃ij

∂xj = 0 D̃ii = 0 . (39)

If we replace perturbations in (11)–(14), we obtain the equations for the perturba-
tions. However, there are degrees of freedom that we have to take into account to have
physical solutions. In the next subsection, we show how to choose a gauge to delete the
nonphysical solutions.

3.1. Choosing a Gauge

Under a space–time coordinate transformation, the metric perturbations transform as 3

∆hµν(x) = −ḡλν(x)
∂ελ

∂xµ − ḡµλ(x)
∂ελ

∂xν
−

∂ḡµν

∂xλ
ελ . (40)

In more detail,

∆hij = − ∂εi

∂xj −
∂εj

∂xi + 2aȧδijε0, (41)

∆hi0 = −∂εi
∂t
− ∂ε0

∂xi + 2
ȧ
a

εi, (42)

∆h00 = −2
∂ε0

∂t
. (43)

For delta perturbations, we obtain

∆h̃µν = − ˜̄gµλ
∂ελ

∂xν
− ˜̄gλν

∂ελ

∂xµ −
∂ ˜̄gµν

∂xλ
ελ − ḡµλ

∂ε̃λ

∂xν
− ḡλν

∂ε̃λ

∂xµ −
∂ḡµν

∂xλ
ε̃λ . (44)

In more detail,

∆h̃ij = −F
∂εi

∂xj − F
∂εj

∂xi −
∂ε̃j

∂xi −
∂ε̃i

∂xj +
[
ε0

(
2Faȧ + Ḟa2

)
+ 2ε̃0aȧ

]
δij , (45)

∆h̃i0 = −F
∂εi
∂t
− 3F

∂ε0

∂xi −
∂ε̃i
∂t
− ∂ε̃0

∂xi + 2F
ȧ
a

εi + 2
ȧ
a

ε̃i , (46)

∆h̃00 = −3ε0 Ḟ− 6F
∂ε0

∂t
− 2

∂ε̃0

dt
, (47)

where ε and ε̃ = δ̃ε define the coordinates transformation. In addition, we raised and
lowered the index using ḡµν, so ε0 = −ε0, ε̃0 = −ε̃0, εi = a−2εi and ε̃j = a−2ε̃j. Following
the standard procedure, we decompose the spatial part of εµ and ε̃µ into the gradient of a
spatial scalar plus a divergenceless vector:

εi = ∂iε
S + εV

i , ∂iε
V = 0 , (48)

ε̃i = ∂i ε̃
S + ε̃V

i , ∂i ε̃
V = 0 . (49)

Thus, we can compare equations (36) and (38) with (41)–(43) and (45)–(47) to obtain
the gauge transformations of the metric components:

∆A =
2ȧ
a

ε0 , ∆B = − 2
a2 εS ,

∆Ci = − 1
a2 εV

i , ∆Dij = 0 , ∆E = 2ε̇0 , (50)

∆H =
1
a

(
−ε0 − ε̇S +

2ȧ
a

εS
)

, ∆Gi =
1
a

(
−ε̇V

i +
2ȧ
a

εV
i

)
,

and
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∆Ã =

(
2ȧF

a
+ Ḟ

)
ε0 + 2

ȧ
a

ε̃0 , ∆B̃ = − 2
a2

(
FεS + ε̃S

)
,

∆C̃i = − 1
a2

(
FεV

i + ε̃V
i

)
, ∆D̃ij = 0 , ∆Ẽ = 6Fε̇0 + 3Ḟε0 + 2 ˙̃ε0 ,

∆H̃ =
1
a

(
−3Fε0 − ε̃0 − Fε̇S − ˙̃εS +

2Fȧ
a

εS +
2ȧ
a

ε̃S
)

,

∆G̃i =
1
a

(
−Fε̇V

i − ˙̃εV
i +

2Fȧ
a

εV
i +

2ȧ
a

ε̃V
i

)
. (51)

There are different scenarios in which we can continue with the calculations when we
impose conditions on the parameters εµ and ε̃µ. However, before discussing this, we will
study the gauge transformation of energy-momentum tensors Tµν and T̃µν.

3.2. Tµν and T̃µν

Now, we will decompose the energy-momentum tensors Tµν and T̃µν in the same way.
For a perfect fluid, we would have (for more details, see [37])

Tµν = pgµν + (ρ + p)uµuν , (52)

while for T̃µν (here uT
µ = eµαũα, where eµα is the Vierbein gµν = eµαeνβηαβ, with η being the

Minkowski metric); for a full derivation, please see [35,37]):

T̃µν = p̃gµν + pg̃µν + (ρ̃ + p̃)uµuν + (ρ + p)
(

1
2
(g̃µαuνuα + g̃ναuµuα) + uT

µ uν + uµuT
ν

)
, (53)

where
gµνuµuν = −1 , (54)

gµνuµuT
ν = 0 . (55)

The tensors gµν and g̃µν are defined in (15) and (16), respectively; besides, we consider

p = p̄ + δp,

ρ = ρ̄ + δρ,

uµ = ūµ + δuµ,

p̃ = ˜̄p + δ p̃,

ρ̃ = ˜̄ρ + δρ̃,

uT
µ = ūT

µ + δuT
µ . (56)

Usually, the equation of state is given by p(ρ), so we could reduce this system. For
now, we will work in the generic case. When we work in the frame ūµ = (−1, 0, 0, 0), we
have ūT

µ = 0, and the normalization conditions (54) and (55) give

δu0 = δu0 =
h00

2
δuT

0 = δu0
T = 0 (57)

while δui and δuT
i are independent dynamical variables (note that δuµ ≡ δ(gµνuν) is not

given by ḡµνδuν. The same is true for δuµ
T). Then, the first-order perturbations for both

energy-momentum tensors ( a perfect fluid) are

δTµν = p̄hµν + δpḡµν + ( p̄ + ρ̄)(ūµδuν + δuµuν) + (δp + δρ)ūµūν , (58)

Therefore,
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δTij = p̄hij + a2δijδp, , δTi0 = p̄hi0 − ( p̄ + ρ̄)δui, , δT00 = −ρ̄h00 + δρ . (59)

While

δT̃µν = ˜̄phµν + δ p̃ḡµν + p̄h̃µν + δp ˜̄gµν + ( ˜̄ρ + ˜̄p)(ūµδuν + δuµūν)

+ (δρ̃ + δ p̃)ūµūν + (ρ̄ + p̄)
{

1
2
[

˜̄gµα(ūνδuα + δuνūα) + h̃µαūνūα

+ ˜̄gνα(ūµδuα + δuµūα) + h̃ναūµūα
]
+ ūT

µ δuν + δuT
µ ūν + ūµδuT

ν + δuµūT
ν

}
+ (δρ + δp)

{
1
2
[

˜̄gµαūνūα + ˜̄gναūµūα
]
+ ūT

µ ūν + ūµūT
ν

}
, (60)

and

δT̃00 = − ˜̄ρh00 − ρ̄h̃00 + 3Fδρ + δρ̃,

δT̃i0 = ˜̄phi0 + p̄h̃i0 − ( ˜̄ρ + ˜̄p)δui + (ρ̄ + p̄)
{

1
2
[Fhi0 − h̃i0 − 4Fδui]− δuT

i

}
,

δT̃ij = ˜̄phij + δ p̃a2δij + p̄h̃ij + δpFa2δij , (61)

where we used δuα ≡ δ(gαβuβ) = ḡαβδuβ − hαβūβ.
Generally, we decompose δui (δuT

i ) into the gradient of a scalar velocity potential
δu (δũ) and a divergenceless vector δuV

i (δũV
i ), and the dissipative corrections to the inertia

tensor are added as follows

δTij = p̄hij + a2
[
δijδp + ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πT

ij

]
, (62)

δTi0 = p̄hi0 − ( p̄ + ρ̄)
(

∂iδu + δuV
i

)
, (63)

δT00 = −ρ̄h00 + δρ , (64)

and

δT̃ij = ˜̄phij + a2
[
δijδ p̃ + ∂i∂jπ̃

S + ∂iπ̃
V
j + ∂jπ̃

V
i + π̃T

ij

]
+ p̄h̃ij

+ Fa2
[
δijδp + ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πT

ij

]
, (65)

δT̃i0 = ˜̄phi0 + p̄h̃i0 − ( ˜̄ρ + ˜̄p)(∂i∂u + ∂uV
i )

+ (ρ̄ + p̄)
{

1
2
[Fhi0 − h̃i0 − 4F(∂iδu + δuV

i )]− ∂iδũ + δũV
i

}
, (66)

δT̃00 = − ˜̄ρh00 − ρ̄h̃00 + 3Fδρ + δρ̃ , (67)

where πV
i (π̃V

i ), πT
ij (π̃

T
ij) and δuV

i (δũV
i ) satisfy similar conditions to (37) and (39). These

conditions are (expressed before as Ci (C̃i), Dij (D̃ij) Gi (G̃i)):

∂iπ
V
i = ∂iπ̃

V
i = ∂iδuV

i = ∂iδũV
i = 0 ∂iπ

T
ij = ∂iπ̃

T
ij = 0 , πT

ii = π̃T
ii = 0 . (68)

3.3. Gauge Transformations for the Energy-Momentum Tensors

The gauge transformation for Tµν is given by

∆δTµν(x) = −T̄λν(x)
∂ελ

∂xµ − T̄µλ(x)
∂ελ

∂xν
−

∂T̄µν

∂xλ
ελ , (69)

where the components are



Universe 2023, 9, 315 12 of 41

∆δTij = − p̄
(

∂εi

∂xj +
∂εj

∂xi

)
+

∂

∂t
(a2 p̄)δijε0, (70)

∆δTi0 = − p̄
∂εi
∂t

+ ρ̄
∂ε0

∂xi + 2p̄
ȧ
a

εi, (71)

∆δT00 = 2ρ̄
∂ε0

∂t
+ ˙̄ρε0 . (72)

While the gauge transformation of δT̃µν is given by

∆δT̃µν = − ˜̄Tµλ
∂ελ

∂xν
− ˜̄Tλν

∂ελ

∂xµ −
∂ ˜̄Tµν

∂xλ
ελ − T̄µλ

∂ε̃λ

∂xν
− T̄λν

∂ε̃λ

∂xµ −
∂T̄µν

∂xλ
ε̃λ , (73)

where the components are

∆δT̃ij = −( ˜̄p + p̄F)
∂εi

∂xj − ( ˜̄p + p̄F)
∂εj

∂xi − p̄
∂ε̃j

∂xi − p̄
∂ε̃i

∂xj +

[
ε0

∂

∂t
[a2( ˜̄p + p̄F)] +

∂

∂t
(a2 p̄)ε̃0

]
δij (74)

∆δT̃i0 = −( ˜̄p + p̄F)
∂εi
∂t

+ ( ˜̄ρ + 3Fρ̄)
∂ε0

∂xi − p̄
∂ε̃i
∂t

+ ρ̄
∂ε̃0

∂xi + 2( ˜̄p + p̄F)
ȧ
a

εi + 2p̄
ȧ
a

ε̃i (75)

∆δT̃00 = ε0
∂

∂t
( ˜̄ρ + 3Fρ̄) + 2( ˜̄ρ + 3Fρ̄)

∂ε0

∂t
+ ˙̄ρε̃0 + 2ρ̄

∂ε̃0

dt
. (76)

εi and ε̃i were decomposed in (48) to write these gauge transformations in terms of
the scalar, vector and tensor components. The transformations (41)–(43) and (45)–(47) with
(70)–(71) and (74)–(76) give the gauge transformation for the pressure, energy density and
velocity potential:

∆δp = ˙̄pε0 , ∆δρ = ˙̄ρε0 , ∆δu = −ε0 . (77)

The other ingredients of the energy-momentum tensor are gauge invariants:

∆πS = ∆πV
i = ∆πT

ij = ∆δuV
i = 0 . (78)

Nevertheless, the other transformations are

∆δρ̃ =
∂

∂t
( ˜̄ρ + 3Fρ̄)ε0 + 2( ˜̄ρ + 3Fρ̄)ε̇0 + ˙̄ρε̃0 + 2ρ̄ ˙̃ε0 − ˜̄ρ∆E

− 3Fρ̄∆Ẽ− 3F∆δρ , (79a)

∆δ p̃ =
1
a2

∂

∂t
[a2( ˜̄p + p̄F)]ε0 +

1
a2

∂

∂t
(a2ρ̄)ε̃0 − ˜̄p∆A− p̄F∆Ã− F∆δp , (79b)

∆δũ =
1

(ρ̄ + p̄)

{
( ˜̄p + p̄F)ε̇S − ( ˜̄ρ + 3Fρ̄)ε0 + p̄ ˙̃εS − ρ̄ε̃0 − 2( ˜̄p + p̄F)

ȧ
a

εS

− 2p̄
ȧ
a

ε̃S + ˜̄pa∆H + p̄a∆H̃ − (ρ̄ + p̄)
[

1
2
(1− F)a∆H̃ + 2F∆δu

]}
, (79c)

∆δũV
i =

1
(ρ̄ + p̄)

{
( ˜̄p + p̄F)ε̇V

i + p̄ ˙̃εV
i − 2( ˜̄p + p̄F)

ȧ
a

εV
i − 2p̄

ȧ
a

ε̃V
i + ˜̄pa∆Gi

+ p̄a∆G̃i −
1
2
(ρ̄ + p̄)(1− F)a∆G̃i

}
, (79d)

∆δπ̃S = − 2
a2 (

˜̄p + p̄F)εS − 2
p̄
a2 ε̃S − ˜̄p∆B− p̄F∆B̃ , (79e)

∆δπ̃V
i = − 1

a2 (
˜̄p + p̄F)εV

i −
p̄
a2 ε̃V

i − ˜̄p∆Ci − p̄F∆C̃i , (79f)

∆δπ̃ij = 0 . (79g)

The results given in (50), (51) and (77) are used to obtain
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∆δρ̃ = ˙̄̃ρε0 + ( ˙̄ρ− 3Fρ̄)ε̃0 , (80a)

∆δ p̃ = ˙̄̃pε0 + ˙̄pε̃0 , (80b)

∆δũ =

[
(1− 3F)

F
2
− ( ˜̄p + ˜̄ρ)

( p̄ + ρ̄)

]
ε0 −

1
2
(1 + F)ε̃0 − (1− F)

ȧ
a

(
FεS + ε̃S

)
+

1
2
(1− F)

(
Fε̇S + ˙̃εS

)
, (80c)

∆δũV
i =

1
2
(1− F)[Fε̇V

i + ˙̃εV
i − 2

ȧ
a

FεV
i − 2

ȧ
a

ε̃V
i ] , (80d)

∆δπ̃S = 0 , (80e)

∆δπ̃V
i = 0 , (80f)

∆δπ̃ij = 0 . (80g)

As we said before, there are different choices for the ε and ε̃ parameters to fix all the
gauge freedoms. The most common and well-known gauges are the Newtonian gauge
and synchronous gauge. The former fix εS such that B = 0, and we choose ε0 such that
H = 0 (in Equation (50)). In DG, this choice is extended, imposing similar conditions
in (51) for ε̃S and ε̃0, such that B̃ = H̃ = 0. There is no remaining freedom to make a gauge
transformation in this scenario. Nevertheless, in this work, we will use the synchronous
gauge, where we will choose ε0 such that E = 0 and εS such that H = 0 (similar conditions
for ε̃0 and ε̃S). In the next section, we present the perturbed equations of motion in this
frame, and we discuss the suitability of this choice for our purposes.

3.4. Fields Equations and Energy Momentum Conservations in Synchronous Gauge

Under this gauge fixing, the perturbed Einstein Equation (11) reads (at first order)4:

− 4πG(δρ + 3δp +∇2πS) =
1
2

(
3Ä +∇2B̈

)
+

ȧ
2a

(
3Ȧ +∇2Ḃ

)
. (81)

where ∇2 ≡ ∂2
x + ∂2

y + ∂2
z . The energy-momentum conservation gives

δp +∇2πS + ∂0[(ρ̄ + p̄)δu] +
3ȧ
a
(ρ̄ + p̄)δu = 0, (82)

δρ̇ +
3ȧ
a
(δρ + δp) +∇2

[
a−2(ρ̄ + p̄)δu +

ȧ
a

πS
]
+

1
2
(ρ̄ + p̄)∂0

[
3A +∇2B

]
= 0. (83)

We define
Ψ ≡ 1

2

[
3A +∇2B

]
, (84)

then,

− 4πGa2(δρ + 3δp +∇2πS) =
∂

∂t

(
a2Ψ̇

)
, (85)

δρ̇ +
3ȧ
a
(δρ + δp) +∇2

[
a−2(ρ̄ + p̄)δu +

ȧ
a

πS
]
+

1
2
(ρ̄ + p̄)Ψ̇ = 0. (86)

The unperturbed Einstein equations correspond to the Friedmann equations. In the
delta sector, computations give the non-perturbed equations:

3Ḟ
ȧ
a
= κ(3Fρ̄ + ˜̄ρ) (87)

and

12F
ä
a
+ 6F

(
ȧ
a

)2
+ 3Ḟ

ȧ
a
− 3F̈ = κ( ˜̄ρ + 3 ˜̄p + 3Fρ̄ + 3Fp̄). (88)

The perturbed contribution (at first order) is
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[
2Ḟ

ȧ
a
+ F̈

][
3A +∇2B

]
+

[
6F

ȧ
a
+

5
2

Ḟ
][

3Ȧ +∇2Ḃ
]
−
[

2
ȧ
a

][
3 ˙̃A +∇2 ˙̃B

]
+3F

[
3Ä +∇2B̈

]
−
[
3 ¨̃A +∇2 ¨̃B

]
= κ

(
3δ p̃ + δρ̃ + Fδρ + 3Fδp +∇2π̃ + F∇2π

)
(89)

In addition, the 00 component of delta energy-momentum conservation in (14) gives

δ ˙̃ρ +
3ȧ
a
(δρ̃ + δ p̃) +

3Ḟ
2
(δρ + δp) +∇2

[
( ˜̄ρ + ˜̄p)

a2 δu +
(ρ̄ + p̄)F

a2 δu +
(ρ̄ + p̄)

a2 δũ
]

+
( ˜̄ρ + ˜̄p)

2
∂0[3A +∇2B] +

(ρ̄ + p̄)
2

∂0[3Ã +∇2B̃]− (ρ̄ + p̄)
2

∂0(F[3A +∇2B]) = 0 , (90)

while the i0 component gives

δ p̃ + ∂0[( ˜̄ρ + ˜̄p)δu] + ∂0[(ρ̄ + p̄)δũ]− ∂0[(ρ̄ + p̄)Fδu] + 3(ρ̄ + p̄)Ḟδu

+
3ȧ
a
(ρ̄ + p̄)δũ +

3ȧ
a
( ˜̄ρ + ˜̄p)δu− 3ȧ

a
F(ρ̄ + p̄)δu = 0 . (91)

Analogous to the standard sector, we define

Ψ̃ ≡ 1
2

[
3Ã +∇2B̃

]
, (92)

then the gravitational equation becomes[
2Ḟ

ȧ
a
+ F̈

]
a2Ψ +

[
6F

ȧ
a
+

5
2

Ḟ
]

a2Ψ̇ + 3Fa2Ψ̈− d
dt

(
a2 ˙̃Ψ

)
=

κ
2
(3δ p̃ + δρ̃ + Fδρ

+3Fδp +∇2π̃ + F∇2π
)

. (93)

Now, the delta energy conservation is given by

δ ˙̃ρ +
3ȧ
a
(δρ̃ + δ p̃) +

3Ḟ
2
(δρ + δp) +∇2

[
( ˜̄ρ + ˜̄p)

a2 δu +
(ρ̄ + p̄)F

a2 δu +
(ρ̄ + p̄)

a2 δũ
]

+( ˜̄ρ + ˜̄p)Ψ̇ + (ρ̄ + p̄) ˙̃Ψ− (ρ̄ + p̄)∂0(FΨ) = 0 . (94)

The study of the non-perturbed sector was already treated in Alfaro et al. and applied
to the supernovae observations [37,42]. We will consider these results when necessary. For
now, we only need the expression for the time-dependent function F(t), which is

F(Y) = − LY
3

√
Y + C , (95)

where Y ≡ Y(t) = a(t)/a0 is the quotient between the scale factor at a time t over the scale
factor in the actuality (which for our purposes, we will consider equal to one). L (∼ 0.45)
and C (∼ 10−4) are the new parameters of DG that are already determined by supernova
data [37,42]. We have to remark that our definition of Ψ is not the usual, since the standard
definition is with the time derivative of fields A and B, respectively. In the delta sector, the
combinations of these fields appear explicitly without a time derivative, so if the reader
wants to compare results with other works, he or she should take into consideration this
definition to analyze the gauge. In the next section, we will discuss the evolution of the
cosmological fluctuations, which will help us compute the scalar contribution to the CMB.

4. Evolution of Cosmological Fluctuations

Until now, we have developed the perturbation theory in DG; now, we are interested
in studying the evolution of the cosmological fluctuations to have a physical interpretation
of the delta matter fields, which this theory naturally introduces. Even in the standard
cosmology, the system of equations that describes these perturbations are complicated to



Universe 2023, 9, 315 15 of 41

allow analytic solutions, and there are comprehensive computer programs for this task,
such as CMBfast [43,44] and CAMB [45]. However, such computer programs cannot give
a clear understanding of the physical phenomena involved. Nevertheless, some good
approximations allow computing the spectrum of the CMB fluctuations with a rather
good agreement with these computer programs [46,47]. In particular, we are going to
extend the Weinberg approach for this task. This method consists of two main aspects:
first, the hydrodynamic limit, which assumes that near recombination time photons were
in local thermal equilibrium with the baryonic plasma; then, photons could be treated
hydro-dynamically, such as plasma and cold dark matter. Second, a sharp transition from
thermal equilibrium to complete transparency at the moment tls of the last scattering.

Since we will reproduce this approach, we consider the Universe’s standard compo-
nents, which means photons, neutrinos, baryons, and cold dark matter. Then, the task is to
understand the role of their own delta counterpart. We will also neglect both anisotropic
inertia tensors and took the usual state equation for pressures and energy densities and
perturbations. As we will treat photons and delta photons hydrodynamically, we will use
δuγ = δuB and δũγ = δũB. Finally, as the synchronous scheme does not completely fix
the gauge freedom, one can use the remaining freedom to put δuD = 0, which means that
cold dark matter evolves at rest with respect to the Universe expansion. In our theory, the
extended synchronous scheme also has extra freedom, which we will use to choose δũD = 0
as its standard part. Now, we will present the equations for both sectors. However, we will
provide more detail in the delta sector because Weinberg [47] already calculates the solution
of Einstein’s equations. Einstein’s equations and its energy-momentum conservation in
Fourier space are5

d
dt

(
a2Ψ̇q

)
= −4πGa2(δρDq + δρBq + 2δργq + 2δρνq

)
, (96)

δρ̇γq + 4Hδργq − (4q/3a)ρ̄γδuγq = −(4/3)ρ̄γΨ̇q , (97)

δρ̇Dq + 3HδρDq = −ρ̄DΨ̇q , (98)

δρ̇Bq + 3HδρBq − (q/a)ρ̄Bδuγq = −ρ̄BΨ̇q , (99)

δρ̇νq + 4Hδρνq − (4q/3a)ρ̄νδuνq = −(4/3)ρ̄νΨ̇q , (100)

where H ≡ ȧ/a. It is useful to rewrite these equations in term of the dimensionless
fractional perturbation

δαq =
δραq

ρ̄α + p̄α
, (101)

where α can be γ, ν, B and D (photons, neutrinos, baryons and dark matter, respectively).
a4ρ̄γ, a4ρ̄ν, a3ρ̄D, a3ρ̄B are time-independent quantities; then, (96)–(100) are

d
dt

(
a2Ψ̇q

)
= −4πGa2

(
ρ̄DδDq + ρ̄BδBq +

8
3

ρ̄γδγq +
8
3

ρ̄νδνq

)
, (102a)

δ̇γq − (q2/a2)δuγq = −Ψ̇q , (102b)

δ̇Dq = −Ψq , (102c)

δ̇Bq − (q2/a2)δuγq = −Ψ̇q , (102d)

δ̇νq − (q2/a2)δuνq = −Ψ̇q , (102e)

d
dt

(
(1 + R)δuγq

a

)
= − 1

3a
δγq , (102f)

d
dt

(
δuνq

a

)
= − 1

3a
δνq , (102g)

where R = 3ρ̄B/4ρ̄γ. By the other side, in the delta sector, we will use a dimensionless
fractional perturbation. However, this perturbation is defined as the delta transformation
of (101)6,
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δ̃αq ≡ δ̃δαq =
δρ̃αq

ρ̄α + p̄α
−

˜̄ρα + ˜̄pα

ρ̄α + p̄α
δαq . (103)

In [37], they found

˜̄ρR
ρ̄R

= −2F(a) and
˜̄ρM
ρ̄M

= −3
2

F(a) . (104)

We will assume that this quotient holds for every component. In addition, using the
result that a4 ˜̄ργ/F, a4 ˜̄ρν/F, a3 ˜̄ρD/F, a3 ˜̄ρB/F are time independent, the equations for the
delta sector are[

2Ḟ
ȧ
a
+ F̈

]
a2Ψq +

[
6F

ȧ
a
+

5
2

Ḟ
]

a2Ψ̇q + 3Fa2Ψ̈q −
d
dt

(
a2 ˙̃Ψq

)
(105a)

=
κ
2

a2
[

ρ̄D δ̃Dq + ρ̄B δ̃Bq +
8
3

ρ̄γ δ̃γq +
8
3

ρ̄ν δ̃νq −
F
2
(
ρ̄DδDq + ρ̄BδBq

)
− 8

3
F
(
ρ̄γδγq + ρ̄νδνq

)]
,

˙̃δγq −
q2

a2

(
δũγq + Fδuγq

)
+ ˙̃Ψq − ∂0(FΨq) = 0 , (105b)

˙̃δDq +
˙̃Ψq − ∂0(FΨq) = 0 , (105c)

˙̃δBq −
q2

a2

(
δũγq + Fδuγq

)
+ ˙̃Ψq − ∂0(FΨq) = 0 , (105d)

˙̃δνq −
q2

a2

(
δũνq + Fδuνq

)
+ ˙̃Ψq − ∂0(FΨq) = 0 , (105e)

δ̃γq

3a
+

d
dt

(
(1 + R)δũγq

a

)
+ 2F

d
dt

(
(R− R̃)δuγq

a

)

−F
d
dt

(
(1 + R)δuγq

a

)
− 2Ḟ(R̃− R)

δuγq

a
= 0 , (105f)

δ̃νq

3a
+

d
dt

(
δũνq

a

)
− F

d
dt

(
δuνq

a

)
= 0 , (105g)

with R̃ = 3 ˜̄ρB/4 ˜̄ργ. Due to the definition of tilde fractional perturbation (103), solutions
for (105a)–(105g) can be obtained easily, putting all solutions of GR equal to zero; then, the
system is exactly equal to the system of Equations (102a)–(102g) and the solutions of tilde
perturbations in the homogeneous system are exactly equal to the GR solutions. Then, we
only need to “turn on” the GR source and find the complete solutions just like a forced-
system. We will impose initial conditions to find solutions valid up to recombination time.
At sufficiently early times, the Universe was dominated by radiation, and as Friedmann
equations are valid in our theory (in particular the first equation), we can use a good
approximation given by a ∝

√
t and 8πGρ̄R/3 = 1/4t2, while R and R̃� 1. Here

ρ̄M ≡ ρ̄D + ρ̄B , ρ̄R ≡ ρ̄γ + ρ̄ν . (106)

We are interested in adiabatic solutions in the sense that all the δαq and δ̃αq become
equal at very early times. So, we make the ansatz:

δγq = δνq = δBq = δDq = δq , δuγq = δuνq = δuq , (107)

δ̃γq = δ̃νq = δ̃Bq = δ̃Dq = δ̃q , δũγq = δũνq = δũq . (108)

Finally, we drop the term q2/a2 because we are considering very early times. Then,
Equations (102a)–(102g) become

d
dt
(
tΨq
)

= −1
t

δq , (109)

δ̇q = −Ψq , (110)
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and

d
dt

(
δuq√

t

)
= −1

t
δq . (111)

While Equations (105a)–(105g) become[
2Ḟ

ȧ
a
+ F̈

]
a2Ψq +

[
6F

ȧ
a
+

5
2

Ḟ
]

a2Ψ̇q + 3Fa2Ψ̈q

− d
dt

(
a2 ˙̃Ψq

)
=

a2

t2 (δ̃q − Fδq) , (112)

˙̃δq +
˙̃Ψq − ∂0(FΨq) = 0 , (113)

δ̃q

3a
+

d
dt

(
δũq

a

)
− F

d
dt

(
δuq

a

)
= 0 . (114)

An inspection of Equation (95) shows that at this era, for a � C, we have F ∝
−La
√

C/3. In addition, in DG, time can be integrated from the first Friedmann equation
with only radiation and matter, and one obtains:

t(Y) =
2
√

1 + C
3H0

(√
Y + C(Y− 2C) + 2C

3
2

)
, (115)

We recall that Y = a/a0 = a assuming a0 = 1, H0 = ȧ0/a0 is the usual Hubble
parameter which we recall is no longer the physical Hubble parameter. Thus, radiation
era time and a(t) were related by a(t) = (3H0

√
C/
√

1 + C)1/2t1/2. This complete system
consisting of Equations (109)–(111) and Equations (112)–(114) has an analytical solution:

δγq = δBq = δDq = δνq =
q2t2Rq

a2 , (116)

Ψ̇q = −
tq2Rq

a2 , (117)

δuγq = δuνq = −
2t3q2Rq

9a2 , (118)

where7

q2Rq ≡ −a2HΨq + 4πGa2δρq + q2Hδuq , (119)

is a gauge-invariant quantity, which take a time-independent value for q/a � H. Here,
H = ȧ/a is the GR definition of the Hubble parameter, which we recall is no longer the
physical one. On the other hand, we obtain

δ̃q = −
L
√

Cq2Rqt2

3a
, (120)

˙̃Ψq =
L
√

Cq2Rqt
a

, (121)

δũq =
L
√

Cq2Rqt3

a
. (122)

We will talk about these initial conditions later. Note that Equations (102b)–(102d) give

d
dt
(δγ − δB) = 0 . (123)

This implies that if we start from adiabatic solutions, δγ = δB is true for all the Universe
evolution (the same happens for its delta version from Equations (105b)–(105d)).
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Matter Era

In this era, we use a ∝ t2/3, then (still using R = R̃ = 0), we have

d
dt

(
a2Ψq

)
= −4πGρ̄Da2δDq , (124a)

δ̇Dq = −Ψq , (124b)

d
dt

(
(1 + R)δuγq

a

)
= − 1

3a
δγq , (124c)

d
dt

(
δuνq

a

)
= − 1

3a
δνq . (124d)

For the delta sector,[
2Ḟ

ȧ
a
+ F̈

]
a2Ψq +

[
6F

ȧ
a
+

5
2

Ḟ
]

a2Ψ̇q + 3Fa2Ψ̈q,

− d
dt

(
a2 ˙̃Ψq

)
=

2a2

3t2

(
δ̃Dq − F

δDq

2

)
, (124e)

˙̃δγq −
q2

a2

(
δũγq + Fδuγq

)
+ ˙̃Ψq − ∂0(FΨq) = 0 , (124f)

˙̃δDq +
˙̃Ψq − ∂0(FΨq) = 0 , (124g)

δ̃γq

3a
+

d
dt

(
δũγq

a

)
− F

d
dt

(
δuγq

a

)
= 0 . (124h)

where (in this era),

a(t) =
(

3H0

2
√

1 + C

)2/3
t2/3, (125)

F(t) ∝ − L
3

a(t)3/2. (126)

It is remarkable that in the GR sector, there are exact solutions given by

δDq =
9q2t2RqT (κ)

10a2 , (127)

Ψ̇q = −
3q2tRqT (κ)

5a2 , (128)

δγq = δνq =
3Rq

5

[
T (κ)− S(κ) cos

(
q
∫ t

0

dt√
3a

+ ∆(κ)
)]

, (129)

δuγq = δuνq =
3tRq

5

[
−T (κ) + S(κ) a√

3qt
sin
(

q
∫ t

0

dt√
3a

+ ∆(κ)
)]

. (130)

where T (κ), S(κ) and ∆(κ) are time-independent dimensionless functions of the dimen-
sionless re-scaled wave number

κ ≡ q
√

2
aEQ HEQ

(131)

.
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aEQ and HEQ are, respectively, the Robertson–Walker scale factor and the expansion
rate at matter radiation equally. These are referred to as transfer functions. (These functions
can only depend on κ because they need to be independent of spatial coordinates’ normal-
ization and are dimensionless. A comprehensive analysis of the behavior of these functions
can be found in [47].) Conversely, delta perturbations do not have an exact solution, and
numerical calculations are necessary to determine them. However, in this work, we will
not present numerical solutions and instead focus on estimating the initial conditions of
the perturbations at the end of this section.

In order to obtain all transfer functions, we have to compare solutions with the full
equation system (with ρB = ρ̃B = 0). To do this task, let us make the change of variable
y ≡ a/aEQ = a/C; this means

d
dt

=
HEQ√

2

√
1 + y
y

d
dy

. (132)

In addition, we will use the following parametrization for all perturbations

δDq = κ2R0
qd(y)/4 , δγq = δνq = κ2R0

qr(y)/4 ,

Ψ̇q = (κ2HEQ/4
√

2)R0
q f (y) , δuγq = δuνq = (κ2

√
2/4HEQ)R0

qg(y) ,

and

δ̃Dq = κ2R0
q d̃(y)/4 , δ̃γq = δ̃νq = κ2R0

q r̃(y)/4 ,
˙̃Ψq = (κ2HEQ/4

√
2)R0

q f̃ (y) , δũγq = δũνq = (κ2
√

2/4HEQ)R0
q g̃(y) .

Then, Equations (124a)–(124d) and Equations (124e)–(124h) become

√
1 + y

d
dy

(
y2 f (y)

)
= −3

2
d(y)− 4r(y)

y
, (133a)

√
1 + y

d
dy

r(y)− κ2g(y)
y

= −y f (y) , (133b)

√
1 + y

d
dy

d(y) = −y f (y) , (133c)

√
1 + y

d
dy

(
g(y)

y

)
= − r(y)

3
, (133d)

and

−
[
(1 + 2y)yF′(y) + y(1 + y)F′′(y)

]
d(y) +

[
6F(y) +

5
2

yF′(y)
]

y
√

1 + y f (y)

+3F(y)y2√1 + y f ′(y)−
√

1 + y
d

dy

(
y2 f̃ (y)

)
=

3d̃(y)
2

+
4r̃(y)

y
,

−3F(y)d(y)
4

− 4F(y)r(y)
y

(133e)

√
1 + y

d
dy

d̃(y) = −y f̃ (y)−
√

1 + y
d

dy
d(y) , (133f)

√
1 + y

d
dy

r̃(y) =
κ2

y
[g̃(y) + F(y)g(y)]− y f̃ (y)−

√
1 + y

d
dy

d(y) , (133g)

√
1 + y

d
dy

(
g̃(y)

y

)
= − r̃(y)

3
+
√

1 + yF(y)
d

dy

(
g(y)

y

)
. (133h)

In this notation, the initial conditions are
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d(y) = r(y)→ y2 ,

f (y) → −2 ,

g(y) → −y4

9
.

For the delta sector,

d̃(y) = r̃(y)→ − LC3/2

3
y3 ,

f̃ (y) →
√

2LC3/2y ,

g̃(y) → LC3/2

2
y5 .

From supernovae fit, we know that C ∼ 10−4 and L ∼ 0.45 [37,42]; thus, we can
estimate that fluctuations of “delta matter” at the beginning of the Universe were much
smaller than fluctuations of standard matter. For example, at y ∼ 10−3, the ratio between
components of the Universe is |δ̃α/δα| ∼ 10−10.

We do not show numerical solutions here because the aim of this work is to trace a
guide for future work, in particular, in the numeric computation of multipole coefficients
for temperature fluctuations in the CMB. However, we will derive the equations to calculate
that computation.

5. Derivation of Temperature Fluctuations

It is possible to find expressions analogous to temperature fluctuations usually ob-
tained by Boltzmann equations by studying photons propagation in FRLW-perturbed
coordinates, with the condition ḡi0 = 08. For DG, the metric which photons follow is
given by

g00 = −((1 + 3F(t)) + E(x, t) + Ẽ(x, t)) , gi0 = 0 ,

gij = a2(t)(1 + F(t))δij + hij(x, t) + h̃ij(x, t) , (134)

A ray of light propagating to the origin of the FRLW coordinate system, from a
direction n̂, will have a comoving radial coordinate r related with t by

0 = ḡµνdxµdxν = −(1 + 3F(t) + E(rn̂, t) + Ẽ(rn̂, t))dt2

+(a2(t)(1 + F(t)) + hrr(rn̂, t) + h̃rr(rn̂, t))dr2 , (135)

in other words,

dr
dt

= −
(

(1 + 3F(t)) + E + Ẽ
a2(t)(1 + F(t)) + hrr + h̃rr

)1/2

' − 1
aDG(t)

+
(hrr + h̃rr)

2(1 + 3F(t))a3
DG(t)

− E + Ẽ
2(1 + 3F(t))aDG(t)

, (136)

where aDG(t) is the modified scale factor given by

aDG(t) = a(t)

√
1 + F(t)

1 + 3F(t)
. (137)

Now, we will use the approximation of a sharp transition between the opaque and
transparent Universe at a moment tls of last scattering at red shift z ' 1090. With this
approximation, the relevant term at the first order in Equation (136) is
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r(t) =
[

s(t) +
∫ t

tls

dt′

aDG(t′)
N
(
s(t′)n̂, t′

) ]
, (138)

where

N(x, t) ≡ 1
2(1 + 3F)

[
hrr(x, t) + h̃rr(x, t)

a2
DG

− E(x, t)− Ẽ(x, t)

]
, (139)

and s(t) is the zero-order solution for the radial coordinate. s(t) = rls when t = tls:

s(t) = rls −
∫ t

tls

dt′

aDG(t′)
=
∫ t0

t

dt′

aDG(t′)
. (140)

If a ray of light arrives to r = 0 at a time t0, then Equation (138) gives

0 = s(t0) +
∫ t

tls

dt′

aDG(t′)
N
(
s(t′)n̂, t′

)
= rls +

∫ t0

tls

dt
aDG(t)

(N(s(t)n̂, t)− 1) . (141)

A time interval δtls, between the departure of successive rays of light at time tls of last
scattering, produces an interval of time δt0 between the arrival of the rays of light at t0,
which are given by the variation of Equation (141):

0 =
δtls

aDG(tls)

[
1− N(rlsn̂, tls) +

∫ t0

tls

dt
aDG(t)

(
∂N(r(t)n̂, t)

∂r

)
r=s(t)

]

+δtls(∂ur
γ(rlsn̂, tls) + ∂ũr

γ(rlsn̂, tls)) +
δt0

aDG(t0)
[−1 + N(0, t0)] . (142)

The velocity terms of the photon–gas or photon–electron–nucleon arise because of the
variation with respect to the time of the radial coordinate rls described by Equation (141).
The exchange rate of N(s(t)n̂, t) is

d
dt

N(s(t)n̂, t) =
(

∂

∂t
N(rn̂, t)

)
r=s(t)

− 1
aDG(t)

(
∂N(rn̂, t)

∂r

)
r=s(t)

,

then,

0 =
δtls

aDG(tls)

[
1− N(0, tls) +

∫ t0

tls

dt
(

∂N(rn̂, t)
∂t

)
r=s(t)

]

+δtls(∂ur
γ(rlsn̂, tls) + ∂ũr

γ(rlsn̂, tls)) +
δt0

aDG(t0)
[−1 + N(0, t0)] . (143)

This result gives the ratio between the time intervals between ray of lights that are
emitted and received. However, we are interested in this ratio but for the proper time,
which in DG is defined with the original metric gµν:

δτL =
√

1 + E(rls, tls)δtls , δτ0 =
√

1 + E(0, t0)δt0 , (144)

At first order, it gives the ratio between a received frequency and an emitted one:

ν0

νL
=

δτL
δτ0

=
aDG(tls)

aDG(t0)

[
1 +

1
2
(E(rlsn̂, t)− E(0, t0))

−
∫ t0

tls

(
∂

∂t
N(rn̂, t)

)
r=s(t)

dt− aDG(t)(δur
γ(rlsn̂, t) + δũr

γ(rlsn̂, t))

]
. (145)

In [42], we defined the physical scale factor as YDG(t) ≡ aDG(t)/aDG(t0). Thus, we
recover the standard expression for the redshift. The observed temperature at the present
time t0 from direction n̂ is
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T(n̂) =
(

ν0

νL

)
(T̄(tls) + δT(rlsn̂, tls)) , (146)

In the absence of perturbations, the observed temperature in all directions should be

T0 =

(
aDG(tls)

aDG(t0)

)
T̄(tls) , (147)

Therefore, the ratio between the observed temperature shift that comes from direction
n̂ and the unperturbed value is

∆T(n̂)
T0

≡ T(n̂)− T0

T0
=

ν0aDG(t0)

νLaDG(tls)
− 1 +

δT(rlsn̂, tls)

T̄(tls)

=
1
2
(E(rlsn̂, t)− E(0, t0))−

∫ t0

tls

dt
(

∂

∂t
N(rn̂, t)

)
r=s(t)

− aDG(t)(δur
γ(rlsn̂, t) + δũr

γ(rlsn̂, t)) +
δT(rlsn̂, tls)

T̄(tls)
. (148)

For scalar perturbations in any gauge with hi0 = 0, the metric perturbations are

h00 = −E , hij = (1 + F)a2
[

Aδij +
∂2B

∂xi∂xj

]
,

h̃00 = −Ẽ , h̃ij = (1 + F)a2
[

Ãδij +
∂2B̃

∂xi∂xj

]
. (149)

In addition, for scalar perturbations, the radial velocity of the photon fluid and the
delta versions are given in terms of the velocity potentials δuγ and δũγ, respectively,

δur
γ = (ḡ + ¯̃g)rµ ∂δuγ

∂xµ =
1

(1 + F(t))a2
∂δuγ

∂r
,

δũr
γ = (ḡ + ¯̃g)rµ ∂δũγ

∂xµ =
1

(1 + F(t))a2
∂δũγ

∂r
. (150)

Then, Equation (148) gives the scalar contribution to temperature fluctuations(
∆T(n̂)

T0

)S
=

1
2
(E(rlsn̂, t)− E(0, t0))−

∫ t0

tls

dt
(

∂

∂t
N(rn̂, t)

)
r=s(t)

− 1
(1 + 3F(t))aDG

(
∂δuγ(rlsn̂, t)

∂r
+

∂δũγ(rlsn̂, t)
∂t

)
+

δT(rlsn̂, tls)

T̄(tls)
, (151)

where

N =
1
2

[
A +

∂2B
∂r2 +

(
Ã +

∂2B̃
∂r2

)
− E

1 + 3F
− Ẽ

1 + 3F

]
. (152)

In the next step, we will study the gauge transformations of these fluctuations. The
following identity for the fields B and B̃ will be useful:(

∂2Ḃ
∂r2

)
r=s(t)

= −
(

d
dt

[
aDG

∂Ḃ
∂r

+ aDG ȧDG Ḃ + a2
DG B̈

]
+

∂

∂t

[
aDG ȧDG Ḃ + a2

DG B̈
])

r=s(t)
. (153)

Then, the temperature fluctuations are described by(
∆T(n̂)

T0

)S
=

(
∆T(n̂)

T0

)S

early
+

(
∆T(n̂)

T0

)S

late
+

(
∆T(n̂)

T0

)S

ISW
(154)
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where

(
∆T(n̂)

T0

)S

early
= −1

2
aDG(tls)ȧDG(tls)Ḃ(rlsn̂, tls)−

1
2

a2
DG(tls)B̈(rlsn̂, tls) +

1
2

E(rlsn̂, tls)

+
δT(rlsn̂)

T̄(tls)
− aDG(tls)

 ∂

∂r

(
1
2

Ḃ(rn̂, tls) +
1

(1 + 3F(tls))a2
DG(tls)

δuγ(rn̂, tls)

)
r=rls


−

{(
1
2

aDG(tls)ȧDG(tls)
˙̃B(rlsn̂, tls) +

1
2

a2
DG(tls)

¨̃B(rlsn̂, tls)

)

+aDG(tls) ×

 ∂

∂r

(
1
2

˙̃B(rn̂, tls) +
1

(1 + 3F(tls))a2
DG(tls)

δũγ(rn̂, tls)

)
r=rls

 , (155)

(
∆T(n̂)

T0

)S

late
=

1
2

aDG(t0)ȧDG(t0)Ḃ(0, t0) +
1
2

a2
DG(t0)B̈(0, t0)−

1
2

E(0, t0)

+ aDG(t0)

[
∂

∂r

(
1
2

Ḃ(rn̂, t0) +
1

(1 + 3F(t0))a2
DG(t0)

δuγ(rn̂, t0)

)
r=0

]

+

{(
1
2

aDG(t0)ȧDG(t0)
˙̃B(0, t0) +

1
2

a2
DG(t0)

¨̃B(0, t0)

)

+aDG(t0) ×

 ∂

∂r

(
1
2

˙̃B(rn̂, t0) +
1

(1 + 3F(t0))a2
DG(t0)

δũγ(rn̂, t0)

)
r=rls

 , (156)

(
∆T(n̂)

T0

)S

ISW
= −1

2

∫ t0

tls

dt
{

∂

∂t

[
a2

DG(t)B̈(rn̂, t) + aDG(t)ȧDG(t)Ḃ(rn̂, t) + A(rn̂, t)

− E(rn̂, t)
1 + 3F(t)

+ a2
DG(t)

¨̃B(rn̂, t) + aDG(t)ȧDG(t) ˙̃B(rn̂, t)

+ Ã(rn̂, t)− Ẽ(rn̂, t)
1 + 3F(t)

]}
, (157)

The “late” term is the sum of independent direction terms and a term proportional
to n̂, which was added to represent the local anisotropies of the gravitational field and
the local fluid. In GR, these terms only contribute to the multipole expansion for l = 0
and l = 1. Thus, we will ignore their contribution to our derivation of the temperature
fluctuations multipoles coefficients.

5.1. Gauge Transformations

We are going to study the gauge transformations for photons propagating in the metric
gµν for a parameter εµ. Then, the transformations are

∆A =
2ȧ

(1 + F)a
ε0

1 + 3F
, ∆B = − 2

1 + F
εS

(1 + F)a2 ,

∆Ci = − 1
1 + F

εV
i

(1 + F)a2 , ∆Dij = 0 , ∆E = 2
∂

∂t

(
ε0

1 + 3F

)
, (158)

∆H = − 1√
1 + Fa

[
a2 ∂

∂t

(
εS

(1 + F)a2

)
+

ε0

(1 + 3F)

]
, ∆Gi = −

a√
1 + F

∂

∂t

(
εV

i
(1 + F)a2

)
.

and
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∆Ã =
1

(1 + F)a2

[
∂

∂t
(Fa2)

ε0

1 + 3F

]
, ∆B̃ = − 1

(1 + F)a2

[
2F

1 + F
εS
]

,

∆C̃i = − F
1 + F

εV
i

(1 + F)a2 , ∆D̃ij = 0 , ∆Ẽ = 6F
∂

∂t

(
ε0

1 + 3F

)
+

3Ḟ
1 + 3F

ε0

∆H̃ = − 1√
1 + Fa

[
Fa2 ∂

∂t

(
εS

(1 + F)a2

)
+

3Fε0

(1 + 3F)

]
,

∆G̃i = − 1√
1 + Fa

[
Fa2 ∂

∂t

(
εV

i
(1 + F)a2

)]
. (159)

Now, considering the sum of the perturbations, we obtain

∆A + ∆Ã =
1

(1 + F)a2
∂

∂t
[(1 + F)a2]

ε0

1 + 3F
, (160a)

∆B + ∆B̃ = − 2εS

(1 + F)a2 , (160b)

∆E + ∆Ẽ = 2(1 + 3F)
∂

∂t

(
ε0

1 + 3F

)
+

3Ḟ
1 + 3F

ε0 , (160c)

∆H + ∆H̃ = − 1√
1 + Fa

[
(1 + F)a2 ∂

∂t

(
εS

(1 + F)a2

)
+ ε0

]
, (160d)

∆Ci + ∆C̃i = −
εV

i
(1 + F)a2 , (160e)

∆Gi + ∆G̃i = − 1√
1 + Fa

[
(1 + F)a2 ∂

∂t

(
εV

i
(1 + F)a2

)]
. (160f)

Now, we will study the gauge transformations that preserve the condition gi0 =
gio + g̃i0 = 0. This means that ∆H + ∆H̃ = 0. This gives a solution for ε0 given by

ε0 = −(1 + F)a2 ∂

∂t

(
εS

(1 + F)a2

)
. (161)

When we study how the “ISW” term transforms under this type of transformation,
we found that ∆ISW = 0. While for the “early” term, we should note that temperature
perturbations transform as

∆δT(rlsn̂, t) = ˙̄T(t)
ε0

1 + 3F
, (162)

With this expression and T̄aDG = cte, we finally obtain

∆δT(rlsn̂, t)
T̄(tls)

= − ȧDG
aDG

ε0

1 + 3F
. (163)

This results implies that the “early” term is invariant under this gauge transforma-
tion. Note that this gauge transformation is equivalent to the previously discussed in
Section 1, because we can always take ε as a combination of ε and ε̃. Then, we remark
that temperature fluctuations are gauge invariant under scalar transformations that leave
gi0 = 0.

5.2. Single Modes

We will assume that since the last scattering until now, all the scalar contributions are
dominated by a unique mode such that any perturbation X(x, t) could be written as
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X(x, t) =
∫

d3qα(q)eiq·xXq(t) , (164)

where α(q) is a stochastic variable, which is normalized such that

〈α(q)α∗(q′)〉 = δ3(q− q′) . (165)

Then, Equations (155) and (157) become

(
∆T(n̂)

T0

)S

early
=

∫
d3qα(q)eiq·n̂r(tls)

(
F (q) + F̃ (q) + iq̂ · n̂(G(q) + G̃(q))

)
, (166)

(
∆T(n̂)

T0

)S

ISW
= −1

2

∫ t1

t0

dt
∫

d3qα(q)eiq·n̂s(t) d
dt

[
a2

DG(t)B̈q(t) + aDG(t)ȧDG(t)Ḃq(t)

+ Aq(t)−
Eq(t)

1 + 3F(t)
+
(

a2
DG(t)

¨̃Bq(t) + aDG(t)ȧDG(t) ˙̃Bq(t) + Ãq(t)

−
Ẽq(t)

1 + 3F(t)

)]
, (167)

where

F (q) = −1
2

a2
DG(t)B̈q(tls)−

1
2

aDG(t)ȧDG(tls)Ḃq(tls) +
1
2

Eq(tls) +
δTq(tls)

T̄(tls)
, (168)

F̃ (q) = −1
2

a2
DG(t)

¨̃Bq(tls)−
1
2

aDG(tls)ȧDG(tls)
˙̃Bq(tls) , (169)

G(q) = −q
(

1
2

aDG(tls)Ḃq(tls) +
1

(1 + 3F(tls))aDG(tls)
δuγ(tls)

)
, (170)

G̃(q) = −q
(

1
2

aDG(tls)
˙̃Bq(tls) +

1
(1 + 3F(tls))aDG(tls)

δũγ(tls)

)
. (171)

These functions are called form factors. We emphasize that combination given by
F (q) + F̃ (q) and G(q) + G̃(q), and the expressions inside the integral are gauge invariants
under gauge transformations that preserve gi0 equal to zero.

6. Coefficients of Multipole Temperature Expansion: Scalar Modes

As an application of the previous results, we will study the contribution of the scalar
modes for temperature–temperature correlation, which is given by:

CTT,l =
1

4π

∫
d2n̂

∫
d2n̂′Pl(n̂ · n̂′)〈∆T(n̂)∆T(n̂′)〉 , (172)

where ∆T(n̂) is the stochastic variable which gives the deviation of the average of observed
temperature in direction n̂, and 〈. . .〉 denotes the average over the position of the observer.
However, the observed quantity is

Cobs
TT,l =

1
4π

∫
d2n̂

∫
d2n̂′Pl(n̂ · n̂′)∆T(n̂)∆T(n̂′) , (173)

Nevertheless, the mean square fractional difference between this equation and Equa-
tion (172) is 2/(2l + 1), and therefore, it may be neglected for l � 1. In order to calculate
these coefficients, we use the following expansion in spherical harmonics

eiq̂·n̂ρ = 4π
∞

∑
l=0

m=l

∑
m=−l

il jl(ρ)Ym
l (n̂)Ym∗

l (q̂) , (174)

where jl(ρ) represents the spherical Bessel’s functions. Using this expression in Equation (166),
and replacing the factor iq̂ · n̂ for time derivatives of Bessel’s functions, the scalar contribu-
tion of the observed T–T fluctuations in direction n̂ is
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(∆T(n̂))S = ∑
lm

aS
T,lmYm

l (n̂) , (175)

where

aS
T,lm = 4πilT0

∫
d3qα(q)Yl∗

l (q̂)
[
jl(qrls)(F (q) + F̃ (q)) + j′l(qrls)(G(q) + G̃(q))

]
, (176)

and α(q) is a stochastic parameter for the dominant scalar mode. It is normalized such that

〈α(q)α∗(q′)〉 = δ3(q− q′) . (177)

Inserting this expression in Equation (172), we obtain

CS
TT,l = 16π2T2

0

∫ ∞

0
q2dq

[
jl(qrls)(F (q) + F̃ (q)) + j′l(qrls)(G(q) + G̃(q))

]2 . (178)

Now, we will consider the case l � 1. In this limit, we can use the following approxi-
mation for Bessel’s functions9:

jl(ρ)→
{

cos(b) cos[ν(tan b− b)− π/4]/(ν
√

sin b) ρ > ν ,
0 ρ < ν ,

(179)

where ν ≡ l + 1/2, and cos b ≡ ν/ρ, with 0 ≤ b ≤ π/2. In addition, for ρ > ν � 1, the
phase ν(tan b− b) is a function of ρ that grows very fast; then, the derivatives of Bessel’s
functions only act in its phase:

j′l(ρ)→
{
− cos(b)

√
sin b sin[ν(tan b− b)− π/4]/ν ρ > ν ,

0 ρ < ν .
(180)

Using these approximations in Equation (178) and changing the variable from q to
b = cos−1(ν/qrls), we obtain

CS
TT,l =

16π2T2
0 ν

r3
ls

∫ π/2

0

db
cos2 b

×
[(
F
(

ν

rls cos b

)
+ F̃

(
ν

rls cos b

))
cos[ν(tan b− b)− π/4]

− sin b
(
G
(

ν

rls cos b

)
+ G̃

(
ν

rls cos b

))
sin[ν(tan b− b)− π/4]

]2
. (181)

When ν� 1, the functions cos[ν(tan b− b)− π/4] and sin[ν(tan b− b)− π/4] oscil-
late very rapidly; then, the squared average of its values are 1/2, while the averaged cross-
terms are zero. Using l ≈ ν, and changing the integration variable from b to β = 1/ cos b,
Equation (181) becomes

l(l + 1)CS
TT,l =

8π2T2
0 l3

r3
ls

∫ ∞

1

βdβ√
β2 − 1

×
[(
F
(

lβ
rls

)
+ F̃

(
lβ
rls

))2
+

β2 − 1
β2

(
G
(

lβ
rls

)
+ G̃

(
lβ
rls

))2
]

.(182)

Note that dA = rlsaDG(tls) is the angular diameter distance of the last scattering
surface. To calculate the CMB power spectrum, we need to know the value of ˙̃Bq. We use
the off-diagonal equation from the delta sector to obtain it. This gives:

˙̃Aq = ȦqF + Aq Ḟ− 2a2(ρ + p)δuq − a2(ρ̃ + p̃)δuq − (ρ + p)δũq , (183)

so if we use this equation with the definition of Ψ̃
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˙̃Ψq =
1
2
(3 ˙̃Aq − q2 ˙̃Bq), (184)

it allows us to find ˙̃B. Now, we will use the approximation that perturbations of a gravitation
field are dominated by perturbations of dark matter density. In this regime Ȧq(tls) = 0 and
in the synchronous gauge, the velocity perturbations for dark matter are zero; then,

˙̃Aq(tls) = Aq(tls)Ḟ(tls) , (185)

and

˙̃Bq(tls) =
3
q2 Aq(tls)Ḟ(tls)−

2 ˙̃Ψq(tls)

q2 ⇒ ¨̃Bq(tls) =
3
q2 Aq(tls)F̈(tls)−

2 ¨̃Ψq(tls)

q2 , (186)

where

q2 Aq = 8πGa2δρDq − 2Ha2Ψ̇q

= 3H2a2δDq − 2Ha2Ψ̇q . (187)

In GR, Ḃq = −2Ψ̇q/q2, and Ψ̇q ∝ t−1/3 implies B̈q = 2Ψ̇q/3tq2. Therefore, the usual
form factors are:

F (q) =
1
3

δγq(tls) +
Ψ̇q(tls)

q2

(
aDG(tls)ȧDG(tls)−

2
3

a2
DG(tls)

tls

)
, (188)

G(q) = −q
δuγq(tls)

(1 + 3F(tls))aDG(tls)
+

aDG(tls)Ψ̇q(tls)

q
. (189)

where we have used δTq/T̄ = δργq/4ρ̄γ = δγq/3. Nevertheless, for the “delta” contribution,
˙̃Ψq and ¨̃Ψq satisfy the same relation as the standard case. Due to our decomposition, the

tilde expresions are

F̃ (q) = −3
2

Aq(tls)

q2 (a2
DG(tls)F̈(tls) + aDG(tls)ȧDG(tls)Ḟ(tls))

+
˙̃Ψq(tls)

q2

(
aDG(tls)ȧDG(tls)−

2
3

a2
DG(tls)

tls

)
, (190)

G̃(q) = −q
δũγq(tls)

(1 + 3F(tls))aDG(tls)
+

aDG(tls)
˙̃Ψq(tls)

q
. (191)

Unfortunately, due to all the approximations we have used, we need to add some
corrections to the solutions of the GR sector. After that, we will be able to find the numerical
solutions for DG perturbations. The first consideration is that in the set of equations
presented in the matter era, we have used R = 3ρ̄B/4ργ = 0, which is not valid in
this era. Corrections to the solutions can be calculated using a WKB approximation for
perturbations10 [47]. The second consideration that we must include in the solution of
photons perturbations is the so-called Silk damping11 [52,53], which takes into account the
viscosity and heat conduction of the relativistic medium. Moreover, the transition from
opaque to a transparent Universe at the last scattering moment was not instantaneous, but
it could be considered a Gaussian. This effect is known as Landau damping12. We must
recall that the physical geometry now is described by YDG(t) = aDG(t)/aDG(t = 0), so
the expression for both Silk and Landau effects has to be expressed in this geometry. With
these considerations, the solutions of perturbations are given by:
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Ψ̇q(tls) = −
3q2tlsRo

qT (κ)
5a2(tls)

, (192)

δγq(tls) =
3Ro

q

5

[
T (κ)(1 + 3Rls)− (1 + Rls)

−1/4e−q2d2
D/a2

ls

× S(κ) cos

(∫ tls

0

qdt√
3(1 + R(t))a(t)

+ ∆(κ)

)]
, (193)

δuγq(tls) =
3Ro

q

5

[
−tlsT (κ) +

a(tls)√
3q(1 + Rls)3/4

e−q2d2
D/a2

ls

× S(κ) sin

(∫ tls

0

qdt√
3(1 + R(t))a(t)

+ ∆(κ)

)]
, (194)

Here, we used an approximation given by aDG(tls) ≈ a(tls) ∝ t2/3, and the error of this
approximation is of the order 10−4%.

Ψ̇q(tls) = −
3q2tlsRo

qT (κ)
5a2

DG(tls)
, (195)

δγq(tls) =
3Ro

q

5

[
T (κ)(1 + 3Rls)− (1 + Rls)

−1/4e−q2d2
D/a2

DG(tls)

× S(κ) cos

(
q
∫ tls

0

dt√
3(1 + R(t))aDG(t)

+ ∆(κ)

)]
, (196)

δuγq(tls) =
3Ro

q

5

[
−tlsT (κ) +

aDG(tls)√
3q(1 + Rls)3/4

e−q2d2
D/a2

DG(tls)

× S(κ) sin

(
q
∫ tls

0

dt√
3(1 + R(t))aDG(t)

+ ∆(κ)

)]
, (197)

where

d2
D = d2

Silk + d2
Landau , (198)

d2
Silk = Y2

DG(tls)
∫ tls

0

tγ

6Y2
DG(1 + R)

{
16
15

+
R2

(1 + R)

}
dt , (199)

d2
Landau =

σ2
t

6(1 + Rls)
, (200)

where tγ is the mean free time for photons and R = 3ρ̄B/4ρ̄γ = 3h2ΩBYDG/4h2Ωγ. In
order to evaluate the Silk damping, we have

tγ =
1

neσT
, (201)

where ne is the number density of electrons and σT is the Thomson cross-section.
On the other hand

q
∫ rls

0
csdr = q

∫ tls

0

dt√
3(1 + R(t))aDG(t)

≡ qrSH
ls

=
q

aDG(tls)
· (aDG(tls)rSH

ls ) =
q

aDG(tls)
· dH(tls) (202)

where cs is the speed of sound, rSH
ls is the sound horizon radial coordinate and dH is the

horizon distance.
With all this approximation, the transfers functions were simplified to the following

expressions:
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F (q) =
1
3

δγq(tls) +
a2

DG(tls)Ψ̇q(tls)

3q2tls
, (203)

G(q) = −q
δuγq(tls)

(1 + 3F(tls))aDG(tls)
+

aDG(tls)Ψ̇q(tls)

q
, (204)

where Aq(tls) = Ro
qT (κ). Then, we replaced the GR solutions, and we obtain

F (q) =
Ro

q

5

[
3T (qdT/aDG(tls))Rls − (1 + Rls)

−1/4e−q2d2
D/a2

DG(tls)

× S(qdT/aDG(tls)) cos(qdH/aDG(tls) + ∆(qdT/aDG(tls)))] , (205)

G(q) =

√
3Ro

q

5(1 + Rls)3/4 e−q2d2
D/a2

DG(tls)

× S(qdT/aDG(tls)) sin(qdH/aDG(tls) + ∆(qdT/aDG(tls))) , (206)

where κ = qdT/als (defined in Equation (131)) and

dT(tls) ≡
√

2aDG(tls)

aEQHEQ
=

aDG(tls)
√

ΩR
H0ΩM

=
aDG(tls)

100h

√
C(C + 1) . (207)

The final consideration that we must include is that due to the reionization of hydrogen
at zreion = 10 by ultraviolet light coming from the first generation of massive stars, photons
of the CMB have a probability of being scattered 1− exp(−τreion). CMB has two contribu-
tions. The non-scattered photons provide the first contribution, where we have to correct by
a factor given by exp(−τreion). The scattered photons provide the second contribution, but
the reionization occurs at z� zL affecting only low ls. We are not interested in this effect,
and therefore, we will not include it. Measurements show that in GR, exp(−2τreion) ≈ 0.8.

On the other hand, we will use a standard parametrization ofR0
q given by

|R0
q|2 = N2q−3

(
q/R0

κR

)ns−1
, (208)

where ns could vary with the wave number. It is usual to take κR = 0.05 Mpc−1.
Note that dA(tls) = rlsaDG(tls) is the angular diameter distance of the last scatter-

ing surface.

dA(tls) = aDG(tls)
∫ t0

tls

dt′

aDG(t′)
=

aDG(t0)

1 + zls

∫ t0

tls

dt′

aDG(t′)
=

1
1 + zls

∫ t0

tls

dt′

YDG(t′)

=
1

1 + zls

∫ 1

Yls

dY′

YDG(Y′)
dt

dY′
=

dL(tls)

(1 + zls)2 . (209)

This is consistent with the luminosity distance definition [38]. Then, when we set q = βl/rls,
we obtain

|R0
βl/rls
|2 = N2

(
βl
rls

)−3( βl
κRrls

)ns−1
= N2

(
βl
rls

)−3( βlaDG(tls)

κRrlsaDG(tls)

)ns−1

= N2
(

βl
rls

)−3( βlaDG(tls)

κRdA(tls)

)ns−1

≡ N2
(

βl
rls

)−3( βl
lR

)ns−1
.
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Using similar computations for the other distances, the final form of the form factors is
given by

F (q) =
Ro

q

5

[
3T (βl/lT)Rls − (1 + Rls)

−1/4e−β2l2/l2
D

× S(βl/lT) cos(βl/lH + ∆(βl/lT))] , (210)

G(q) =

√
3Ro

q

5(1 + Rls)3/4 e−β2l2/l2
DS(βl/lT) sin(βl/lH + ∆(βl/lT)) , (211)

where

lR =
κRdA(tls)

aDG(tls)
, lH =

dA(tls)

dH(tls)
, lT =

dA(tls)

dT(tls)
, lD =

dA(tls)

dD(tls)
. (212)

To summarize, for reasonably large values of l (say l > 20), CMB multipoles are
given by

l(l + 1)CS
TT,l

2π
=

4πT2
0 l3 exp(−2τreion)

r3
ls

∫ ∞

1

βdβ√
β2 − 1

×
[(

F
(

lβ
rls

)
+ F̃

(
lβ
rls

))2
+

β2 − 1
β2

(
G
(

lβ
rls

)
+ G̃

(
lβ
rls

))2
]

. (213)

The structure of Equation (213) is remarkable, where the delta sector contributes additively
inside the integral. If we set all the delta sector equal to zero, we recover the result directly
for scalar temperature–temperature multipole coefficients in GR given by Weinberg. Nu-
merical solutions are needed to compute the solution for the perturbations. In a preliminary
numerical solution, we obtained the temperature power spectrum of the CMB following
Weinberg’s approach [47]. We obtain:

C = 5.25× 10−4, ΩM = 0.13038, ΩB = 0.02228

where ΩM is the density of non-relativistic matter, and ΩB is the baryon density. Figure 1
displays the temperature power spectrum for a specific set of cosmological parameters.
These cosmological parameters were obtained through exploratory analysis without any
statistical examination. In other words, preliminary values were tested to determine if there
was any possibility of obtaining reasonable results for the temperature power spectrum
using the delta gravity equations. Consequently, the plot does not incorporate error bars.

In the work conducted in ApJ [49], the shape of the temperature power spectrum is
determined by five free parameters. These parameters were explored using a modified
adaptive Metropolis MCMC algorithm. The statistical study, which aimed at determin-
ing the optimal parameter space to match the observed data of the temperature power
spectrum, is complicated. The complexity arises from the involved equations of delta grav-
ity, which encompass integrals that are computationally intensive, particularly when the
MCMC algorithm performs numerous calculation cycles. Moreover, additional equations
accounting for the Landau damping effect and other physical considerations during the
last scattering epoch, specific to the delta gravity model, need to be included.

To overcome the computational challenges, an adaptive step method was employed
for each parameter independently. Additionally, pre-generated interpolation tables for each
integral involved in the calculation were utilized to reduce the computational time during
each execution of the MCMC cycle. The endeavor of obtaining optimal parameters for the
power spectrum involves an extensive study that significantly differs from this work in
terms of physical considerations, statistical approach and numerical methods required to
achieve that goal.
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Figure 1. TT CMB spectrum was predicted by DG vs. the observed TT CMB spectrum. The blue line
corresponds to the Planck observations, and the red line is the DG prediction.

7. Conclusions

We discussed the implications of the first law of thermodynamics using the modified
geometry of this model. We distinguished the physical densities from the GR densities
in terms of which scale factor they dilute. However, knowing the solutions of the GR
sector is enough for us to know about the behavior of the physical densities. In addition,
if we consider that the number of photons is conserved after the moment of decoupling,
the black body distribution should keep the form, and that means that temperature is
redshifted with the modified scale factor YDG. Finally, we stated the ansatz that the
moment of equality between radiation and matter was the same in GR and in DG, and we
showed its implications in some parameters of the theory. We had developed the theory of
perturbations for delta gravity and its gauge transformations. Following Weinberg [47],
we used the synchronous gauge which leaves a residual gauge transformation, which
can be used to set δuD = 0 (and also δũD = 0). Then, we computed the equations for
cosmological perturbations using the hydrodynamic approximation, which we solved for
the radiation era, while for a matter-dominated Universe, we presented the equations
with the respective initial conditions. As in GR, we found an expression for temperature
fluctuations in DG, studying the photon propagation in an effective metric from the moment
of the last scattering until now. We found that those temperature fluctuations can be split
into three independent terms: an early term which only depends on the moment of the last
scattering tls, an ISW term that includes the evolution of gravitational fields from the last
scattering to the present, and a late term which depends on the actual value for those fields.
We compute the gauge transformations which leaves gi0 = 0, and we found that those three
terms are separately gauge invariants. Then, we derived the TT multipole coefficients for
scalar modes for large l (l > 200), where we found that DG affects additively, which could
have an observational effect that could be compared with Plank results and give a physical
meaning for the so-called “delta matter”. As we mentioned in Section 2.1, differences
between physicals and GR fluctuations will occur near the present (low z). Therefore, we
should study the full scalar contribution of the multipole coefficients for low ls, where
we expect relevant differences between both models. This task requires a full numerical
derivation of perturbations, which is beyond the aim of this work. With the full scalar
expression for the CMB power spectrum coefficients, we can find the shape of the spectrum.
The full analysis and results can be found in [49]. The principal purpose of this work was to
present the derivation of this expression and obtain physical insight into the cosmological
fluctuations in delta gravity.
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Appendix A. Delta Gravity

The following appendixes present details of delta gravity theory and its consequences
when studying test particles in this new model. It is derived in more detail in [38].

Appendix A.1. Definition of Delta Gravity

Let us review how δ̃ variation works. In Section 2, we said that we use the convention
that a tilde tensor is equal to the δ̃ transformation of the original tensor when all its indexes
are covariant. So:

S̃µνα... ≡ δ̃
(
Sµνα...

)
(A1)

and we raise and lower indexes using the metric gµν. Therefore:

δ̃
(

Sµ
να...

)
= δ̃(gµρSρνα...)

= δ̃(gµρ)Sρνα... + gµρ δ̃
(
Sρνα...

)
= −g̃µρSρνα... + S̃µ

να..., (A2)

where we used that δ(gµν) = −δ(gαβ)gµαgνβ.

Appendix A.2. δ̃ Transformation

With the previous notation in mind, we can define how the tilde elements, given
by (A1), transform. In general, if we have a field Φi that transforms:

δ̄Φi = Λj
i(Φ)εj. (A3)

Then, Φ̃i = δ̃Φi transforms as:

δ̄Φ̃i = Λ̃j
i(Φ)εj + Λj

i(Φ)ε̃j, (A4)

where we used that δ̃δ̄Φi = δ̄δ̃Φi = δ̄Φ̃i and ε̃j = δ̃εj. Now, we consider general coordinate
transformations or diffeomorphism in its infinitesimal form:

x′µ = xµ − ξ
µ
0 (x)

δ̄xµ = −ξ
µ
0 (x), (A5)

where δ̄ will be the general coordinate transformation from now on. Defining:

ξ
µ
1 (x) ≡ δ̃ξ

µ
0 (x) (A6)

and using (A4), we can see a few examples of how some elements transform:

(I) A scalar φ:

δ̄φ = ξ
µ
0 φ,µ (A7)

δ̄φ̃ = ξ
µ
1 φ,µ +ξ

µ
0 φ̃,µ . (A8)
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(II) A vector Vµ:

δ̄Vµ = ξ
β
0 Vµ,β + ξα

0,µVα (A9)

δ̄Ṽµ = ξ
β
1 Vµ,β + ξα

1,µVα + ξ
β
0 Ṽµ,β + ξα

0,µṼα. (A10)

(III) Rank two covariant tensor Mµν:

δ̄Mµν = ξ
ρ
0 Mµν,ρ + ξ

β
0,ν Mµβ + ξ

β
0,µ Mνβ (A11)

δ̄M̃µν = ξ
ρ
1 Mµν,ρ + ξ

β
1,ν Mµβ + ξ

β
1,µ Mνβ + ξ

ρ
0 M̃µν,ρ + ξ

β
0,ν M̃µβ + ξ

β
0,µ M̃νβ. (A12)

This new transformation is the basis of δ̃ theories. Particulary, in gravitation, we have
a model with two fields. The first one is just the usual gravitational field gµν, and the
second one is g̃µν. Then, we will have two gauge transformations associated to general
coordinate transformation. We will call it extended general coordinate transformation,
which is given by:

δ̄gµν = ξ0µ;ν + ξ0ν;µ (A13)

δ̄g̃µν(x) = ξ1µ;ν + ξ1ν;µ + g̃µρξ
ρ
0,ν + g̃νρξ

ρ
0,µ + g̃µν,ρξ

ρ
0 , (A14)

where we used (A11) and (A12). With these tools, we can introduce the δ̃ theories, as in
Section 2.

Appendix B. Test Particle

In Section 2, we present the equations of motion for δ̃ gravity. However, to describe
some phenomenology, we need to analyze the trajectory of a particle. For this, we need to
find the coupling of a test particle with the gravitational field. In this Appendix, we will
separate the massive and massless particles cases.

Appendix B.1. Massive Particles

We know that in the standard case, the action for a test particle is given by:

S0[ẋ, g] = −m
∫

dt
√
−gµν ẋµ ẋν, (A15)

with ẋµ = dxµ

dt . This action is invariant under reparametrizations, t′ = t− ε(t). This means,
in the infinitesimal form, that:

δRxµ = ẋµε. (A16)

In δ̃ gravity, we will have a new test particle action. To obtain this action, we need to
evaluate (A15) in (5):

S[ẋ, y, g, g̃] = m
∫

dt

 ḡµν ẋµ ẋν + 1
2 (2gµνẏµ ẋν + gµν,ρyρ ẋµ ẋν)√
−gαβ ẋα ẋβ

, (A17)

where ḡµν = gµν +
1
2 g̃µν and yµ = δ̃xµ. This action is invariant under reparametrization

transformations, given by (A16), plus δ̃ reparametrization transformations:

δRyµ = ẏµε + ẋµ ε̃. (A18)

The presence of yµ suggests that we have other coordinates. Because we do not want
new coordinates, we impose that 2gµνẏµ ẋν + gµν,ρyρ ẋµ ẋν = 0 such as a gauge condition
on δ̃ reparametrization, fixing ε̃. With this, we eliminate this new symmetry; however, the
extended general coordinate transformations as well as time reparametrizations continue
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to be preserved. Therefore, we can fix the gauge for gµν and g̃µν separately. Finally, (A17) is
reduced to:

S[ẋ, g, g̃] = m
∫

dt

 ḡµν ẋµ ẋν√
−gαβ ẋα ẋβ

. (A19)

Now, if we vary (A19) with respect to xµ, we obtain the equation of motion for a
massive test particle. That is:

ĝµν ẍν + Γ̂µαβ ẋα ẋβ =
1
4

K̃,µ, (A20)

with:

Γ̂µαβ =
1
2
(ĝµα,β + ĝβµ,α − ĝαβ,µ)

ĝαβ =

(
1 +

1
2

K̃
)

gαβ + g̃αβ

K̃ = g̃αβ ẋα ẋβ

and, if we choose t equal to the proper time, then gµν ẋµ ẋν = −1. We can see that the
equation of motion of a free massive particle is a second-order equation, but we emphasize
that it is not a geodesic with an effective metric.

Appendix B.2. Massless Particles

Unfortunately, (A15) is useless for massless particles, because it is null when m = 0.
To solve this problem, it is common practice to start from the action:

S0[ẋ, g, v] =
1
2

∫
dt
(

vm2 − v−1gµν ẋµ ẋν
)

, (A21)

where v is a Lagrange multiplier. From (A21), we can obtain the equation of motion for v:

v = −
√
−gµν ẋµ ẋν

m
. (A22)

If we substitute (A22) in (A21), we recover (A15). In other words, (A21) is a good
action that includes the massless case. So, we must substitute (A21) in (5) to obtain the
modified test particle action. That is:

S[ẋ, g, g̃, v, ṽ] =
1
2

∫
dt
[
vm2 − v−1(gµν + κ2 g̃µν

)
ẋµ ẋν + ṽ

(
m2 + v−2gµν ẋµ ẋν

)]
, (A23)

where we must discard yµ for the same reason used in Appendix B.1. In addition, two
Lagrange multipliers are unnecessary, so we will eliminate one of them. The equation of
motion for ṽ is:

ṽ =
m2 + v−2(gµν + g̃µν

)
ẋµ ẋν

2v−3gαβ ẋα ẋβ
. (A24)

If we now replace (A24) in (A23), we obtain our δ̃ Test Particle Action:

S[ẋ, g, g̃, v] =
∫

dt

(
m2v−

(
gµν + g̃µν

)
ẋµ ẋν

4v
+

m2v3

4gαβ ẋα ẋβ

(
m2 + v−2 g̃µν ẋµ ẋν

))
. (A25)

Therefore, we can use (A25) to represent the trajectory of a particle in the presence of a
gravitational field, given by g and g̃, for the massless and massive case. In the previous
section, we have developed the massive case, so we need to study the massless case now.
Evaluating m = 0 in (A21) and (A25), they are, respectively:
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S(m=0)
0 [ẋ, g, v] = −1

2

∫
dtv−1gµν ẋµ ẋν (A26)

S(m=0)[ẋ, g, g̃, v] = −1
4

∫
dtv−1gµν ẋµ ẋν, (A27)

with gµν = gµν + g̃µν. In the usual and modified case, the equation of motion for v implies
that a massless particle will move in a null-geodesic. In the usual case, we have gµν ẋµ ẋν = 0,
but in our model, the null-geodesic is gµν ẋµ ẋν = 0.

All this means that in our theory, the equation of motion of a free massless particle is
given by:

gµν ẍν + Γµαβ ẋα ẋβ = 0 (A28)

gµν ẋµ ẋν = 0,

with:

Γµαβ =
1
2
(gµα,β + gβµ,α − gαβ,µ).

Appendix B.3. Proper Time

It is important to observe that the proper time is defined in terms of massive particles.
So, we must define the measurement of time and distances in the model.

The equation (A20) preserves the proper time of the particle along the trajectory and
along the trajectory gµν ẋµ ẋν = −1. So, we must define the proper time using the original
metric gµν. That is:

dτ =
√
−gµνdxµdxν =

√
−g00dt. (A29)

From here, we can observe that g00 < 0. On the other hand, in order to define dl as
the interval between two infinitesimally separated events at the same time, we follow the
approach outlined in [54]. They consider a scenario where a light signal is directed from
point B in space to a point A located infinitely close to it and then back along the same path.
By solving the geodesic equation ds2 = 0 (for the metric gµν as obtained in (A28)) with
respect to dx0, two solutions are obtained. The total time interval between the departure
of the signal and its return to the original point is given by the difference between these
two solutions. Consequently, the proper time interval can be obtained, as described in
(A29), by multiplying by

√−g00, while the distance dl between the two points is obtained
by multiplying by 1/2 (keeping in mind that c = 1). Thus, we obtain:

dl2 = γijdxidxj (A30)

γij =
g00

g00

(
gij −

gi0gj0

g00

)
,

where gµν = gµν + g̃µν.
Therefore, we measure the proper time using the metric gµν, but the space geometry is

determined by both tensor fields, gµν and g̃µν.
For example, in cosmology, we have (see Appendix C and Appendix D):

gµνdxµdxν = −(1 + 3F(t))dt2 + a2(t)(1 + F(t))
(

dx2 + dy2 + dz2
)

→ dl2 = a2(t)
(1 + F(t))
(1 + 3F(t))

δijdxidxj

= a2
DG(t)δijdxidxj. (A31)

This means that we have the same 3-geometry as in Einstein but replacing a(t) by
aDG(t). Therefore, in δ̃ gravity, aDG(t) is the effective scale factor (it determines distances
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in the 3d geometry), and volume is given by V ∝ a3
DG(t). Finally, using (A29) and (A30),

we can find the relation between aDG(t) and redshift, z, given by (A39).
To summarize, we have analyzed the δ̃ gravity. We obtained the equations of motion

of gµν and g̃µν, given by (11)–(14), and we know how to solve them for a perfect fluid
using (52) and (53). Then, we obtained how a test particle moves when it is coupled to
gµν and g̃µν, which is given by (A20) or (A28) if we have a massive or massless particle,
respectively. The last tool that we will need is how to fix the gauge. In the next Appendix,
we will develop the harmonic gauge for the FLRW case that we want to study.

Appendix C. Harmonic Gauge

We know that Einstein’s equations do not fix all degrees of freedom of gµν. This means
that if gµν is the solution, then other solutions g′µν exist given by a general coordinate
transformation x → x′. We can eliminate these degrees of freedom by adopting some
particular coordinate system, fixing the gauge.

One particularly convenient gauge is given by the harmonic coordinate conditions.
That is:

Γµ ≡ gαβΓµ
αβ = 0. (A32)

Under general coordinate transformation, Γµ transforms:

Γ′µ =
∂x′µ

∂xα
Γα − gαβ ∂2x′µ

∂xα∂xβ
.

Therefore, if Γα does not vanish, we can define a new coordinate system x′µ where
Γ′µ = 0. So, it is always possible to choose a harmonic coordinate system. For more detail
about harmonic gauge see, for example, [55].

In the same form, we need to fix the gauge for g̃µν. It is natural to choose a gauge
given by:

δ̃(Γµ) ≡ gαβ δ̃
(

Γµ
αβ

)
− g̃αβΓµ

αβ = 0, (A33)

where δ̃
(

Γµ
αβ

)
= 1

2 gµλ
(

Dβ g̃λα + Dα g̃βλ − Dλ g̃αβ

)
. So, when we refer to harmonic gauge,

we will use (A32) and (A33).

Appendix C.1. FLRW

In this case, to find the harmonic coordinate system, we will change the t variable
of (15) with u. So, the metric is now:

gµνdxµdxν = −T2(u)du2 + a2(u)
(

dx2 + dy2 + dz2
)

,

such that T(u) = dt
du (u). In the same form, (16) is changed to:

g̃µνdxµdxν = −Fb(u)T2(u)du2 + Fa(u)a2(u)
(

dx2 + dy2 + dz2
)

.

Now, if we fix the harmonic gauge, we obtain that T(u) = T0a3(u) from (A32) and
Fb(u) = 3(Fa(u) + T1) ≡ F(u) from (A33), where T0 and T1 are gauge constants. We use
T0 = 1 and T1 = 0 to fix the gauge completely. So, with these conditions, the system
(u,x,y,z) corresponds to harmonic coordinates. Now, we can return to the usual system
where gµν and g̃µν are given by (15) and (16), where the gauge is fixed.

It is important to note that the δ̃ variation defines a new independent field. In particular,
δ̃ can be as large as the theory allows them. This mean that they can not be considered as
perturbations of the original fields. Here, as an example of this feature, after this gauge is
fixed, both gµν and g̃µν evolve independently, so g̃µν cannot be considered as a perturbation
of the gµν metric.
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Appendix D. Photon Trajectory in a Non-Perturbed Background

When a photon emitted from a source travels to the Earth, the Universe is expanding.
This means that the photon is affected by the cosmological Doppler effect. For this, we
must use a null geodesic, given by (A28), in a radial trajectory from r1 to r = 0. So, with (15)
and (16), we have:

−(1 + 3F(t))dt2 + a2(t)(1 + F(t))dr2 = 0.

In GR, we have that dt = −a(t)dr. So, in the δ̃ gravity case, we can define the effective
scale factor (Equation (18)):

aDG(t) = a(t)

√
1 + F(t)
1 + 3F(t)

(A34)

such that cdt = −aDG(t)dr now. If we integrate this expression from r1 to 0, we obtain:

r1 =
∫ t0

t1

dt
aDG(t)

, (A35)

where t1 and t0 are the emission and reception times. If a second wave crest is emitted at
t = t1 + ∆t1 from r = r1, it will reach r = 0 at t = t0 + ∆t0, so:

r1 =
∫ t0+∆t0

t1+∆t1

dt
aDG(t)

. (A36)

Therefore, when ∆t1, ∆t0 is small, which is appropriate for light waves, we obtain:

∆t0

∆t1
=

aDG(t0)

aDG(t1)
(A37)

or:

∆ν1

∆ν0
=

aDG(t0)

aDG(t1)
, (A38)

where ν0 is the light frequency detected at r = 0, corresponding to a source emission at
frequency ν1. So, the redshift is now:

1 + z(t1) =
aDG(t0)

aDG(t1)
. (A39)

We see that aDG(t) replaces the usual scale factor a(t) to compute z. This means that
we need to redefine the luminosity distance, too. For this, let us consider a mirror of radius
b that is receiving light from our distant source at r1. The photons that reach the mirror are
within a cone of half-angle ε with origin at the source.

Let us compute ε. The path of the light rays is given by~r(ρ) = ρn̂ +~r1, where ρ > 0 is
a parameter and n̂ is the direction of the light ray. Since the mirror is in~r = 0, then ρ = r1
and n̂ = −r̂1 +~ε, where ε is the angle between −~r1 and n̂ at the source, forming a cone.
The proper distance is determined by the tri-dimensional metric, which is given by (see
Appendix B.3):

dl2 = γijdxidxj

= a2
DG(t)δijdxidxj

in the cosmological case. Then, b = aDG(t0)r1ε and the solid angle of the cone is:
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∆Ω =
∫ 2π

0
dφ
∫ ε

0
sin(θ)dθ = 2π(1− cos(ε))

= πε2 =
A

r2
1a2

DG(t0)
,

where A = πb2 is the proper area of the mirror. This means that ε = b
r1aDG(t0)

. So, the
fraction of all isotropically emitted photons that reach the mirror is:

f =
∆Ω
4π

=
A

4πr2
1a2

DG(t0)
.

We know that the apparent luminosity, denoted as l, represents the power received
per unit area of the mirror. Power is defined as energy per unit time, so the received
power can be expressed as P = hν0

∆t0
f , where hν0 represents the energy associated to the

received photon. On the other hand, the total power emitted by the source is given by
L = hν1

∆t1
, where hν1 corresponds to the energy of the emitted photon. Therefore, we can

conclude that:

P =
a2

DG(t1)

a2
DG(t0)

L f

l =
P
A

=
a2

DG(t1)

a2
DG(t0)

L
4πr2

1a2
DG(t0)

,

where we have used that ∆t0
∆t1

= ν1
ν0

= aDG(t0)
aDG(t1)

. In addition, we know that in an Euclidean

space, the luminosity decreases with distance dL according to l = L
4πd2

L
. Therefore, us-

ing (A35), the luminosity distance is:

dL =
a2

DG(t0)

aDG(t1)
r1

=
a2

DG(t0)

aDG(t1)

∫ t0

t1

dt
aDG(t)

. (A40)

On the other hand, we can define the angular diameter distance, which is denoted
as dA. Considering a light ray emitted at time t1 and moving in the θ coordinate, our
null geodesic, as given by Equation (A28), indicates that the proper distance is s = t1 =
aDG(t1)r1θ. The angular diameter distance is defined as θ = s

dA
, thus yielding dA =

aDG(t1)r1. If we compare this expression with Equation (A40), we find that:

dA =
a2

DG(t1)

a2
DG(t0)

dL

=
dL

(1 + z1)2 . (A41)

Therefore, the relation between dA and dL is the same to GR [47]. This result is
important, because in other modified gravity theories, this relation is not satisfied [56].

Notes
1 http://camb.info/ (accessed on 5 April 2023)
2 In Appendix B.3, we discussed this derivation.

http://camb.info/
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3 Here, ∆ represents the gauge transformation, which affects only the field perturbations. It is defined as

∆hµν ≡ g′µν(x)− gµν(x)

When applying to h̃µν = δ̃hµν, we can commute the variations and apply δ̃ to Equation (40), obtaining Equation (44) (a full
derivation can be found in Chapter 5 of [47]).

4 The calculations were made using Pytearcat [51]
5 The Fourier transform is defined as:

X(x, t) =
∫

d3qXq(t)eiq·x

6 We choose this definition because the system of equations now seems as a homogeneous system exactly equal to the GR sector
(where now the variables are the tilde fields) with external forces mediated by the GR solutions. Maybe the most intuitive solution
should be

δ̃int
αq =

δρ̃αq
˜̄ρα + ˜̄pα

,

however, these definitions are related by

δ̃αq =
˜̄ρα + ˜̄pα

ρ̄α + p̄α

(
δ̃int

αq − δαq

)
.

7 The definition ofRq is given in Section 5.4: Conservation outside the horizon, Cosmology, Weinberg.
8 See Section 7.1 : General formulas for the temperature fluctuation, Cosmology, Weinberg.
9 See, e.g., I. S. Gradsteyn & I. M. Ryzhik, Table of Integral, Series, and Products, translated, corrected and enlarged by A. Jeffrey

(Academic Press, New York, 1980): formula 8.453.1.
10 See Section 6.3: Scalar perturbations-long wavelengths, Cosmology, Weinberg.
11 See Section 6.4: Scalar perturbations-short wavelengths, Cosmology, Weinberg.
12 See Section 7.2: Temperature multipole coefficients: Scalar modes, Cosmology, Weinberg.
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