
Citation: Frolov, A.V.; Frolov, V.P.

Classical Mechanics with Inequality

Constraints and Gravity Models with

Limiting Curvature. Universe 2023, 9,

284. https://doi.org/10.3390/

universe9060284

Academic Editor: Norma G. Sanchez

Received: 1 May 2023

Revised: 31 May 2023

Accepted: 5 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Classical Mechanics with Inequality Constraints and Gravity
Models with Limiting Curvature
Andrei V. Frolov 1,† and Valeri P. Frolov 2,*,†

1 Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; frolov@sfu.ca
2 Theoretical Physics Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
* Correspondence: vfrolov@ualberta.ca
† These authors contributed equally to this work.

Abstract: In this paper, we discuss mechanical systems with inequality constraints Φ(q, q̇, ...) ≤ 0. We
demonstrate how such constraints can be taken into account by proper modification of the action
which describes the original unconstrained dynamics. To illustrate this approach, we consider a
harmonic oscillator in the model with limiting velocity. We compare the behavior of such an oscillator
with the behavior of a relativistic oscillator and demonstrate that when the amplitude of the oscillator
is large, the properties of both types of oscillators are quite similar. We also discuss inequality
constraints, which contain higher derivatives. At the end of the paper, we briefly discuss possible
applications of the developed approach to gravity models with limiting curvature.

Keywords: classical mechanics; Lagrangian formulation; limiting curvature; gravity models

1. Introduction

Studying mechanical systems with constraints has a long history (see for example [1,2]).
For such systems besides the Lagrangian L(q, q̇), there exist one or more constraint rela-
tionships Φi = 0 which restrict a motion of the system. In the simplest case, when
these functions depend only on the coordinates q, the constraints are called holonomic 1.
By solving these constraints, one can reduce the configuration space and obtain a reduced
Lagrangian which describes the motion of the system in the presence of the constraints.
A case of nonholonomic constraints, where constraint function Φi depends not only on the
coordinates q but also on velocities q̇, is more complicated. There exist many publications
devoted to this subject. The discussion of this problem and corresponding references can
be found, for example, in [3–8].

One of the methods to study mechanical systems with nonholonomic constraints
was developed in [9]. In this approach, one “upgrades” the Lagrangian by adding to
it the constraints with corresponding Lagrange multipliers. This method, which uses a
generalization of Hamilton’s principle of stationary action, was coined as vakonomic me-
chanics [6–10]. For a system with one constraint Φ(q, q̇) = 0, the corresponding “upgraded”
Lagrangian is

L = L(q, q̇) + χΦ(q, q̇) . (1)

The variation of the action with respect to Lagrange multiplier χ reproduces the constraint
equation Φ = 0, while its variation over q gives equations containing, besides the coordi-
nates, the control function χ(t). This set of equations determines the constrained motion of
the system.

The purpose of this paper is to discuss mechanics with inequality constraints. Such a
constraint is a restriction imposed on coordinates q and velocities q̇, which are of the form
Φ(q, q̇) ≤ 0. We shall demonstrate that the equations describing the system’s motion can
be obtained from the following Lagrangian

L = L + χ(Φ + ζ2) , (2)
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which contains two Lagrange multipliers, χ and ζ. Variation of the corresponding action
over χ and ζ gives

Φ + ζ2 = 0, χζ = 0 . (3)

As a result, the motion of the system has two different regimes. If Φ ≤ 0, the first of
these equations defines ζ, while the second equation implies χ = 0. When the first
equation is saturated and the constraint function Φ reaches its critical value, Φ = 0, one
has ζ = 0, and the control function χ can take a non-zero value. A transition between these
two regimes occurs at points where the control function χ vanishes. A similar approach
was discussed in [11]. In recent publications [12–15], models with inequality constraints
imposed on the curvature invariants and their application to the problem of black hole and
cosmological singularities were discussed.

The paper is organized as follows. In Section 2, we consider the mechanics of a system
with one degree of freedom and with an inequality constraint. In Section 3, we discuss
transitions between different regimes and find the corresponding conditions. In Section 4,
we apply the developed tools to study a harmonic oscillator with an inequality restriction
imposed on its velocity. In Section 5, we compare the motion of the oscillator in the limiting
velocity model with a motion of a relativistic oscillator, and demonstrate that there exists
a similarity between these two models. A case when the constraint function Φ contains
higher than first derivatives of coordinates is briefly discussed in Section 6. The last section
summarizes the obtained results and discusses their applications to the recently proposed
models of gravity with the limiting curvature.

2. Lagrangian Mechanics with an Inequality Constraint

Our starting point is the following action

S =
∫

dtL, (4)

where
L(q, q̇, χ, ζ) = L(q, q̇) + χ

(
Φ(q, q̇) + ζ2

)
. (5)

Here and later, we denote by dot the time derivative. This action, besides the dynamical
variable q(t), contains a constraint function Φ(q, q̇) and two Lagrange multipliers χ(t) and
ζ(t). The variation of S with respect to χ(t) and ζ(t) gives

Φ(q, q̇) + ζ2 = 0, χζ = 0 . (6)

These equations imply that the evolution of the system can have two different regimes, namely:

• Subcritical phase, where the constraint function Φ(q, q̇) is negative. In this regime, the
first equation in (6) defines the Lagrange multiplier ζ(t), while the second relationship
implies that χ(t) = 0. This means that during the subcritical phase, the system follows
the standard Euler–Lagrange equation.

• Supercritical regime, where ζ = 0. At this phase, the constraint equation

Φ(q, q̇) = 0 (7)

is satisfied and the control parameter χ(t) becomes dynamical.

If the system described by action (4) starts its motion in the subcritical regime, then its
motion is described by the Euler–Lagrange equation

δL
δq

= 0 . (8)
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Here and later, we use the following standard definition of a Lagrange derivative of a
function L(q, q̇)

δL
δq
≡ d

dt

(
∂L
∂q̇

)
− ∂L

∂q
. (9)

Let q(t) be a solution of this equation, then the constraint function Φ(t) = Φ(q(t), q̇(t))
calculated on the trajectory is negative. If at some time t0 the constraint function Φ(t)
vanishes, the supercritical regimes starts.

At this stage, the constraint Φ = 0 is valid and the variation of action (4) over q gives

χ̇π + χ
δΦ
δq

+
δL
δq

= 0 . (10)

Here we denote

π ≡ ∂Φ
∂q̇

,
δΦ
δq
≡ d

dt

(
∂Φ
∂q̇

)
− ∂Φ

∂q
. (11)

A motion in this phase is specified by two functions of time, q(t) and χ(t). Function q(t)
can be found by solving the constraint Equation (7), while Equation (10) determines the
evolution of the control function χ(t). This is a first-order ordinary differential equation for
χ(t) and its solution is determined if one specifies a value of the control function χ at some
moment of time.

If the constraint function Φ reaches its critical value 0 at some time t = t0, then
χ(t0) = 0. If we assume that π(t0) 6= 0, then Equation (10), with this initial condition, has
a unique solution. The system can return to its subcritical regime if the control function
χ(t) vanishes again at some later time t1 > t0.

3. Condition of the Regime Change

Let us discuss a condition when the supercritical solution can return to the subcritical
one in more detail. For this purpose, we introduce the following notation:

p =
∂L
∂q̇

, E = pq̇− L, ε = πq̇−Φ . (12)

Let us demonstrate that in the supercritical regime the quantity

E = E + χε , (13)

is conserved.
It is easy to check that the following relationships are valid:

Ė =
δL
δq

q̇, ε̇ =
δΦ
δq

q̇ . (14)

Using the definition of E and relationships (14), one has

Ė = Ė + χε̇ + χ̇ε =

(
δL
δq

+ χ
δΦ
δq

+ χ̇π

)
q̇− χ̇Φ . (15)

Using relationship (10) and the constraint equation Φ = 0, one obtains Ė = 0.
The obtained equality means that E is a conserved quantity for the supercritical solu-

tion. By its construction, it has the meaning of the energy of the enlarged system described
by the extended action (4) and (5). It differs from the energy E of the unconstrained system
by the quantity χε. The latter can be interpreted as the contribution of the control field χ to
the total energy of the system. In the subcritical regime, χ = 0 and E = E0 = const, where
E is the usual energy of the unconstrained system. At the transition point t = t0, where
χ = 0, one has E = E0.
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During the supercritical phase, the quantity E depends on time, E = E(t). It is easy
to see that, if there exists a later moment of time t = t1 where the control parameter χ
becomes zero again, the following condition should be valid

E(t1) = E0 . (16)

In other words, the supercritical solution can return to the subcritical regime at the point
where the total energy E becomes equal to the energy E0 of the system in the initial
subcritical phase.

Figure 1 illustrates a motion of a system with the inequality constraint. It shows curves
of constant energy E and of the constraint Φ = 0 on the (q, q̇) phase plane. Let ABC be
E = const curve (E-curve) and DEF be a constraint curve Φ = 0. Point 0 and 1 where these
curves intersect are transition points between the sub- and supercritical regimes. Suppose
that Φ is positive above the curve DEF. Then, the system moving from A after reaching
the transition point 0 moves along supercritical trajectory 0E1. After the second transition
point 1 it continues its motion along a subcritical trajectory 1C. Since the velocity q̇ on 0E1
is less than the velocity on 0B1 for the same value of q, the time of “travel” between 0 and 1

t01 =
∫ q1

q0

dq
q̇

(17)

along the constraint curve is longer than the corresponding time of motion along the
E-curve. In the opposite case, where Φ is positive below the curve DEF, the corresponding
trajectory is D0B1F.

A

D

C

F
B

E

0 1

q

q

Figure 1. Curves of constant energy, E = const, and constraint Φ = 0 on the (q, q̇) phase plane.

4. Harmonic Oscillator with the Limiting Velocity Constraint
4.1. Motion of Oscillator with the Velocity Constraint

To illustrate the results described in the previous section, let us consider a model of a
harmonic oscillator with the limiting velocity constraint. Specifically, we discuss a system
with the following action:

S̃ =
1
2

∫
dτ
[
(dx/dτ)2 −ω2x2 + χ

(
(dx/dτ)2 −V2 + ζ̃2

)]
. (18)

Here, x(τ) is a position of the oscillator at time τ and ω is its frequency. The constant V is
the value of the limiting velocity and a constraint is chosen so that the following inequality:
|dx/dτ| ≤ V is valid. It is convenient to introduce dimensionless variables

q = ωx/V, t = ωτ, ζ = ζ̃/V (19)

in which

S̃ =
V2

ω
S, S =

1
2

∫
dt
[
q̇2 − q2 + χ(q̇2 − 1 + ζ2)

]
. (20)
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Here, the dot means a derivative with respect to the dimensionless time t.
The variation of the action S over q, χ and ζ gives the following set of equations:

(q̇χ)˙ = −(q̈ + q) , q̇2 − 1 + ζ2 = 0 , ζχ = 0 . (21)

In the subcritical regime, χ = 0 and ζ2 = 1 − q̇2, while Equation (21) reproduces the
standard equation of motion of a non-relativistic harmonic oscillator

q̈ + q = 0 . (22)

In the supercritical regime

q̇2 = 1 , q̇χ̇ + q̈χ = −(q̈ + q) . (23)

At the transition point separating these regimes, |q̇| = 1 and χ = 0.
We choose a solution in the subcritical regime in the form

q = −q0 cos(t), q0 > 0 . (24)

Then, a transition to the supercritical regime occurs when

q̇ ≡ q0 sin(t) = ±1 . (25)

This relationship can be satisfied only if q0 ≥ 1 . This means that, for q0 < 1, a solution
always remains in the subcritical regime and the limiting velocity is not reached, so the
motion is that of a simple harmonic oscillator.

For q0 > 1, solution (24) reaches the critical velocity q̇ = 1 for the first time at the
moment t = t0

t0 = arcsin(1/q0) . (26)

A position of the oscillator at this moment is

q(t0) = −qc, qc =
√

q2
0 − 1 . (27)

After this time, the oscillator follows the supercritical trajectory

q(t) = −qc + (t− t0) . (28)

Equation (23), which determines the evolution of the control function, takes the form

χ̇ = −q . (29)

Using (28) and solving Equation (29) with the initial condition χ(t0) = 0, one finds

χ = −1
2
(t− t0)

2 + qc(t− t0) . (30)

The control function vanishes again at time t = t1 > t0, where

t1 = t0 + 2qc . (31)

After this, the solution returns to its subcritical regime where χ = 0 and

q = q0 cos[2(qc + t0)− t] . (32)

This subcritical motion continues until the moment of time t = t2 > t1, when the velocity
reaches the critical value q̇ = −1. For t2 < t < t3, the oscillator moves with a constant
critical velocity q̇ = −1 until a new transition to the subcritical regime occurs at t = t3.
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The phase diagram for the harmonic oscillator in the limiting velocity model is shown
in Figure 2. The inner circle C< describes the motion of the oscillator with q0 < 1. For this
case, the supercritical regime is absent. The outer orbit C> describes the motion of the
oscillator with q0 > 1. Points 0, 1, 2, and 3 represent the states where the transitions
between subcritical and supercritical phases occur.

Figure 3 shows the plot of the function q(t) for the oscillator with the velocity constraint
(a solid blue line) and for the standard harmonic oscillator with the same amplitude q0 > 1
(a dashed red line).

q

q

1q = −

1q =
0 1

23

C
C

Figure 2. Phase diagram on (q, q̇)-plane representing the motion of an oscillator in the limiting
velocity model. These plots are shown for two values of the amplitude q0 = 0.5 (line C<) and q0 = 2.0
(line C>).

Figure 3. Time dependence of a position of the oscillator with amplitude q0 = 1.5 in the limiting
velocity model is shown by a solid blue line. The dashed red line shows a q(t) for an unconstrained
oscillator with the same amplitude q0.
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The motion of the constrained oscillator is periodic. For q0 < 1, the period is constant
and equal to 2π. For q0 ≥ 1, the period is

T = 4
[

arcsin(1/q0) +
√

q2
0 − 1

]
. (33)

Let us note that the period T is always larger than 2π. For q0 � 1, T ' 4q0.
It is instructive to represent a motion of an oscillator in the limiting velocity model

using a 3D phase space with coordinates (q, q̇, χ). Such a phase trajectory is shown in
Figure 4. For the subcritical motion of the system, the control function χ(t) vanishes, and its
phase trajectory lies on the (q, q̇) plane. At this stage, the energy of the unconstrained
harmonic oscillator

E =
1
2
(q̇2 + q2) (34)

is constant. The decrease of the potential energy is compensated for by the growth of the
kinetic energy. After the system enters the supercritical regime, the following quantity
is conserved:

E = E + χq̇2 . (35)

When the velocity of the system reaches its limiting value, the kinetic energy of the system
becomes “frozen”, while its potential energy decreases. As a result, the energy E decreases.
However, at this stage the control field χ takes a non-zero value and contributes to the
total energy E of the system. This contribution exactly compensates for the decrease of
E. As a result, the total energy E during the supercritical phase remains constant. In such
a description the field, χ plays the role of some “hidden variable”. One can say that this
hidden variable at first absorbs a part of the energy of the oscillator and later releases it.
When the total absorbed energy is returned to the oscillator, the field χ vanishes and total
energy E coincides with the standard energy of the unconstrained oscillator E. It happens
when χ vanishes, and a transition to the subcritical regime occurs.

Figure 4. Three-dimensional phase diagram representing the motion of an oscillator in the limiting
velocity model. The corresponding 3D coordinates are (q, q̇, χ). This plot is constructed for q0 = 1.2.

4.2. Modified Action Approach

Time evolution of the oscillator described in the previous subsection is periodic.
The oscillator starts its motion in the subcritical regime and at point 0 enters the supercritical
regime. It cannot continue its motion along the unconstrained trajectory since this would
violate the inequality constraint. The oscillator can leave the supercritical regime at point 1,
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where χ = 0. A natural question is why it does not continue its motion further along the
constraint curve. Let us discuss this point in more detail.

Let us assume that, after point 1, the oscillator continues moving with q̇ = 1. It is easy
to check that then the control function becomes negative and the energy E of the oscillator
becomes larger than its value E0 at the point of the transition. For the subcritical branch,
the energy remains constant and equal E0. Therefore, at transition point 1, the oscillator
should “decide” which of these two branches it “prefers”. One can introduce an additional
requirement that its preference always should be a choice of the branch with the smaller
value of the energy E.

Let us show that one can achieve the same result by a simple modification of the
action (20). Specifically, let us consider the following action

S =
1
2

∫
dt
[
q̇2 − q2 + η2(q̇2 − 1 + ζ2)

]
. (36)

It is identical to (20) with the only change χ = η2. The corresponding modified equations
take the form

(q̇η2)˙ = −(q̈ + q) , η(q̇2 − 1 + ζ2) = 0 , ζη2 = 0 . (37)

For the subcritical regime, when η = 0, the unconstrained equations of motion are repro-
duced. As earlier, for the supercritical regime, when η 6= 0, one has

ζ = 0, q̇2 − 1 = 0 . (38)

Suppose, after transition point 1, the oscillator “decides” to continue its motion along the
constraint. Then, one has q̈ = 0 and at point 1

(η2)
1̇
= − q1

q̇1

, (39)

where index 1 indicates that a corresponding quantity is calculated at point 1. Since, at
this point, q1

q̇1
> 0, the control function η2

1 should decrease and become negative. This is

impossible because η2 ≥ 0. This means that further motion along the constraint beyond
point 1 is impossible and the oscillator moves from point 1 to point 2 along the subcritical
trajectory, shown in Figure 2. A similar analysis, repeated for the other critical points,
shows that this figure accurately represents the motion of the oscillator for the action (36).

5. Limiting Velocity Oscillator vs. Relativistic Oscillator

In the previous section, we described a motion of a harmonic oscillator in the model
with limiting velocity. In this section, we compare this model with the case of a relativistic
oscillator, where the velocity of the system is naturally restricted by a universal constant c
(speed of light). Using the same dimensional units as earlier, and putting c = 1, we write
the action for such a relativistic oscillator in the form

S =
∫

dt L, L = −
[√

1− q̇2 +
1
2

q2
]

. (40)

For small velocities |q̇| � 1, the Lagrangian L reduces to

Lnonrel =
1
2

[
q̇2 − q2

]
, (41)

up to a constant term which does not affect the equation of motion. The corresponding
Euler–Lagrange equation for the action S is

ṗ + q = 0, p ≡ dL
dq̇

=
q̇√

1− q̇2
. (42)
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The conserved energy of the relativistic oscillator is

E ≡ pq̇− L =
1√

1− q̇2
+

1
2

q2 . (43)

The first term in this expression, (1− q̇2)−1/2, is nothing but the Lorentz factor γ for a
relativistic particle, which, for a unit mass, coincides with total (including the rest mass)
kinetic energy of the system, while the second term, q2, is the potential energy.

The motion is bounded. Let us denote the maximal value of the coordinate q for a
given energy E by q0. Then, one has

E = 1 +
1
2

q2
0 , (44)

and Equation (43) takes the form

γ ≡ (1− q̇2)−1/2 = 1 + z, z =
1
2
(q2

0 − q2) . (45)

Solving this equation for q̇, one obtains

q̇ = ±
√

z(2 + z)
1 + z

. (46)

This relationship allows one to plot a phase diagram for the motion of the relativistic
oscillator in the (q, q̇) plane. This diagram is shown in Figure 5. The velocity of the
oscillator has a maximal value at q = 0

q̇0 = ±
√

z0(2 + z0)

1 + z0
, z0 =

1
2

q2
0 . (47)

It is easy to check that |q̇0| < 1 and it becomes close to ±1 for large values of q0.
By integrating the first-order differential Equation (46), one can find a position of the

oscillator at time t, q(t). To illustrate its behavior, we show in Figure 6 function q(t) for
q0 = 1.2 (a solid blue line). For comparison, this figure also shows the function q(t) for a
similar non-relativistic oscillator with the same amplitude q0 (a dashed red line).

The motion of the relativistic oscillator is periodic. The corresponding period is

Trel = 2
√

2
∫ z0

0

(1 + z) dz√
z(2 + z)(z0 − z)

. (48)

This integral can be calculated analytically with the following result

Trel =
4
√

2√
z0 + 2

[
(z0 + 2)E

(√
z0

z0 + 2

)
− K

(√
z0

z0 + 2

)]
. (49)

Here E(x) and K(x) are complete elliptic integrals of the second and first kind, correspond-
ingly. For q0 � 1

Trel ' 4q0 . (50)

This result has a simple explanation: For a large amplitude q0, the system very quickly
reaches a velocity close to the speed of light, which in our units is 1, and goes from +q0 to
−q0 and back in the course of one period.
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q

q

C

C

Figure 5. Phase diagram representing the motion of a relativistic oscillator on the (q, q̇)-plane.
Two curves are shown for two values of the amplitude q0 = 0.5 (line C<) and q0 = 2.0 (line C>).
For q0 = 0.5 relativistic effects are small and the phase trajectory C< of the oscillator (shown by a
solid blue line) is close to the cycle of radius 0.5 (shown by a dashed red line). For the amplitude q0

bigger than 1 the relativistic effects are important. As a result, the phase trajectory is squashed in q̇
direction. Such a squashed trajectory for q0 = 2 is shown by a solid blue line C> .

Figure 7 shows the dependence of the period T of the relativistic oscillator as a function
of its amplitude q0 (solid red line). A dashed blue line in this plot shows the dependence of
the period of the oscillator in the limiting velocity model on its amplitude q0. One can see
that for both cases the corresponding lines are quite similar.
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Figure 6. Time dependence of a position of the relativistic oscillator with amplitude q0 = 1.2 is shown
by a solid blue line. The dashed red line shows a position of a non-relativistic oscillator with the
same amplitude.

Figure 7. Periods of the relativistic oscillator (solid red line) and the oscillator in the limiting velocity
model (dashed blue line) as functions of their amplitude q0.

6. Inequality Constraints with Higher than First Derivatives

Till now, we have considered a case where the constraint function Φ depends only on
q and q̇. Let us discuss now what happens if the constraint function contains second or
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higher derivatives of q. Let us assume first that Φ contains only the second derivative of q,
which enters linearly. Then, the Lagrangian L which enters the action (4) is

L = L(q, q̇) + χ(Φ + ζ2), Φ = q̈− ϕ(q, q̇) . (51)

Such a constraint means that the acceleration q̈ is restricted from above by the quantity
ϕ(q, q̇). If a subcritical solution reaches a point where q̈ = ϕ(q, q̇), it enters the supercritical
regime where the following equations are valid

q̈ = ϕ(q, q̇) ,
δL
δq
≡ δL

δq
− δ(χϕ)

δq
− χ̈ = 0 . (52)

A trajectory q(t) can be found by solving the first of these equations. The second equation
defines the evolution of the control function χ. It can be written in the form

χ̈ + ϕ,q̇χ̇ +
δϕ

δq
χ =

δL
δq

. (53)

This is a second-order linear inhomogeneous ordinary differential equation. Its solutions
are uniquely determined by specifying the initial values of χ and χ̇ at some moment of time.
In the subcritical regime, the control function χ identically vanishes. Equation (53) implies
that if ϕ,q̇ and δϕ/δq are finite, then neither χ nor χ̇ can jump. Hence, at the transition
point, one has

χ = χ̇ = 0 . (54)

After substitution of a solution q(t) of the constraint equation into the right-hand side of
(53) and using these initial conditions, one can find the time dependence of the control
function in the supercritical regime.

One can check that during the supercritical phase the following quantity remains constant

E = E− q̇χ̇ + [ϕ− ϕ,q̇ q̇] χ, E = q̇L,q̇ − L . (55)

To prove that Ė = 0 it is sufficient to use Equations (52) and (54) and the following
relationship

Ė =
δL
δq

q̇ . (56)

As earlier, one can consider E as an “upgraded” version of the energy, which besides the
energy E of the original unconstrained system contains a contribution of the energy related
to the control function χ(t). Motion along the constraint Φ = 0 results in the change in
E, which is compensated for by the contribution of the control parameter variable to the
total energy.

Let us demonstrate that in a general case, if the solution has entered into the supercrit-
ical regime it generically cannot return to its subcritical phase. Let us suppose the opposite:
at some moment of time t1, the supercritical solution leaves the constraint. Since for t > t1
the control function χ(t) should identically vanish, at the point of the transition one has
χ = χ̇ = 0. If ϕ,q̇ and δϕ/δq are finite, Equation (53) implies that the functions χ̇(t) and
χ(t) cannot jump. However, for a general solution of (53) which vanishes at t = t1, its
first derivative does not necessarily vanish at this point, and the condition χ = χ̇ = 0 is
not valid, except for the cases which form a valid boundary value problem. This property
makes the case when the constraint function Φ contains second derivatives quite different
from the earlier considered model with Φ(q, q̇).

One can expect that this is a generic property of models with inequality constraints
that contain second and/or higher derivatives of q. In other words, if a solution enters
from the subcritical regime to the supercritical one, then it is highly likely that the solution
remains in the supercritical phase forever.
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7. A Harmonic Oscillator in a Limiting Acceleration Model

To illustrate the properties of a system with an inequality constraint containing second
derivatives, let us consider a simple model of a non-relativistic harmonic oscillator with a
limiting acceleration. Specifically, we assume that the acceleration of the oscillator should
always be smaller than some positive quantity, which we denote by a. We choose the
corresponding constraint function Φ as follows:

Φ = q̈− a , (57)

and write the action in the form

S =
∫

dt
[

1
2
(q̇2 − q2) + χ(Φ + ζ2)

]
. (58)

We assume that the oscillator starts its motion at t = 0 with q = 0 and its velocity is
q̇ = −q0. Then, the equation of motion of such an unconstrained oscillator in the subcritical
regime is

q(t) = −q0 sin(t) . (59)

Its acceleration q̈ = q0 sin(t) grows in time. If q0 < a, the oscillator acceleration always
remains less than the critical one, so that its motion remains subcritical forever.

In the case where q0 > a, its behavior is quite different. Denote by t0 the moment of
time where

sin(t0) = a/q0 . (60)

A coordinate q and velocity of the oscillator at this moment are

q(t0) = −a, q̇(t0) = −
√

q2
0 − a2 . (61)

After t = t0 the oscillator moves with a constant acceleration a and one has

q(t) =
1
2

a(t− t0)
2 −

√
q2

0 − a2 (t− t0)− a . (62)

Equation (53) for the control function χ(t) takes the form

χ̈ = q̈ + q , (63)

where q(t) is given by (62). Equation (63) can be easily integrated and one has

χ(t) =
1
6
(t− t0)

3
[

1
4

a(t− t0)−
√

q2
0 − a2

]
. (64)

We used here the initial conditions χ(t0) = χ̇(t0) = 0.
The control function becomes zero again at t = t1

t1 − t0 =
4
a

√
q2

0 − a2 . (65)

However, at this point, the velocity of the oscillator does not vanish and is

χ̇(t1) =
8
3

[
(q0/a)2 − 1

]3/2
6= 0 . (66)

Therefore, the conditions χ(t1) = 0 and χ̇(t1) = 0 cannot be satisfied simultaneously. This
means that in the model with a limiting acceleration, the oscillator after it enters from the
subcritical regime into the supercritical one remains in the supercritical regime forever.
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8. Summary and Discussion

In this paper, we discussed the properties of dynamical systems with inequality
constraints. We demonstrated that such constraints can be taken into account by a proper
modification of the original action of the unconstrained theory. We first discussed a theory
with Lagrangian L(q, q̇) and inequality constraint of the form Φ(q, q̇) ≤ 0. The dynamics of
such a system is described by the extended Lagrangian L = L + χ(Φ + ζ2), which contains
two Lagrange multipliers, χ(t) and ζ(t). The motion of a system has two regimes, sub- and
supercritical ones. A transition between these regimes occurs at the points of intersection
of the constant energy E line and the constraint curve Φ in the phase plane (q, q̇). For the
subcritical solution, as well as at the transition point, the control parameter χ(t) vanishes.
During the supercritical phase, the energy E(q, q̇) is not conserved, while the total energy
E(q, q̇, χ), which contains a contribution of the control function, is an integral of motion.

To illustrate the properties of dynamical systems with an inequality constraint, we
considered a simple model of a harmonic oscillator with an imposed condition that its
velocity cannot be larger than some fixed value. Using dimensionless units, this velocity
can be chosen to be equal to 1. We showed that if the amplitude q0 of the oscillator is less
than 1, its periodic motion does not have a supercritical phase, while for q0 > 1 it contains
both phases, sub- and supercritical ones. We compared the motion of the oscillator in the
limiting velocity model with the motion of a relativistic oscillator and demonstrated that
their properties are quite similar. In this sense, the model with a limiting velocity constraint
can be considered to be a “poor person’s” version of special relativity. Certainly, this model
does not pretend to substitute it, but it plays a role of a phenomenological model that
captures some features of special relativity where the limiting nature of the speed of light
is important.

We demonstrated that already in a simple model of the oscillator with limiting velocity,
there arises an interesting question. If such an oscillator moving in the supercritical regime
reaches a point where a transition to the subcritical regime becomes possible, there still
exists another branch in which the supercritical motion continues. We demonstrated that a
simple modification of the action allows one to escape this ambiguity. A similar problem
may exist for general dynamical systems with inequality constraints. An interesting ques-
tion is whether a proposed method based on the modified action can be used in such cases
as well.

At the end of the paper, we discussed inequality constraints which contain higher
than the first derivatives of the dynamical variables. For such systems, the differential
equation for the control function is of the second or higher order in derivatives and for
the transition between sub- and supercritical regimes more than one condition should be
satisfied. The conditions can be satisfied either for the transition from sub- to supercritical
phase or for the inverse transition. However, one can expect that a situation where there
exists more than one transitions between the sub- and supercritical phases is rather special
and it requires some additional conditions.

Another property of systems with higher than first derivative inequality constraints
which distinguishes them from the case of the first-order constraints exists. In the theory
with an inequality constraint which contains only first-order derivatives, in order to describe
a motion in the supercritical regime, one needs to specify the initial value of the variables
q, q̇, χ. However, the constraint imposes a relationship on these quantities, so that only two
independent variables are present. This means that in this sense, the system still has only
one degree of freedom, as it has in the subcritical regime.

For constraints with higher derivatives, the situation is quite different. For example,
if the constraint contains the second derivatives q̈, a system in the supercritical phase is
described by two second-order equations for q and χ. It requires four initial conditions,
and in this sense, the system has two degrees of freedom, instead of one, which applies
to the subcritical regime. If such a system starts its motion in the subcritical regime, then
χ = χ̇ = 0. At the transition point to the supercritical regime, this uniquely determines the
initial conditions for the control function χ, and further evolution of the system depends
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only on two initial value parameters q0 and q̇0. However, if the evolution starts in the
supercritical regime, it is not clear how the extra degrees of freedom should be fixed. Let
us remark that a similar situation occurs in systems discussed in a recent paper [16] in a
different context. Maybe this is because, in both cases, the Hamiltonian analysis is in some
sense “ill-posed” (see, e.g., [17,18]).

In our discussion, we focused on systems with one degree of freedom with a single
inequality constraint. It is possible to extend this analysis to more general systems that
have more than one degree of freedom and several inequality constraints. One can expect
that the behavior of such systems is more complicated. In particular, besides a subcritical
regime, there may exist several supercritical regimes with possible transitions between
them. The study of such systems is quite an interesting problem.

Let us mention that models with inequality constraints have an interesting application
to the recently proposed models of gravity with limiting curvature. It is well known and
widely accepted that classical General Relativity is an incomplete theory. In particular, both
in cosmology and black holes, it predicts the existence of singularities under physically
realistic assumptions. Famous theorems of Penrose and Hawking demonstrate that the
singularities are a common property of such solutions [19–21]. For known black hole and
cosmological solutions of the Einstein equations, a formation of the singularity is usually
related to the infinite growth of the curvature invariants. There exist plenty of publications
where different ways of modifying gravity equations were proposed to prevent curvature
singularity formation. Quite a long time ago, Markov proposed a general principle of
the limiting curvature [22,23] (see also [24]). According to this principle, the curvature
invariants for solutions of consistent gravity equations should not infinitely grow, and their
value should be restricted by some universal quantity related to a fundamental length.
If such a principle is valid, then it might have quite interesting consequences, such as
a possibility of a new universe formation inside black holes and bouncing cosmologies.
Certainly, it would be nice to construct a modified gravity model that automatically satisfies
the limiting curvature principle. However, despite many efforts, we still do not have such
a theory that is consistent and satisfies everybody. In this situation, it might be useful to
impose the constraints on the curvature growth by modifying the Einstein action similarly
to as it was described in this paper.

Let us note that in a general case, this is not a simple problem. Even if one decides to
use only the scalars, which are polynomials of the curvature, one finds that there exists quite
a multitude of such independent invariants. However, for a special case of homogenous
isotropic cosmologies and spherically symmetric black holes, such an approach becomes
possible. This happens because in both cases, one can use the mini-superspace approach.
Specifically, by using symmetries of these problems, one can present the corresponding
metrics in a form that contains a small number of arbitrary functions of one variable, so that
the Einstein–Hilbert action becomes a function of these metric functions. The number of the
independent curvature invariants for such a mini-superspace is greatly reduced and they
depend on the metric functions and their derivatives. In other words, a modified gravity
with curvature constraints takes a form similar to that discussed in the present paper. Such
limiting curvature models were proposed and studied in connection with the singularity
problems in cosmology and in black holes in Einstein gravity in recent papers [12–15].

Let us emphasize that the basic idea of this approach is to find some robust predictions
of the (still unknown) theory of gravity where curvature cannot be infinitely large. In this
sense, gravity models with limiting curvature serve as some phenomenological models
that can be used to study predictions of a more fundamental modified gravity theory.
In some sense, they are similar to the limiting velocity model of an oscillator, which is a
“poor person’s” version of the complete consistent theory of special relativity. Models with
inequality constraints considered in this paper are rather simple and were used only to
illustrate some basic properties of such systems. It would be interesting to apply a similar
approach for other physically interesting problems.
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Notes
1 Quite often, one sees a more general definition of holonomic constraints. Specifically, one calls holonomic a special class of

velocity-dependent constraints, which are integrable in the sense that they can be reduced to the velocity-independent case (see
e.g., [3] and references therein.).
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