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Abstract: We investigate the structure of the medium formed in heavy ion collisions using three
different models: the Color String Percolation Model (CSPM), the Core–Shell-Color String Percolation
Model (CSCSPM), and the Color Glass Condensate (CGC) framework. We analyze the radial distri-
bution function of the transverse representation of color flux tubes in each model to determine the
medium’s structure. Our results indicate that the CSPM behaves as an ideal gas, while the CSCSPM
exhibits a structural phase transition from a gas-like to a liquid-like structure. Additionally, our
analysis of the CGC framework suggests that it produces systems that behave like non-ideal gases
for AuAu central collisions at RHIC energies and liquid-like structures for PbPb central collisions at
LHC energies.

Keywords: quark–gluon plasma; structural phase transition; color string percolation model; color
glass condensate; heavy ion collisions

1. Introduction

Quark–gluon Plasma (QGP) is a state of matter that is believed to have existed in
the early universe, shortly after the Big Bang. In this state, the quarks and gluons (which
are normally confined within protons and neutrons) are liberated from their confinement
and move freely in a hot and dense soup. The existence of QGP was first proposed in the
1970s [1–3] in an attempt to understand the behavior of high-energy collisions between
atomic nuclei.

It was not until the late 1990s, however, that experiments provided evidence for the
creation of QGP. The collision of heavy ions, such as Au-Au at RHIC, produced a liquid
made of quarks and gluons (the QGP), which exhibited a lower ratio of shear viscosity over
entropy density than any other known material [4–6]. Its existence was later confirmed in
Pb-Pb collisions at LHC [7–9]. Similar properties have been observed in other collisions,
such as pp, pA collisions at LHC [10], as well as d-Au and 3He-Au at RHIC [11].

Several models have been proposed in the literature to describe the quark–gluon
plasma formation and its phenomenology. They are able to explain most of the experimental
data, but not all. Two of the most popular approaches are the Color String Percolation
Model (CSPM) [12–15] and the Color Glass Condensate model (CGC) [16,17].

We are interested in studying the capacity of the two mentioned models to predict
the liquid behavior of the QGP. To be precise, we analyze three models (a) CSPM, (b) the
Core–Shell-Color String Percolation Model (CSCSPM) [18], which is a generalization of the
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CSPM, and (c) CGC. One way to analyze the physical structure of a system is by examining
the behavior of the radial distribution function (also referred to as the pair correlation
function), denoted as g(r). It explains the variation in the average particle count concerning
the distance r from a given point. This function is a prevalent tool for evaluating packing
structures and provides valuable data on the long-range correlations between particles and
their organization [19]. The structure of the systems is revealed by g(r), as follows: (a) if
it is featureless (flat function), the system corresponds to an ideal gas structure, (b) for a
non-ideal gas, the g(r) possesses a peak (a maximum) that follows a plain behavior, and
(c) a liquid-like structure g(r) exhibits several peaks (decreasing in height).

In this work, we review the radial distributions function for the CSPM and the CSC-
SPM that was studied in [18], and analyze it for the CGC model. We present the basic
features of the three mentioned models in Section 2. Then, in Section 3, we discuss the
employed simulation methods and we analyze the behavior of g(r) for the models of
Section 2. Finally, we give our conclusions in Section 4.

2. Models

In this section, we present the general features of the CSPM, CSCSPM, and CGC models.

2.1. Color String Percolation Model

One of the main models used to describe the formation of quark–gluon plasma is
the CSPM. It has successfully explained many of the experimental findings on collisions
involving pp, pA, and AA interactions, including the azimuthal distributions of the re-
sulting particles and the temperature dependence of the ratio between the shear and bulk
viscosities over the entropy density [20,21]. The CSPM is also able to predict the center of
mass energy required for the QGP formation, depending on the size of the systems [22].

The CSPM characterizes ion collisions by describing the strong interaction between
their constituent partons, which can be represented by color flux tubes extended in the
beam axis direction, depicted as circular areas in the transverse plane. These objects, named
strings, are represented by fully penetrable disks of radius r ∼ 0.2–0.3 fm [12–14,23]. The
systems under this picture can be studied using percolation theory, where the overlap
between strings gives rise to different regions called color sources. The number of strings
grows with the system’s size, multiplicity, and energy, allowing the formation of a spanning
cluster that marks the geometric phase transition and then the onset of the QGP formation.

Each individual color string has a certain area S1, color charge arbitrarily oriented Q1
with its corresponding color field intensity Q1, and produces particles in the midrapidity
region with multiplicity µ1, and average squared transverse momentum 〈p2

T〉1 [12–14].
Because of the random orientation of the color field, the resulting intensity of the color
field for a color source, indexed by i, is proportional to the square root of the number of
overlapped string ni in the fraction of the string area S(i)/S1. Therefore, the obtained color
field intensity is Q(i) =

√
niQ1S(i)/S1 [12–14].

As a consequence of the color sum, the multiplicity and average squared transverse
momentum of a color source is obtained via µ(i) = µ1Q(i)/Q1 =

√
niµ1S(i)/S1 and

〈pT〉(i) =
〈

p2
T
〉

1Q(i)/Q1 =
√

ni
〈

p2
T
〉

1S(i)/S1. The sum of all contributions to a cluster
of M color sources and n strings produces the total µn and

〈
p2

T
〉

n of the cluster [12,14]. Let
us consider the two extreme cases of a cluster of n strings: on one hand, for the case of
strings just touching each other, the total area covered by disks is the sum of the individual
areas Sn = nS1, and the same for the total multiplicity given by the sum of individual
contributions µn = nµ1, the average of p2

T match with the weighted sum of each string
〈p2

T〉n = nµ1
〈

p2
T
〉
/µn = 〈p2

T〉1. On the other hand, the case of n strings that are fully
overlapped leads to a total area Sn = S1, and the only color source has the same area S1;
the observables µn =

√
nµ1 and

〈
p2

T
〉

n =
√

n
〈

p2
T
〉

1 correspond to the multiplicity and
average of p2

T of a single color source with n overlaps. In this scenario, it is found the
maximal suppression for the multiplicity and the average of p2

T is maximally enhanced.
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This is consistent with the conservation of momentum relationship nµ1
〈

p2
T
〉

1 = µn
〈

p2
T
〉

n,
which arises from the color sum rules established in the model [12,14].

Note that a suppression effect naturally emerges depending on the spatial distribution
of the strings. This effect is taken into account by the color reduction factor, F(η), which
depends on the fraction of the total area S occupied by n strings, the so-called string
density parameter η = nS1/S [12,14]. The color reduction factor drives the suppression
of the multiplicity (µ = nF(η)µ1) and the enhancement of the transverse momentum
(
〈

p2
T
〉
=
〈

p2
T
〉

1/F(η)) [24]. It was found that F(η) is a decreasing function, which means
that as the string density increases, a colliding system produces fewer charged particles per
string but with higher momentum. In this way, the color suppression factor emerges from
the color string clustering process [22].

2.2. Core–Shell-Color String Percolation Model

In [18], the authors proposed a hybrid core–shell model together with the traditional
CSPM, called CSCSPM. The idea was to take into account an excluding or repulsive
interaction between strings. To be precise, the authors introduced a concentric region of
exclusion into the strings (core region, the rest of the string area is called the shell region)
of diameter λσ (0 ≤ λ ≤ 1, σ denotes the diameter of the strings). They also introduced a
probability qλ that determines whether a string can overlap with another string in its core
region, classifying strings as soft or hard depending on whether they permit such overlaps.
It is important to note that this overlap condition applies solely to core–core interactions, as
core–shell and shell–shell overlaps are permitted.

In the same way that its predecessor, the CSCSPM model, explains particle production
in collision physics through the formation of string clusters (the same strings as in the
CSPM). Notice that the hard strings act as a fluid of hard disks of λσ diameter, while the
soft ones are still ideal particles. Moreover, the parameter qλ modulates the number of
hard strings distributed in the system. However, the structures and phenomenology of
the system depend on the combinations of both parameters. For example, if λ = 1 and
qλ = 0, the system recovers the picture of a fluid of hard disks [25], which may exhibit a
liquid structure for densities above a particular string density. This condition prevents the
formation of clusters, and then each string should produce charged particles individually,
but on average, their transverse momentum squared will be the corresponding of one string
divided by the multiplicity. This mechanism inhibits the formation of charged particles
with higher transverse momentum. Additionally, if qλ = 0, the model reproduces the
continuum percolation of disks with hard cores [26,27]. Finally, If λ = 0 or qλ = 1, the
system corresponds to traditional 2D continuum percolation [28,29], which is the geometric
picture of the CSPM.

It was found in Ref. [18] that combinations of parameter values exist that, at the same
time, allow the system the clustering of color strings and the formation of coordination
shells, the main indications of the changes in the structure of the system.

2.3. Color Glass Condensate

The CGC can provide the initial conditions needed to estimate the transport coefficients
and bulk properties of the strong-interacting matter created in heavy ion collisions [30].
It is characterized by strong coherent gluon fields leading to parton saturation controlled
by a dynamically generated transverse momentum scale, the saturation scale Qs [31–41].
The high gluon densities correspond to strong classical fields, and the quantum corrections
to them are incorporated via nonlinear renormalization group equations. The nonlinear
density-dependent terms in the CGC evolution equations can be identified as gluon recom-
bination processes that saturate the increment in gluon densities below Qs. Then, the value
of Qs sets the scale of gluon field fluctuations that can describe the bulk multiplicity and its
fluctuations depending on the considered colliding system [42,43]. The particle multiplicity
distributions are intrinsically dependent on event-by-event fluctuations of the incoming
nuclear wave functions.
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In the framework of the CGC, to provide information about the systems’ characteristics,
the Impact Parameter (IP) Glasma model is used. This combines the IP saturation dipole
model [44] and nonlinear dynamics of the gluon fields [45,46]. The Q2

s ’s distribution can
be used to sample different color field configurations inside the proton according to the
McLerran–Venugopalan (MV) model [47,48]. The IP-Glasma model includes fluctuations
in the nuclear and sub-nuclear position of static large-x color charges leading the gluon
fields fluctuations that describe the dynamical small x modes in the CGC effective field
theory [49,50]. The different occupation probabilities of the QCD fields give rise to global
fluctuations in observables such as the energy density in the transverse plane of the collision,
which lead to fluctuations in the charged hadron flow harmonics through the dynamical
evolution of the system [51]. It was proposed that for every event, the value of Q2

s at
every point in the transverse plane fluctuates according to a probability distribution given
by [52,53]

P
[

ln
(

Q2
s

〈Q2
s 〉

)]
=

1√
2πς2

exp
[
− 1

2ς2 ln2
(

Q2
s

〈Q2
s 〉

)]
. (1)

This particular distribution gives rise to a skewed distribution of Qs/〈Qs〉 around 1.
We use the value of ς = 0.6 reported in [54] to describe heavy ion collisions from AuAu
to PbPb.

In addition to the skewness, the saturation scale Qs also depends on the size and
energy of the colliding nuclei. It was found that Qs grows with the size of the colliding
nuclei as ∼ A1/3 [47,48,55], where A is the nucleon number. Moreover, Qs rises with
the energy as the power law ∼ √sλ (at midrapidity region) with λ = 0.252 [56]. For
AuAu collisions at

√
s = 130 GeV, the saturation scale is taken to be

〈
Q2

s
〉
= 2 GeV2 [57].

Using the scaling laws described above, the saturation scale for AuAu central collisions at√
s = 200 GeV and PbPb central collisions at

√
s = 2760 and 5020 GeV are estimated to be

2.23, 4.399, and 5.114 GeV2, respectively. These values are used in the subsequent analysis
of the heavy ion collisions.

3. Simulation Methods and Data Analysis

In this section, we discuss the methodology used to determine the radial distribution
functions and provide an introduction to the computer simulation basic notions of the
models of interest. We also present the obtained results.

The radial distribution function g(r) (also referred to as a pair correlation function
or pair distribution function) determines the structure of the matter by analyzing the
variations in the positions of its constituents; more precisely, in the average of the local
density number at a distance r. Specifically, g(r) describes the average local density of
objects at a distance r from a reference object. In our simulations, we generate samples of
the systems as square boxes of size L = 8σ◦, with σ◦ being the characteristic diameter of
the objects distributed on the transverse plane of each model. Next, we generate suitable
configurations of the system that satisfy the conditions of the corresponding model. Then,
the radial distribution function is estimated as follows

g(r) =
n(r)L2

N(2π∆r(r + 0.5∆r) + π∆r2)
, (2)

where n(r) is the average number of objects at a distance between r and r + ∆r from a trial
disk allocated on the center of the square box, and N is the number of objects distributed
on the square box.

In the following subsections, we deeply discuss the peculiarities of the simulation and
structures observed for the CSPM, CSCSPM, and CGC models. In order to compare the
results of the different models, we compute g(r) over the range of distances r/σ◦ from 0 to
3.5, with increments of ∆r/σ◦ = 0.035.
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3.1. Color String Percolation Model

As we explain in Section 2, the CSPM considers strings as fully penetrable disks.
This is equivalent to the image of a classical ideal gas and has to be reflected in the radial
distribution. In this model, the simulations are performed according to the two-dimensional
continuum percolation of disks. In this way, the color strings are uniformly and randomly
allocated in the square box without any conditions on the overlap between them. After
adding N disks, the radial distribution function is computed by using (2). This was
previously analyzed in [18], and it was found that independently of the string density, the
g(r) is a flat function. In Figure 1, we show our results of g(r) for the CSPM considering
different string densities.
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Figure 1. Radial distribution function for CSPM systems.

Notice that the ideal gas structure of the CSPM emerges from the fully overlapping
strings, which prevent the formation of coordination shells (structure). However, the
overlap between strings generates the phenomenology of the CSPM (and also of the
CSCSPM). On the other hand, the picture of an ideal gas as a (very) diluted system would
not yield relevant results because of the absence of color string clusters.

We must mention that other authors have also predicted the ideal gas behavior of
the CSPM. For instance, in Refs. [58,59], the authors studied the electrical and thermal
conductivity of the QGP, using the CSPM, and found that the system agrees with an ideal
gas. Additionally, in Ref. [60], a finite-size analysis of the speed of sound was performed,
concluding that the CSPM corresponds to a mean-field theory.

3.2. Core–Shell-Color String Percolation Model

As discussed above, the CSPM only describes systems with an ideal gas structure
because of the fully penetrable color strings. However, other structures (as non-ideal gas or
liquid-like) may be observed if a repulsive interaction between the strings is introduced, as
shown for the CSCSPM.

The CSCSPM configurations are generated by using the random sequential addition
algorithm, in which disks are added one by one. At each step, a test string is randomly
placed on the square box and designed as soft or hard. Then, according to the values
of λ and qλ, the test string is accepted if it, along with its neighbor strings, satisfies a
valid configuration. Otherwise, the test string is rejected and a new test string is checked.
This procedure is repeated until the system is filled with N strings. After generating the
CSCSPM configuration, we measure its g(r) using (2).

In Figure 2, we show samples of core–shell-color string systems generated by using the
aforementioned algorithm, together with their corresponding radial distribution function,
which is obtained as the average over 106 realizations.
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Figure 2. Samples of systems for the CSCSPM along with their corresponding radial distribution
function. Note that in (b.2) and (b.3), we observe a transition from non-ideal gas to liquid-like structures.

It is remarkable that the CSCSPM allows structures more complex than the ideal gas.
In ref. [18], it was found that there exist values of λ and qλ at which the systems have
liquid-like structures, as shown in Figure 2(b.3). It is worth mentioning that the CSCSPM
predicts values of λ and qλ at which the structural and geometrical transitions occur almost
simultaneously, with a difference in temperatures of 1 MeV. Figure 3 shows a sample of
a CSCSPM system exhibiting a liquid-like structure together with the emergence of the
spanning cluster.
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Figure 3. Sample of a system that shows a liquid-like structure together with the spanning cluster
(blue circles). This occurs with a difference in transition temperatures (configurational and geometric)
lower than 1 MeV.

3.3. Color Glass Condensate

To analyze the structure of systems given by the CGC model, it is required to know
the distribution of the saturation scale Q2

s , and the running coupling αs, which provide
the initial conditions of the distribution of gluons and their interaction. In this work, we
consider that Q2

s fluctuates according to the Log-normal distribution given by Equation (1).
Then, the values of Q2

s are simulated via the normal distribution; that is, Q2
s = 〈Q2

s 〉ex,
where x is a random number taken from a normal distribution N (0, 1), and 〈Q2

s 〉 is the
average value of Q2

s . The determination of 〈Q2
s 〉 involves analyzing experimental data. We
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use the modified minimal subtraction scheme (MS) to compute the values of αs at zero
order. Thus,

αs(Q2
s ) =

4π

β0 ln(Q2
s /Λ2

QCD)
, (3)

with β0 = 11− 2n f /3, and Λ2
QCD being the QCD scale. For the estimation of β0 we use the

value of the flavor number n f = 3, and ΛQCD = 0.332 GeV [61]. Notice that ΛQCD works
as a cutoff for the values of Qs, since lower values of Qs produce nonphysical values of αs.
In Figure 4, we show a sample of Qs values and the corresponding value of αs computed
using (3), together with their histograms.
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AuAu 200 GeV
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Figure 4. (a) Probability density function of QS. (b) Sample of αs-values as a function of Qs. (c) Prob-
ability density function of αs of the systems under study: AuAu at

√
s = 130 GeV (green lines and

circles), AuAu at
√

s = 200 GeV (blue lines and triangles), PbPb
√

s = 2760 GeV (magenta lines and
stars), and PbPb

√
s = 5020 GeV (yellow lines and crosses).

In a nuclear collision, the Lorentz-contracted nuclei lead the partons to be confined
to a flat region on the transverse plane. The occupied Glasma fields generated after the
collisions are assumed to be proportional to the number of particles produced in a central
pseudorapidity region at the saturation scale [56], which for low transverse momentum
values is given by SQ2

s /αs [50,57], where S is the overlapping area of nuclei. Taking these
relations into account, the gluon density is

ρ =
Q2

s
αs

. (4)

Due to the saturation scale and coupling running being random variables, the gluon
number density is also expected to exhibit random fluctuations, as depicted in Figure 5a.
Consequentially, the average minimum distance between gluons (computed from the gluon
cross section) ξ = 1/

√
ρ is also a random variable, as shown in Figure 5b.
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Figure 5. Probability density function for (a) the gluon density and (b) the minimum distances
between gluon centers.

For our simulations, we assume that the system is homogeneous and isotropic for AA
central collisions (0–6% centrality) and as a length scale, we use the average value of the
gluon diameter, σ = 2〈rg〉 = 2〈1/

√
πρ〉. Following the same procedure as in the CSPM

and the CSCSPM, we construct a square box of length side L = 8σ. Thus, the number of
gluons in the system is Ng = 64σ2ρ. Moreover, the probability of observing a system with
exactly Ng gluons is calculated as usual

P(Ng) =
∫

X
P(ρ)dρ, (5)

with X being the interval of ρ-values satisfying bL2ρc = Ng. Figure 6a shows the dis-
tribution mass probability for the gluon number obtained from our simulations. This
distribution takes into account all the fluctuations arising from the conditions of the CGC
model and is relevant for computing the average of the radial distribution function.
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Figure 6. Used histograms for simulation (a) the number of gluons in the square and (b) classes of
minimum distances among gluons normalized by the average diameter of a gluon.

To ensure valid configurations of gluon positions in our simulations, we use a criterion
based on the probability density function of the minimal distance between nearest neighbor
gluons. Similarly to the number gluon Ng, we discretize that probability density function
as follows. We consider the interval of ξ-values satisfying P(ξ) > 0.01. For the systems
analyzed in this manuscript, this event has a probability of occurrence of 0.9968, 0.9971,



Universe 2023, 9, 291 9 of 13

0.9985, and 0.9986, respectively. Then, we divide the interval into ten equally sized sub-
intervals, where the probability of observing the i-subdivision is given by

P(i) =
∫

Xi

P(ξ)dξ

/∫
⋃10

i=1 Xi

P(ξ)dξ , (6)

which produces the histograms depicted in Figure 6b. This approach has two restrictions
on the random variable ξ with zero probability, namely, (i) ξ/σ < 0.2, and (ii) ξ/σ > 2.8.

We initialize the simulation by allocating a trial disk at the center of a square box of
side L = 8σ = 16〈rg〉. Then, we add N − 1 gluons one by one, ensuring that the minimal
distance between nearest neighbor gluons satisfies 0.2 < ξ/σ < 2.8. After the addition
of the N gluons, we thermalize the systems by moving an arbitrary gluon (except the trial
gluon). For these test gluons, we generate a virtual random position on a neighborhood
of the actual position and consider periodic boundary conditions. Thus, we calculate
the distance ξ ′ to the nearest gluon. Next, we generate a uniformly random number on
the interval (0, 1). The virtual position is accepted if P(ξ ′) > x, with P(ξ ′) taken from
the distribution on Figure 6b. Otherwise, the position is rejected, and we repeat this
methodology for another gluon. This procedure is repeated for 104 moves per particle.
After thermalization, we measure the number of particles n(r, N) within a distance between
r and ∆r from the trial gluon with N particles in the system. In Figure 7, we show samples
of the systems after thermalization for AuAu and PbPb collisions at

√
s =130, 200 GeV and√

s =2760, 5020 GeV, respectively. For consistency, we use the same parameters as those
used for the CSPM and CSCSPM models to construct the plot of g(r). We generate new
valid configurations by moving a random gluon, as described previously, and measure
n(r, N) again after 100 moves per gluon. Finally, the average of the number of gluons is
n(r, N) after 104 simulation runs.

Version May 7, 2023 submitted to Universe 8 of 11

(a)
     

(b)
     

(c)
     

(d)
     

Figure 7. Samples of...

We initialize the simulation by allocating a trial disk on the center of a square box of 215

side L = 8s = 16hrgi. Then, N � 1 gluons are added one by one satisfying the following 216

condition on the minimal distance between the nearest neighbor gluons: 0.2 < d/s < 2.8. 217

After the addition of the N gluons, we thermalize the systems by moving an arbitrary gluon 218

(except the trial gluon). For this test gluons, we generate a virtual random position on a 219

neighborhood of the actual position. Thus, we calculate the distance d0 to the nearest gluon. 220

Next, we generate a uniformly random number on [0, 1]. The virtual position is accepted if 221

P(d0) > x, with P(d0) taken from the distribution on Fig. 6 (a). Otherwise, the position is 222

rejected, and we repeat this methodology for another gluon. This procedure is repeated 104
223

moves per particle. After the thermalization process, we measure the number of particles 224

n(r, N) at a distance between r and Dr from the trial gluon with N particles in the system. 225

In Fig. 7 we show samples of the systems after thermalization for AuAu and PbPb collisions 226

at
p

s =130, 200 GeV and
p

s =2760, 5020 GeV, respectively. For consistency, we use the 227

same parameters that those used for the CSPM and CSCSPM models to construct the plot 228

of g(r). We generate new right configurations by moving a random gluon as described 229

before. We measure n(r, N) again after 100 moves per gluon. Finally, the average of the 230

number of gluons n(r, N) after 104 simulation runs. 231

 1 2 3
0

1

 g
(r

) 
  
  
  
  
  
  

0.5 1.0 1.5

 

4%−

 

0%

 

4%

    

  
  
  
 

(a)

     

 1 2 3

1

0.5 1.0 1.5

 

4%−

 

0%

 

4%

    

  
  
  
 

(b)

     

 1 2 3

             σ r/

0

1

 g
(r

) 
  

  
  

  
  

  

0.5 1.0 1.5

 

4%−

 

0%

 

4%

    

  
  
  
 

(c)

     

 1 2 3

             σ r/

1

0.5 1.0 1.5

 

4%−

 

0%

 

4%

    

  
  
  
 

(d)

     

Figure 8. Results of..

Figure 7. Samples of generated systems in the picture of the CGC after the thermalization for
(a) AuAu collisions at

√
s = 130 GeV, (b) AuAu collisions at

√
s = 200 GeV, (c) PbPb collisions at√

s = 2760 GeV, and (d) PbPb collisions at
√

s = 5020 GeV. These systems correspond to a square box
of around 1fm2. The inner dashed square is the size of the simulated system for the purposes of the
computation of the radial distribution function.

We recall that the number of gluons on the systems fluctuates for particular conditions
of the center of mass energy, centrality classification, pseudorapidity, and nucleon number,
among others. To account for these fluctuations, we determine the average of the radial
distribution function as follows

g(r) =
Nmax

∑
N=Nmin

L2n(r, N)

N(2π∆r(r + 0.5∆r) + π∆r2)
P(N)

/
Nmax

∑
N=Nmin

P(N) , (7)

where P(N) is the corresponding distribution of the number of gluons in Figure 6a,

Nmin = b〈Ng〉c − 3
⌊√

var(Ng)
⌋

, and Nmax = b〈Ng〉c + 3
⌊√

var(Ng)
⌋

. Figure 8 sum-
marizes our results of the radial distribution function for AuAu and PbPb central collisions
at
√

s = 130, 200 GeV and
√

s = 2760, 5020 GeV, respectively.
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Figure 8. Radial distribution function of systems in the picture of the CGC for (a) AuAu collisions
at
√

s = 130 GeV, (b) AuAu collisions at
√

s = 200 GeV, (c) PbPb collisions at
√

s = 2760 GeV, and
(d) PbPb collisions at

√
s = 5020 GeV. The inner plots correspond to the percentage of deviation of

the radial distribution function from the one obtained for AuAu collisions at
√

s = 130 GeV.

4. Discussion and Conclusions

In this paper, we have determined the structure of the medium formed in heavy
ion collisions under the picture of the color string percolation model, the core–shell-color
string percolation model, and the color glass condensate framework. We achieved this by
analyzing the radial distribution function of the configuration of the distributed transverse
representation of color flux tubes on each model: color strings in the CSPM and CSCSPM
and gluons in the CGC.

It was found that the color string percolation model is structured as an ideal gas
because of the fully overlapping condition of the string. By introducing a repulsive-like
interaction between strings, the CSCSPM produces more complex structures, resembling
a gas of interacting particles or a liquid-like fluid. The CSCSPM implements two new
characteristics of the color strings: a concentric core region and a probability that a color
string accepts core–core interaction. This implies a classification of the strings as soft and
hard, which act like ideal particles or hard disks with the diameter λσ, respectively. A
fine-tuning of the CSCSPM parameters (λ, qλ) allows the systems to exhibit a structural
phase transition at the same time as a geometrical phase transition. The former implies
a transition from the gas structure to the liquid-like one, while the latter indicates the
well-accepted formation of the spanning cluster of color string, which can be interpreted as
the onset of the quark–gluon plasma formation. The CSCSPM predicts conditions that both
transitions occur almost simultaneously, with a difference in temperature of 1 MeV.

Other systems analyzed were those modeled by the color glass condensate. Here, we
used the stochastic CGC framework that considers fluctuations in the saturation scale Q2

s .
This also produces fluctuations in the running coupling, and then in all the characteristics
of the CGC, such as the density, the size of gluons, and minimal distances between nearest
neighbor gluons, among others. We found that the distribution of gluons for AuAu central
collisions at RHIC energies (130 and 200 GeV) corresponds to a gas of interacting particles.
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On the other hand, for PbPb central collisions at LHC energies (2760 and 5020 GeV), we
found evidence that the systems adopt a liquid-like structure. However, more simulations
are needed to smooth the radial distribution function in Figure 8 and apply a similar
analysis on the g(r), as described in Ref. [18]. It is worth noting that, while we simulated
homogeneous and isotropic system representations at the center of the transverse plane to
the collision, the system may dilute at the edges, resulting in a radial distribution function
that resembles that of a diluted non-ideal gas and possibly an ideal gas (flat function).
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