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Abstract: Electromagnetic (EM) observations and gravitational wave (GW) measurements enable us
to determine the mass and radius of neutron stars (NSs) and their tidal deformability, respectively.
These parameters offer valuable insights into the properties of dense matter in NSs. In this study,
the vector-interaction-enhanced bag model (vBag model) is employed to investigate strange and
hybrid stars’ properties. The parameters of the vBag model are constrained using multi-messenger
observations, revealing that strange stars are incompatible with current observations. In contrast,
hybrid stars can exhibit a substantial mixed phase region and a thin hadronic shell. Furthermore, we
present the frequencies and damping time of fundamental mode ( f -mode) oscillations of hybrid stars
and test their universal relations with compactness and tidal deformability. The findings indicate
that the presence of mixed phase components leads to larger frequencies and shorter damping time
of the f -mode oscillation of hybrid stars, and the softer equation of state (EoS) affects this behavior
more significantly. The universal relations of hybrid stars in the vBag model can be described by
fourth-order/seventh-order polynomials, which do not break the previous results.

Keywords: equation of state; quark matter; compact stars

1. Introduction

The study of the structure of compact stars depends on the understanding of the
EoS of the dense matter in them. It was conjectured a long time ago that quark matter
appears inside compact stars, as strange stars or hybrid stars [1–3]. Recently, the Advanced
LIGO and Advanced Virgo collaborations observed the binary neutron star (BNS) merger
event GW170817 [4], which focused on the constraints on the compact stars’ EoSs [5–9].
It appears possible, but not conclusive, that one or both component stars in the merger
could be stars with quark matter [10–12]. Some examples of massive pulsars are observed
(M > 2 M�) [13–16], combined with mass and radius measurements taken by the NICER
(Neutron star Interior Composition Explorer) experiment [17–20], have provided, until
recently, the most important benchmarks for the EoS. However, it has been pointed out that
most of the current EoSs describing quark matter are too soft to support strange stars with
large masses and are thus unable to explain the existence of massive pulsars [21,22].

The MIT bag model is a phenomenological approach to describe a confined system
of relativistic quarks and gluon fields [23]. Calculations using soft EoSs of quark matter,
such as the MIT bag model, provide values of maximum masses for strange stars lower
than 1.6 M�. In this scenario, strange stars seem to be incompatible with the observed
massive pulsars mentioned above. However, many studies found that effects from strong
interactions, such as one-gluon exchange or color superconductivity, can stiffen the quark
matter EoS [24,25]. Calculations of strange stars using the modified MIT bag model
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(such as thermodynamic bag model (tdBag model) [26], non-ideal bag model [27], and
vector MIT bag model [28,29]) or the Nambu–Jona–Lasinio (NJL) model [30,31] are capable
of reproducing a maximum star mass of around 2 M�, which is compatible with the
observational data [32,33].

Among these modified MIT bag models, a recent specific model inspired by non-
perturbative features of quantum chromodynamics (QCD), namely, the vector-interaction-
enhanced bag model (vBag model) [28], indicates that massive compact stars with mass
≥ 2 M� would be interpreted as possible candidates for strange stars. The vBag model was
first introduced by Klähn and Fischer [28] and provides a stiff EoS, which is a hybrid ap-
proach to consolidate a number of seeming discrepancies between the NJL and tdBag model
and is compatible with some of those observational data. However, the reasonable parame-
ter range of this model is not clearly known. Motivated by these investigations, the first aim
of this work is to fully and systematically exploit the constraints on the vBag model caused
by the stable existence of strange quark matter and the multi-messenger observations.

Mapping out the radial or nonradial oscillation mode, including the fundamental ( f )
mode, pressure (p) mode, and gravity (g) mode, can provide a way to probe the internal
structure and composition of compact stars [34–39]. These modes are also known as quasi-
normal modes in relativistic fluid stars, and the oscillations of the stars are dissipated
by gravitational radiation [40–42]. Among these modes, the f -mode is important for
compact stars since its frequency, ∼1–3 kHz, makes it relatively easier to be observed than
other modes. On the other hand, f -mode oscillations can be excited in a wide range of
astrophysical environments that are an effective source of gravitational radiation [40,42]:
core-collapse supernova explosions, starquakes associated with a pulsar glitch, a binary
compact star merger remnant [41]. Therefore, this makes the f -mode more likely to be
detected by third-generation gravitational wave detectors, such as the Einstein Telescope
(ET) [43] and the Cosmic Explorer (CE) [44] and future observation runs by LIGO, Virgo,
and KAGRA [45].

Although the macrostructure of compact stars is sensitive to EoSs, insensitive relations
connect various quantities of compact stars [40,46–50]. These relations are considered uni-
versal since they are highly insensitive to EoSs. In astrophysics and fundamental physics,
universal relations for compact stars are essential. These relationships allow us to extract
the macrostructure of compact stars with greater accuracy and assist in studying the inverse
problem of identifying the EoS by giving EoS-insensitive linkages between distinct quanti-
ties. The second aim of the work is to test the universal relations between the frequency
and damping time of the quadrupolar f -mode and the compactness and tidal deformability
of hybrid stars using EoS parameter constraints from multi-messenger observations.

Previous works have constrained the bag constant of the MIT bag model and suggested
possible values for hybrid stars by combining data from 20 compact star candidates [51].
Anisotropic compact star models also have been compared with the results of six compact
star candidates [52]. The EoS models can be further constrained by the new observational
data, especially the measurement of neutron star radii by the NICER mission. In this work,
the vBag model is used to describe quark matter, and the mixed phase is constructed with
the Gibbs construction. We constrain the parameter space of the vBag model within the
strange stars and hybrid stars using current multi-messenger observations. Based on the
parameter space constraints, we present the properties of f -mode oscillations of the hybrid
star and improve the universal relations between f -mode frequency and the macrostructure
of hybrid stars. The paper is organized as follows. Section 2 introduces the EoS and the
macrostructure of the strange stars and hybrid stars used in this study. The results of
multi-messenger constraints on the EoS parameters of quark matter are given in Section 3.
In Section 4, we study the properties of f -mode and the universal relations of hybrid stars
in the vBag model. Section 5 summarizes the main points of this work.
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2. EoS and Macrostructure of Compact Stars

In this work, the relativistic Dirac–Brueckner–Hartree–Fock approach (DBHF) is used
to describe the hadronic matter [53], which can account for the properties of many-body
nuclear matter and is compatible with astronomical observations. For quark matter, it is
described by the vBag model. The mixed phase is constructed using Gibbs construction [54].
For the crust, we use the simple BBP and BPS models to describe the inner and outer
structures [55,56], which are widely used models that consider the interaction of the
electron gas with the nuclei, as well as the effect of the dripped neutrons, and can describe
the properties of matter in the low-density region of a neutron star. Due to uncertainties
with different crust models, one may obtain slightly different mass-radius relations.

2.1. Hadronic Phase

When modeling the behavior of cold hadronic matter for astrophysical applications,
an excellent approximation for the specific energy of neutron-rich matter has been revealed
by many studies [38,53]:

E(n, x) = E
(

n, x =
1
2

)
+ S(n)(1 − 2x)2, (1)

where x is the proton fraction, E
(

n, x = 1
2

)
is the energy per particle of symmetric nuclear

matter, and S(n) is the nuclear symmetry energy. Then, by applying simple thermodynamic
relations to an ensemble describing matter that adheres to the conditions of β-equilibrium
and charge neutrality, we obtain the nuclear pressure and energy density.

The model we adopt is a general method used to describe the energy of nucleons in the
hadronic phase, where the energy per particle of symmetric nuclear matter and the nuclear
symmetry energy is obtained using the DBHF model [57,58]. This model’s calculations meet
the empirical saturation point of nuclear matter with a binding energy of −16 MeV at the
saturation density [57]. Furthermore, at the saturation density, the DBHF model provides
a symmetry energy of 35 MeV, which is in good agreement with the empirical models
and data from isospin diffusion in heavy-ion collisions. The derivative of the symmetry
energy with respect to number density is 69.4 MeV, which is also called symmetry pressure
and indicates that nuclear matter is relatively soft at saturation density [59]. In addition,
the DBHF model produces a neutron star with a maximum mass of 2.3 M�. Thus, in an
analysis of the DBHF model and its performance under a neutron star and heavy-ion
collision constraints, this particular EoS performs extremely well (see Fuchs [57], Klähn
et al. [59] for further references).

2.2. Quark Phase

We use the vBag model to describe the quark matter. The pressure and energy density
of a single flavor can be expressed as [28]:

Pf (µ f ) = PFG, f (µ
∗
f ) +

Kv

2
n2

FG, f (µ
∗
f )− Bχ, f , (2)

ε f (µ f ) = εFG, f (µ
∗
f ) +

Kv

2
n2

FG, f (µ
∗
f ) + Bχ, f , (3)

where PFG, f (µ
∗
f ) and εFG, f (µ

∗
f ) are the pressure and energy given by a Fermi gas expression

of the individual flavor quark. The second term, which contains Kv, is from the vector
interaction. The effective flavor chemical potential µ∗

f is determined self-consistently at a
given bare flavor chemical potential

µ f = µ∗
f + KvnFG, f (µ

∗
f ). (4)

The number density is
n f (µ f ) = nFG, f (µ

∗
f ), (5)
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and Bχ, f is the bag constant of a single flavor. The introduction of flavor-dependent chiral
bag constants is motivated by their fits to the pressure of the chirally restored phase, and a
deconfinement bag constant Bdc is introduced to lower the energy/particle and thereby
favor stable strange matter. Thus, the EoS of the vBag model can be written as [28]

Pq =
1
3

(
εq − 4 ∑

f
Bχ, f

)
+

4
3

Bdc +
Kv

3 ∑
f

n2
f

(
µ f

)
, (6)

where the free parameters are vector interaction coupling constant Kv and effective bag
constant Beff = ∑ f Bχ, f − Bdc.

2.3. Mixed Phase: Gibbs Construction

The dense matter in the compact star satisfies β-equilibrium, which relates to the
chemical potentials in nuclear and quark matter at low temperatures. Together with the
charge neutrality conditions in each phase, it is evident that one chemical potential is
sufficient to characterize the individual thermodynamic state of nuclear and quark matter if
no phase transition is assumed. If both phases are independent, the phase with the higher
pressure minimizes the thermodynamical potential and is therefore energetically favorable.
Consequently, a phase transition will occur if nuclear and quark matter have equal pressure
at the equal baryochemical potential [60],

PH(µB) = PQ(µB), (7)

where PH and PQ are the pressures of the hadronic and quark phases, respectively. µB is the
baryon chemical potential. The baryon number and the total electric charge are conserved
in the quark deconfinement phase transition. The phase transition between hadronic and
quark phases occurs over a range of pressures and chemical potentials, where both phases
coexist in a mixed phase region. Thus, the mixed phase is given by the condition [60],
and the global charge neutrality condition satisfied by the Gibbs construction can be
expressed as

(1 − η)QH + ηQQ = 0, (8)

where η = VQ/(VQ + VH) is the volume fraction occupied by quark matter, and η ranges
from 0 to 1. Thus, the total energy density of the mixed phase is

ε = (1 − η)εH + ηεQ. (9)

2.4. Macroscopic Structure of Compact Stars

In order to obtain the mass (M) and radius (R) of non-rotating compact stars, we solve
the Tolman–Oppenheimer–Volkoff (TOV) equations [60–62]:

dP
dr

=
(P + ε)(m + 4πr3P)

r(r − m)
,

dm
dr

= 4πr2ε.

(10)

Tidal deformability is also one of the macroscopic properties of a compact star, which
reflects the ability of a neutron star to deform under a tidal field. It is also the most
important one carrying information about the EoS of compact stars. The dimensionless
tidal deformability is defined as

Λ =
2
3

k2C−5, (11)

where C = M/R is the compactness of the star. By solving the differential equation of
Love number k2 together with the TOV equations and the EoS, the dimensionless tidal
deformability can be obtained [63–65].
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The parameters Kv and Beff play an important role in the properties of compact stars
described in our work. We give out the mass–radius relations of strange stars and hybrid
stars with different Kv and Beff in Figures 1 and 2. Kv and Beff decide the stiffness of the
EoSs of quark matter, which affects the maximum mass and radius of both strange stars and
hybrid stars. For strange stars, the maximum mass and radius increase with the increase
in Kv and decrease in Beff because the larger the value of Kv is and the smaller the value
of Beff is, the stiffer the EoS of the quark matter is. For hybrid stars, the maximum mass is
more sensitive to the value of Kv among two parameters: it increases with the increase in Kv.
By choosing appropriate values of Kv, the maximum mass of the hybrid star can exceed
2 M�. Both Kv and Beff affect the radii of hybrid stars obviously. The radius increases with
the increase in Kv and Beff. The critical masses for the appearance of quarks depend on
Kv and Beff too. The mixed phase appears earlier for smaller values of Kv or Beff, and the
critical mass is more sensitive to Beff. With fixed Kv, the smaller Beff is, the earlier the mixed
phase appears, the smaller the critical mass is. For some parameter combinations, the mixed
phase appears at a density even lower than nuclear saturation density, which indicates
a large quark fraction might exist even in the low-mass stars. Moreover, the early phase
transition leads to the increased compactness of stars and thus to smaller radii. For hybrid
star models, the critical masses range from around 0.2 M� to near the maximum mass of
DBHF EoS (2.3 M�), i.e. it is possible to obtain low mass and more compact hybrid stars
for the Gibbs construction.

4 6 8 10 12 14
R [km]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
[M

]

Kv Beff
10     40
10     60
10     80
20     40
20     60
20     80
30     40
30     60
30     80

Figure 1. Mass–radius relations for strange stars in the vBag model. The blue, orange, and green lines
are for Kv = 10, 20, and 30 GeV−2, respectively. The solid, dashed, and dotted lines are for Beff = 40,
60, and 80 MeV fm−3, respectively.

Under the Gibbs construction, the densities of mixed phase vary from ∼1 to 10 nuclear
saturation density, making it impossible for the central density of a stable hybrid star to
reach the pure quark phase. In addition, no pure quark phase exists in the core of hybrid
stars in the vBag model. Therefore, our results indicate that earlier phase transitions and a
wide range of mixed phase densities make it only possible for quarks to be present in the
mixed phase with the Gibbs construction of hybrid stars.
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11.0 11.5 12.0 12.5 13.0 13.5
R [km]

0.5

1.0

1.5

2.0

M
[M

] Kv Beff
16     80
16     90
16     100
20     80
20     90
20     100
24     80
24     90
24     100

DBHF EoS

Figure 2. Mass–radius relations for hybrid stars in the vBag model. The solid black line shows the
result for normal neutron stars with DBHF EoS. The blue, orange, and green lines are for Kv = 16, 20,
and 24 GeV−2, respectively. The solid, dashed, and dotted lines are for Beff = 80, 90, and 100 MeV fm−3,
respectively. The stars, triangles, and dots on the DBHF EoS curve in this figure correspond to the
masses and radii at which the mixed phases start to emerge inside the neutron stars with each Kv.

In Figure 3, we give the ratio of Rmp/R and Mmp/M (Rmp is the radius from the
center of the star to the surface of the mixed phase, Mmp is the mass enclosed within Rmp,
R and M are the full radii and mass of the star). We find that the ratio of the radius and
mass of the mixed phase increases with the total mass of the hybrid star. For massive
stars, the mixed phase occupies a large fraction of the star, and the mixed phase mainly
contributes to the mass of the hybrid star. The ratio of the radius and mass of mixed phase
can even exceed 0.8 for some parameters, since these EoS are softer.

0.5 1.0 1.5 2.0
M [M ]

0.0

0.2

0.4

0.6

0.8

1.0

R m
p/R

0.0 0.5 1.0 1.5 2.0
M [M ]

0.0

0.2

0.4

0.6

0.8

1.0

M
m

p/M

Kv Beff
16     80
16     90
16     100
20     80
20     90
20     100
24     80
24     90
24     100

Figure 3. The correlations between Rmp/R (left panel) and Mmp/M (right panel) and the total mass
M of the hybrid star. The color scheme is the same as in Figure 2.

3. Constraints on the EoS of Quark Matter in the vBag Model

The electromagnetic (EM) observations for the mass and radius of NSs require that the
EoSs must be stiff enough to support the 2 M� star, and the GW measurements for tidal
deformability require that the EoSs are not too stiff. Therefore, combining the results of EM
and GW results in a good constraint for the EoSs of dense matter. In this work, we use the
following multi-messenger (EM and GW) astrophysical observations:

• Massive pulsars. PSR J1614−2230 with M = 1.908+0.016
−0.016 M� [13,66], PSR J0348+0432

with M = 2.01± 0.04 M� [14], and PSR J0740+6620 with M = 2.08± 0.07 M� [16]. PSR
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J1810+1744 and PSR J0952−0607, with M = 2.13 ± 0.04 M� and M = 2.35 ± 0.17 M�,
respectively [67,68]. According to the above massive pulsars observations, the maxi-
mum mass of the star must be higher than 2 M�.

• The radii of neutron stars’ constraints from NICER mission. PSR J0030+0451 with M =

1.34+0.15
−0.16 M�, R = 12.71+1.14

−1.19 km [17] and M = 1.44+0.15
−0.14 M�, R = 13.02+1.24

−1.06 km [19].
PSR J0740+6620 with M = 2.072+0.067

−0.066 M�, R = 12.39+1.30
−0.98 km [18] and M = 2.08 ±

0.07 M�, R = 13.7+2.6
−1.5 km [20].

• Current bounds for the effective tidal deformability as reported by the LIGO–Virgo
collaboration have been placed at Λ̄ = 300+420

−230 at a 90% confidence for low-spin
priors [45]. Furthermore, the dimensionless tidal deformability of a star at the Chan-
drasekhar mass has been reported at Λ1.4 = 190+390

−120 under the same conditions [4,69].

By adopting the above observational results, we give out the parameter space of the
vBag model (Kv, Beff) within strange stars, and the results are shown in Figure 4. The stabil-
ity window bounded by the “two-flavor line” (the energy per particle E/A = 934 MeV)
and “three-flavor line” (E/A = 930.4 MeV) are also given out. The “2-flavor line” ensures
the normal atomic nuclei will not decay into nonstrange quark matter (above the line),
while the “3-flavor line” ensures strange quark matter will be more stable than normal
nuclear matter (below the line) [70,71]. When all observational and stability limitations are
addressed, no parameter space of the quark matter in the vBag model can simultaneously
fulfill multi-messenger observations. This indicates that strange stars in the vBag model
that correspond to present constraints may not exist.

0 5 10 15 20 25 30 35 40
Kv [GeV 2]

20

40

60

80

100

120

140

160

B e
ff

[M
eV

fm
3 ]

MTOV = 2.0 M

1.4 = 70

1.4 = 580
2f line

3f line

NICER results

MTOV 2.0 M
70 1.4 580

Figure 4. The parameter space of the vBag model (Kv and Beff) for a strange star. The orange
contour represents the parameter space where the star’s maximum mass is greater than 2 M�.
The green contour represents the parameter space for the tidal deformability 70 ≤ Λ1.4 ≤ 580 from
the GW170817 event. The blue contour is for the parameter space that satisfies the mass and radius
measurements of PSR J0030+0451 and PSR J0740+6620 from NICER. The black dashed lines are for
the 2-flavor and 3-flavor lines of quark matter, and the gray contour is for the stability windows of
quark matter.

The parameter space constraints of the vBag model within hybrid stars are shown in
Figure 5. In the vBag model, the positive value of the bag constant Beff results only from the
restoration of chiral symmetry, while confinement/deconfinement, although introduced
merely phenomenologically, reduces this value. The most naive perception of confinement
is the binding of quarks in the chirally broken phase [28]. Therefore, the lower limit of
Beff ≥ 70 MeV fm−3 of the vBag model in the mixed phase with DBHF EoS is needed.
The gray contour between the green and blue lines is the parameter space of the quark
matter EoS in the hybrid star that satisfies the observational constraints. It is worth to
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mention that Figure 5 only shows the limit of the tidal deformability Λ1.4 = 580 from
GW170817. With the current constraints, Λ1.4 of the hybrid star with the softest EoS is ∼300.
To achieve the best display effect, this figure does not show the lower limit Λ1.4 = 70. Due
to the phase transition inside the compact star, the emergence of new particle degrees of
freedom will soften the EoS, thereby making the star become denser, and finally satisfying
the constraints of tidal deformability from GW170817. This reveals that the quark matter in
the vBag model would exist in the core of the compact star.

10 15 20 25 30 35
Kv [GeV 2]

60

70

80

90

100

110

120

B e
ff

[M
eV

fm
3 ]

Beff = 70 MeV fm 3

1.4 = 580

NICER results

Figure 5. Constraints on Kv and Beff of hybrid stars with Gibbs construction in the vBag model.
The green line is for the constraint of the dimensionless tidal deformability Λ1.4 = 580. The blue
line is for the EoS parameters boundary that satisfies the observational data of mass and radius of
PSR J0030+0451 and PSR J0740+6620 from NICER. The dashed black line is the lower boundary
Beff = 70 MeV fm−3. The gray contour is the parameter space of quark matter EoS in the hybrid star
that satisfies the observational constraints.

4. The f-Mode Oscillations and Related Universal Relations of Hybrid Stars in the
vBag Model

Since the parameter space of the vBag model satisfying the current observations in strange
stars may not exist, we only investigate the quadruple fundamental mode (` = 2 f -mode)
oscillations of hybrid stars, which are constructed as the previous section. The method of
solving the oscillation of hybrid stars is introduced in Lindblom and Detweiler [72], Detweiler
and Lindblom [73]. A fully general relativistic approach is adopted in our work, which takes
into account both fluid and spacetime perturbations and is more suitable for extreme general
relativistic effects on compact stars.

In Figure 6, the f -mode frequency f f and damping time τf are shown as a function
of the stellar mass for different EoS parameters of quark matter. We also give the corre-
sponding results of a neutron star in a DBHF EoS for comparison. The frequency of the
neutron star in the DBHF EoS is ∼1.53–2.21 kHz, and the damping time is ∼0.147–0.455
for M ≥ 1.0 M�. From this figure, one can see that these properties vary with Kv and Beff.
The appearance of quark matter inside the hybrid star will increase the frequency f f and
decrease the damping time τf of the f -mode, respectively. Moreover, the increase in Kv
leads to an increase in the f -mode frequency and a decrease in the damping time. With the
same Kv, Beff affects the magnitude of the frequency and the damping time significantly,
indicating the f -mode oscillation is very sensitive to the mass and radius of the star. We
also find that the frequencies increase gradually with the mass of hybrid stars, but this
behavior becomes steeper when the mass is close to Mmax, and the damping time decreases
rapidly with the mass of hybrid stars until it is close to Mmax.
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0.5 1.0 1.5 2.0
M [M ]

1.2

1.4

1.6

1.8

2.0

2.2

f f
[k
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]

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
M [M ]
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f
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]

Kv Beff
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16     90
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20     90

DBHF EoS

Figure 6. Frequency (left panel) and damping time (right panel) of f -mode as a function of the stellar
mass of hybrid stars with different quark matter EoSs. The blue, orange, and green lines are for
Kv = 16, 18, and 20 GeV−2, respectively. The solid and dashed lines are for Beff = 80 and 90 MeV fm−3,
respectively. The results for the neutron star in the DBHF EoS are shown for comparison with solid
black line.

It is necessary to test our results with the well-established universal relations men-
tioned in the previous works [40,46,47]. Obviously, they enable us to constrain the predicted
features of f -mode oscillations using the existing data of the pulsar observations and terres-
trial laboratory constraints on the EoS parameters. In general, a complex eigen-frequency
ω = ωr − iωi is used to characterize the quasi-normal modes [41,74–76], where ωr is the fre-
quency of f -mode 2π f f and ωi is the damping rate 1/τf . The universal relations between a
star mass scaled by frequency Mω and macrostructure quantities, such as compactness [48]
and tidal deformability [49,50,77,78], are almost independent of the EoSs, and the power
law expansion can be used to describe the complex frequency of f -mode [50,79].

For the results between mass scaled frequency Mω and compactness C, we use the
following expression for fitting:

Mωr =
4

∑
j=0

ajCj, (12)

Mωi =
7

∑
j=0

ajCj. (13)

For the results between mass scaled frequency Mω and dimensionless tidal deformability
Λ, we use the following expression for fitting:

Mω =
4

∑
j=0

aj(ln Λ)j. (14)

The coefficients aj of Equations (12)–(14) are complex numbers corresponding to ωr and ωi.
Compactness and complex frequency are presented in geometrized units with c = G = 1.
We check that adding an additional term of the power law does not offer much improvement
in the accuracy for our fits, but by altering coefficients, we are able to improve the fit
for high compactness. Thus, we use fourth-order (seventh-order) polynomials to fit the
relations between the the real part (imaginary part) of the eigen-frequency of f -mode
and compactness and fourth-order polynomials to fit the relations between the complex
frequency and dimensionless tidal deformability, respectively. The coefficients aj and the
R2 statistic for the best fit are shown in Table 1. These universal relations have higher
accuracy (with a standard statistical correlation coefficient large than 0.9994) in a wide
range of compactness (0.019 < C < 0.296).
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Table 1. Coefficients and the R2 statistic for the best fit of Equations (12)–(14).

a0 a1 a2 a3 a4 a5 a6 a7 R2

Mωr − C 8.162 × 10−4 2.760 × 10−1 1.116 2.318 × 10−1 −3.641 . . . . . . . . . 0.9994
Mωi − C −2.514 × 10−8 −9.301 × 10−7 3.172 × 10−4 −9.566 × 10−4 8.581 × 10−2 −4.117 × 10−1 6.562 × 10−1 −4.655 × 10−1 0.9997

Mωr − Λ 1.827 × 10−1 −7.219 × 10−3 −4.172 × 10−3 5.311 × 10−4 −1.957 × 10−5 . . . . . . . . . 0.999995
Mωi − Λ 1.963 × 10−5 5.749 × 10−5 −1.850 × 10−5 1.972 × 10−6 −7.147 × 10−8 . . . . . . . . . 0.999976

The fitting curves of the scaled complex frequency of f -mode versus compactness are
shown in the top panels of Figure 7. For comparison, we also plot some previous fitting
results in Tsui and Leung [48], Zhao and Lattimer [50]. In this figure, we consider different
masses with the constraints of EoS parameters when the mixed phase appears in the hybrid
stars. The bottom panels in Figure 7 show the relative errors of our fit to the computed
results of all EoS parameters of hybrid star in our work. Moderate relative errors (12%)
are limited to small compactness C < 0.03 with the existence of a mixed phase, and the
maximum relative error in the remaining compactness regions is less than 7%, especially
in C > 0.25. Fits for the real part of ω where the relative errors are smaller than 4.8%
are somewhat more accurate than those for the imaginary part. It is suggested that this
universal relation is still suitable for the hybrid star in the vBag model. The results of
low-mass hybrid stars are included in our fits, and our results characterize the behavior of
a wide range of compactness well.

The fitting results of the complex frequency of f -mode versus dimensionless tidal
deformability Λ are shown in Figure 8. For comparison, we also plot some previous fitting
results in Chan et al. [49], Zhao and Lattimer [50]. The relative errors of the real part of the
scaled frequency versus Λ are much smaller than 0.3% (<0.3%), and the relative errors of
the scaled damping rate versus Λ are smaller than 1.3% (<1.3%). All results for the real
and imaginary parts’ scaled frequencies of hybrid stars are almost on a curve, with no
significant dispersion. Moreover, the fitted curves also almost overlap with the results of
previous works.
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Figure 7. Mass scaled complex frequency of f -mode as a function of compactness for hybrid stars in
the vBag model that satisfy multi-messenger observational constraints. The (left,right) panel shows
the real (imaginary) part of the mass scaled frequency. Top panel: The black dots are the calculation
results of hybrid stars. The blue lines are the fitting results of our work. The orange dashed lines are
for the fitting results of Tsui and Leung [48], and the green dashed line is for the fitting results of
Zhao and Lattimer [50]. Bottom panel: The relative errors of our fit for the computed results for all
parameters in our work.
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Figure 8. Mass scaled complex frequency of f -mode as a function of tidal deformability for hybrid
stars in the vBag model that satisfy multi-messenger observational constraints. The (left,right) panel
shows the real (imaginary) part of the mass scaled frequency. Top panel: The black dots are the
calculation results of hybrid stars. The blue line is our fitting result. The orange dashed line is the
result of Chan et al. [49], and the green dashed line is for Zhao and Lattimer [50]. Bottom panel: The
relative errors of our fit from the computed results for all parameters in our work.

5. Conclusions

The tidal deformability, masses, and radii of pulsars provide a powerful way to
constrain the EoSs of dense matter at high densities. Combining these observational results,
we constrain the parameters of the vBag model within the framework of strange stars
and hybrid stars (under Gibbs construction). Based on the limitations of the EoS of quark
matter, we study the correlations among the f -mode frequency and, its damping time and
the compactness and tidal deformability of hybrid stars.

We find that the lower values of Kv and Beff result in a decrease in the phase transition
density from hadronic phase to mixed phase. In addition, the phase transitions occur
inside hybrid stars at very low density (around nuclear saturation density), which allows
mixed phases to appear in the low-mass stars (around 0.2 solar mass). For massive stars,
the mixed phase may occupy a large region in which its radius and mass ratio surpasses 0.8.
Furthermore, the vBag model cannot simultaneously satisfy the current multi-messenger
observation constraints within the framework of strange stars.

Our results for the ` = 2 f -mode oscillation frequency and damping time reveal that
the appearance of the mixed phase inside the hybrid star causes a rise in the oscillation
frequency and a decrease in the damping time, respectively. The softer EoS makes this
variation more apparent due to the more significant reduction in radius. The test of
two common universal relations of hybrid stars reveals a high correlation between f -
mode complex frequency and compactness/dimensionless tidal deformability, which
is well-fitted by a power law expansion. The hybrid stars in the vBag model do not
contradict this universality, but our results expand the fitting compactness range. Thus,
gravitational waves excited by f -mode oscillations of compact stars may provide valuable
and complementary information on the features of compact stars and the underlying nature
of quark matter.
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