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Abstract: When discussing the gauge symmetries of any theory, the Henneaux–Teitelboim trans-
formations are often underappreciated or even completely ignored, due to their on-shell triviality.
Nevertheless, these gauge transformations play an important role in understanding the structure of
the full gauge symmetry group of any theory, especially regarding the subgroup of diffeomorphisms.
We give a review of the Henneaux–Teitelboim transformations and the resulting gauge group in the
general case and then discuss its role in the applications to the class of topological theories called nBF
models, relevant for the constructions of higher gauge theories and quantum gravity.

Keywords: gauge symmetry; trivial gauge transformations; nBF theory; Chern–Simons theory;
diffeomorphism symmetry

1. Introduction

In modern theoretical physics, gauge symmetries play a very prominent role. The
two most-fundamental theories we have, which describe almost all observed phenomena
in nature—namely Einstein’s theory of general relativity and the Standard Model of ele-
mentary particle physics—are gauge theories. From Maxwell’s electrodynamics to various
approaches to quantum gravity, gauge theories play a central role, and gauge symmetry
represents one of their most-important aspects. In light of this, there is one class of gauge
transformations that is often slightly neglected in the literature, due to their specific nature
and properties.

In order to introduce this particular gauge symmetry in the most-elementary way
possible, let us look at the following simple example. Every action S[φ1, φ2], which depends
on the fields φ1(x) and φ2(x), is invariant under the following gauge transformation:

δ0φ1(x) = ε(x)
δS

δφ2(x)
, δ0φ2(x) = −ε(x)

δS
δφ1(x)

, (1)

as one can see by calculating the variation of the action:

δS[φ1, φ2] =
δS
δφ1

δ0φ1 +
δS
δφ2

δ0φ2 = 0 . (2)

This gauge symmetry exists for every action that is a functional of at least two fields,
irrespective of any other gauge symmetry that the action may or may not have. In the
literature, this symmetry is often called trivial gauge symmetry, since the form variations of
the fields are identically zero on-shell. This is in contrast to all other gauge symmetries,
which perform some nontrivial change of the fields on-shell.

It should be noted that, being trivial on-shell, the above transformations cannot
play a role in obtaining any predictions about observables in a given theory, due to the
intrinsic on-shell nature of the physical observables. For example, in practical situations
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of scattering experiments and measurements of cross-sections, this trivial symmetry is
irrelevant. Nevertheless, when constructing a new theory, in general, the off-shell properties
of the theory are important. As a typical example, path integral quantization prescription
depends not only on the classical equations of motion, but on the whole action of the theory.
In this sense, while these trivial transformations are not relevant for making predictions,
they do have methodological relevance and value in theory construction, despite their
on-shell triviality.

For example, these transformations in fact represent a very important part of the
gauge symmetry for any theory and play a crucial role in various contexts, such as in
the Batalin–Vilkovisky formalism (see [1] for a review and also the original papers [2–6]),
or when discussing the diffeomorphism symmetry of the BF-like class of theories [7–11].
Furthermore, in general, a commutator of two ordinary gauge transformations will remain
an ordinary gauge transformation only up to the above trivial transformations, meaning
that the latter are important for the algebraic closure of all gauge transformations into
a group.

To the best of our knowledge, the most-complete treatment and discussion of the
above gauge transformations can be found in the book [12] by Marc Henneaux and Claudio
Teitelboim. Therefore, in this paper, we opted to call them Henneaux–Teitelboim (HT)
transformations. This naming can also be justified with the paper [7] by Gary Horowitz
(published two years before the book [12]), where the author attributes these transfor-
mations to Henneaux and Teitelboim in a footnote and thanks them “for explaining this
to me”.

Regarding terminology, we should also note that we use the terms “gauge symmetry”
and “gauge transformations” with a certain level of charity. Namely, one could argue that
there are two distinct types of local symmetries—those that are obtained by a localization
procedure from a corresponding global symmetry group (the procedure of “gauging” a
global symmetry) and those that are intrinsically local, not obtained by any such localization
procedure. It is not known whether HT symmetry belongs to the former or the latter class,
since a global symmetry whose localization would give rise to HT transformations has not
yet been shown to exist. Either way, in the literature, there is no established terminology
that distinguishes the two classes of symmetries, and most often, both are called “gauge
symmetries”. Therefore, in what follows, for a lack of better terminology, we will adhere to
this practice and describe HT transformations as a gauge symmetry.

In some of the modern approaches to the problem of quantum gravity based on the
spinfoam formalism of loop quantum gravity [13,14], as well as in other applications of
the so-called higher gauge theory (see [15] for a review and [16] for an application to
quantum gravity), the description of gauge symmetry is being extended from the notion
of a Lie group to different algebraic structures, called 2-groups, 3-groups, and in general,
n-groups [17–27]. In this context, it is important to revisit and study the specific class of HT
gauge symmetries, since they provide a nontrivial insight into the properties of these more
general algebraic structures, as well as the physics behind the symmetries they describe.

The purpose of this paper is to provide a review of HT transformations in general and
then discuss their properties and applications in two concrete models—the Chern–Simons
theory and the 3BF theory. The Chern–Simons case is simple enough to serve as an illustra-
tive toy example, while the 3BF theory represents a basis for the construction of a realistic
theory of quantum gravity with matter within the context of the spinfoam formalism (see
also [16,28–32]), discussing that its HT symmetry represents an important stepping stone
towards the goal of a more realistic theory. The main result of this work represents a
clarification of the structure of the gauge symmetry of a pure topological 3BF action, as
well as the corresponding symmetry for the constrained 2BF action, which is classically
equivalent to Einstein’s general relativity. We also discuss in detail the relationship between
diffeomorphism symmetry and the HT symmetry for the Chern–Simons and 3BF theories
and offer some conceptual suggestions regarding the notion of gauge symmetry as it is
being used in the literature.
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The layout of the paper is as follows. In Section 2, we give a review of the general
theory of HT transformations and their main properties. Section 3 is devoted to the example
of HT symmetry in Chern–Simons theory, which is convenient due to its simplicity. In
Section 4, we discuss the main case of HT symmetry in the 3BF and 2BF theories, which
are important for applications in quantum gravity models. Finally, Section 5 contains an
overview of the results, future research directions, and some concluding remarks.

The notation and conventions in the paper are as follows. When important, we assume
the (−,+,+,+) signature of the spacetime metric. The Greek indices from the middle of
the alphabet, λ, µ, ν, . . . , represent spacetime indices and take values 0, 1, . . . , D− 1, where
D is the dimension of the spacetime manifoldMD under consideration. The Greek indices
from the beginning of the alphabet, α, β, γ, . . . , represent group indices, as well as Latin
indices a, b, c, . . . and uppercase Latin indices A, B, C, . . . and I, J, K, . . . . All these indices
will be assigned to various Lie groups under consideration. Lowercase Latin indices from
the middle of the alphabet, i, j, k, . . . , are generic and will be used to count all fields in a
given theory or for some other purpose depending on the context. Throughout the paper,
we denote the space of algebra-valued differential p-forms as

Ap(M, a) ≡ Λp(M)⊗ a ,

where Λp(M) is the ordinary space of differential p-forms over the manifoldM, while a is
some Lie algebra.

2. Review of HT Symmetry

We begin by studying some basic general properties of HT transformations. After
the definition, we demonstrate that the group of HT transformations represents a normal
subgroup of the total gauge group of a given theory, and we discuss the triviality of HT
transformations and that they exhaust all possible trivial transformations. Finally, before
moving on to concrete theories, we study the subtleties of the dependence of HT symmetry
on the choice of the action.

2.1. Definition of HT Transformations

Given an action S[φi] as a functional of fields φi(x) (i ∈ {1, . . . , N} where we assume
N > 2), the infinitesimal HT transformation is defined as

φi(x)→ φ′i(x) = φi(x) + δ0φi(x) , (3)

where the form variations of the fields are defined as

δ0φi(x) = εij(x)
δS

δφj(x)
. (4)

The variation of the action under HT transformations then gives

δS =
δS
δφi δ0φi =

δS
δφi

δS
δφj εij . (5)

If the HT parameters are chosen to be antisymmetric,

εij(x) = −εji(x) , (6)

the variation of the action (5) is identically zero, and HT transformations (4) represent a
gauge symmetry of the theory.

The most-striking thing in the above definition is the fact that we did not specify the
action in any way. Aside from the assumption N > 2, which excludes only actions describ-
ing a single real scalar field, every action is invariant with respect to the HT transformations.
In other words, HT transformations are a gauge symmetry of essentially every theory.
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The second striking property of the definition is that the form variations of fields
become zero on-shell, according to (4). In this sense, the HT symmetry is sometimes called
trivial symmetry, in contrast to ordinary gauge symmetries that a theory may have, which
transform the fields in a nontrivial way on-shell. Triviality is also the reason why HT gauge
symmetry does not feature in any way in the Hamiltonian analysis of a theory, so only the
presence of ordinary gauge symmetries can be deduced from the Hamiltonian formalism.

2.2. HT Symmetry Group and Its Properties

There are two general properties that can be formulated for HT transformations. The
first is that HT transformations form a normal subgroup within the full group of gauge
symmetries, while the second is that HT transformations exhaust the set of all possible
trivial transformations. The consequence of these properties is that one can always write
the total symmetry group of any theory as

Gtotal = Gnontrivial n GHT , (7)

where Gnontrivial is the symmetry group of ordinary gauge transformations (if there are any),
GHT is the HT symmetry group, and the symbol n stands for a semidirect product. One
can also reformulate (7) as

Gnontrivial = Gtotal/GHT , (8)

so that the group of ordinary gauge symmetries is represented as a quotient group.
The easiest way to demonstrate (7) is to prove that the Lie algebra corresponding to

GHT represents an ideal within the Lie algebra corresponding to Gtotal. To that end, pick an
arbitrary form variation of fields that represents a symmetry of the action and write it in
the form

δ̂0φi(x) = Fi(x) , such that δ̂S =
δS
δφi Fi ≡ 0 . (9)

Then, using (4), we can take concatenated variations of this form variation and the HT form
variation as

δ0δ̂0φi =
δFi

δφj
δS
δφk εjk ,

and

δ̂0δoφi =
δ

δφk

(
εij δS

δφj

)
Fk =

δεij

δφk
δS
δφj Fk + εij δ

δφj

(
δS
δφk Fk

)
− εij δS

δφk
δFk

δφj .

The term in the second parentheses is zero by (9), so the commutator of two-form varia-
tions becomes

[δ0 , δ̂0]φ
i =

(
εjk δFi

δφj − εji δFk

δφj −
δεik

δφj Fj

)
δS
δφk , (10)

which is again an HT transformation, since the expression in the parentheses is antisym-
metric with respect to indices i, k. Therefore, the commutator is always an element of HT
algebra, which means that HT algebra itself is an ideal of the total symmetry algebra. At
the Lie group level, this translates into (7).

The second general property is the statement that there are no other trivial transfor-
mations beside the HT transformations. Assuming that some transformation described by
the form variation δ̄0φi is a gauge symmetry of the action that vanishes on-shell, i.e., that
it satisfies

δS
δφi δ̄0φi = 0 , and δ̄0φi ≈ 0 ,

then one can prove that this transformation is an HT transformation, i.e., there exists a
choice of antisymmetric HT parameters εij such that the form variation δ̄0φi is of type (4):

δ̄0φi = εij δS
δφj .

(11)
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Provided certain suitable regularity conditions for the action S, this statement can be
rigorously formulated as a theorem. However, we omitted the proof since it is technical
and off topic for the purposes of this paper. The interested reader can find the details of
both the theorem and the proof in [12], Appendix 10.A.2.

To sum up, the first property (10) tells us that one can always factorize the total gauge
symmetry group into the form (7), while the second property (11) guarantees that the
quotient group (8) contains only nontrivial gauge transformations. This factorization of the
total symmetry group is a key result that lays the groundwork for any subsequent analysis
of HT transformations in particular and gauge symmetry in general.

2.3. Dependence of HT Symmetry on the Action

The final property of HT transformations that needs to be discussed is their depen-
dence on the choice of the action. Suppose we are given some action Sold[φ

i], where
i ∈ {1, . . . , N}, which has the corresponding HT transformation described as in (4):

δold
0 φi = εij δSold

δφj . (12)

Now, suppose that we modify that action into another one, Snew[φi, χk], where k ∈ {N +
1, . . . , N + M}, by adding an extra term to the old action:

Snew[φ
i, χk] = Sold[φ

i] + Sextra[φ
i, χk] . (13)

Here, χj are additional fields that may be introduced into the new action. The HT transfor-
mation corresponding to the new action can be written in the block-matrix form, made of
blocks of sizes N and M, as follows: δnew

0 φi

δnew
0 χk

 =

 εij ζ il

θkj ψkl




δSnew

δφj

δSnew

δχl

 ,
i, j ∈ {1, . . . , N} ,
k, l ∈ {N + 1, . . . , N + M} .

(14)

Here, ε = −εT is an antisymmetric N× N block of parameters εij, ζ is a rectangular N×M
block of parameters ζ il , θ is a rectangular M × N block such that θ = −ζT , and finally,
ψ = −ψT is an antisymmetric M×M block of parameters ψkl . Overall, the total parameter
matrix is antisymmetric, as required by (6).

The question one can now study is what is the relation between the two HT gauge
symmetry groups Gold

HT and Gnew
HT that correspond to the two actions. In practice, this

question is most often relevant in cases when one introduces the piece Sextra as a gauge-
fixing term, whose purpose is to break the ordinary gauge symmetry down to its subgroup:

Gnew
nontrivial ⊂ Gold

nontrivial .

Naively, one might expect a similar relationship between the HT symmetry groups, Gnew
HT ⊂

Gold
HT . However, looking at (12) and (14), this is obviously wrong. Namely, if M > 1, the HT

symmetry of the new action is larger than the HT symmetry of the old action. Counting the
number of independent parameters of both, one easily sees that

dim(Gold
HT) =

N(N − 1)
2

, dim(Gnew
HT ) =

(N + M)(N + M− 1)
2

,

so that the only possible relationship would be the opposite, Gold
HT ⊂ Gnew

HT . However, in
fact, this can also be shown to be wrong. Namely, one can choose the extra parameters ζ, θ
and ψ to be zero in (14), reducing it to the form that is formally similar to (12):

δnew
0 φi = εij δSnew

δφj .
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However, taking into account the relationship (13) between the two actions, the HT trans-
formation takes the form

δnew
0 φi = εij δSold

δφj + εij δSextra

δφj ,

which is explicitly different from (12), due to the presence of the term Sextra in the action.
Therefore, the gauge group Gold

HT is not a subgroup of Gnew
HT either.

The overall conclusion is that introducing additional terms to the action changes the
total gauge symmetry in a nontrivial way. On the one hand, the ordinary gauge symmetry
group typically becomes smaller due to explicit symmetry breaking by the extra term. On
the other hand, the HT gauge symmetry group may become larger if the extra term contains
additional fields, but either way becomes different, as a consequence of the very presence
of the extra term. Given this, one can conclude that the total symmetry groups for the
two actions will always be mutually different:

Gnew
total = G

new
nontrivial n G

new
HT 6= Gold

total = G
old
nontrivial n G

old
HT .

Specifically, one cannot claim that the group Gold
total is being broken down into Gnew

total as its
subgroup; such a relationship may hold exclusively for the quotient groups of ordinary
gauge transformations.

In the next two sections, we will turn to explicit examples of all general properties
and features of the HT symmetry that have been discussed above. Moreover, we will also
discuss some additional particular properties, such as the fact that some nontrivial gauge
subgroups of Gtotal are not simultaneously subgroups of Gnontrivial, which is a consequence
of the semidirect product in (7). One such example will be the diffeomorphism symmetry
in the Chern–Simons and 3BF actions.

Let us conclude this section with one conceptual comment. Throughout the literature,
the typical practice is to always take the quotient between the total and HT symmetry
groups as in (8), in order to isolate the nontrivial gauge transformations, and call the
latter simply as the “gauge symmetry” of a theory. This approach is in fact advocated
for in [12]. However, we believe that this practice can be misleading and that one should
instead describe the group Gtotal as “the gauge symmetry” of a theory, explicitly including
the HT subgroup as a legitimate gauge symmetry group. Namely, despite the fact that
it is often called “trivial”, the consequences of its presence in Gtotal are far from trivial.
Granted, it may often be enough to discuss the gauge symmetry on-shell, and then, one
can indeed calculate all symmetry transformations only “up to equations of motion”, with
no mention of the HT subgroup. However, whenever one needs to discuss the gauge
transformations off-shell, the HT subgroup simply cannot be ignored anymore. Typical
situations include the Batalin–Vilkovisky formalism [1], various generalizations of gauge
symmetry in the context of higher gauge theories and quantum gravity [33], and even the
traditional contexts such as the Coleman–Mandula theorem [34]. The situations in which
HT transformations play a significant role may be rare, but nevertheless, they tend to be
important. Thus, in our opinion, it would be prudent to always be aware that, for any given
theory, its total gauge symmetry group is in fact bigger, and more feature-rich, than just the
group of ordinary gauge transformations that are typically discussed in the literature.

3. HT Symmetry in Chern–Simons Theory

As an illustrative example of the general properties of HT symmetry from the previous
section, let us discuss the HT transformations for the simple case of the Chern–Simons
theory. The Chern–Simons theory represents an excellent toy example since it is well known
in the literature and most readers should be familiar with it.
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Given any Lie group G, its corresponding Lie algebra g, and a three-dimensional
manifoldM3, the Chern–Simons theory can be defined as a topological field theory over a
trivial principal bundle G →M3, given by the action:

SCS =
∫
M3

〈A ∧ dA〉g +
1
3
〈A ∧ [A ∧ A]〉g . (15)

Here, A ∈ A1(M3, g) is a g-valued connection one-form over a manifoldM3, and 〈_ , _〉g
is a G-invariant symmetric nondegenerate bilinear form on g. One often rewrites the
Chern–Simons action within the framework of the enveloping algebra of g, introducing the
notion of a trace as

Tr(XY) ≡ 〈X , Y〉g ,

for every X, Y ∈ g. Then, the Chern–Simons action can be rewritten as

SCS =
∫
M3

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A
)

, (16)

where, for the second term, one employs the identity Tr(X[Y, Z]) = Tr(XYZ)− Tr(XZY)
for every X, Y, Z ∈ g.

The gauge symmetry of the Chern–Simons action consists of G-gauge transformations,
determined with the parameters εg

I(x). Using the basis of generators TI to expand the
connection A into components as

A = AI
µ(x)dxµ ⊗ TI ,

the form variation of the connection components AI
µ corresponding to gauge transforma-

tions can then be written as

δ0 AI
µ = ∂µεg

I − f JK
Iεg

J AK
µ , (17)

where f JK
I are the structure constants corresponding to the generators TI . Therefore, the

gauge symmetry of the Chern–Simons theory is usually quoted as the initially chosen Lie
group G:

GCS = G . (18)

However, as we have seen in the previous section, this is not the complete set of gauge
transformations, and the total gauge group should in fact be

Gtotal = GCS n GHT . (19)

Let us define the HT transformations for the Chern–Simons action (15). If we denote
the dimension of the Lie algebra g as dim(g) = p, the number of independent field
components AI

µ is N = 3p. The HT transformation is then defined with the HT parameters
εI J

µν(x) as

δ0 AI
µ = εI J

µν
δS

δAJ
ν

. (20)

The requirement that the variation of the action vanishes:

δS =
δS

δAI
µ

δS
δAJ

ν
εIJ

µν = 0 ,

enforces the antisymmetry restriction on the HT parameters:

εI J
µν = −εJ I

νµ .

Note that this equation can be satisfied in two different ways—the parameters can be either
antisymmetric with respect to group indices I J and symmetric with respect to spacetime
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indices µν, or vice versa. We, therefore, have two possible choices for their symmetry
properties. The first possibility is defined as

εI J
µν = εI J

νµ = −εJ I
µν = −εJ I

νµ , (21)

while the second possibility is defined as

εI J
µν = εJ I

µν = −εI J
νµ = −εJ I

νµ . (22)

Varying the action, one obtains an explicit form of the HT transformation:

δ0 AI
µ = εI J

µνενρσ
(

∂ρ AJ σ − ∂σ AJ ρ + fKL J AK
ρ AL

σ

)
. (23)

In order to demonstrate that HT transformations have highly nontrivial implications,
despite being trivial on-shell, it is instructive to discuss diffeomorphisms. Namely, looking
at the action (15), one expects that the theory has diffeomorphism symmetry, since it is
formulated in a manifestly covariant way using differential forms. However, one can check
that diffeomorphisms are not a subgroup of the ordinary gauge symmetry group GCS given
by (18), but nevertheless can be obtained as a subgroup of the total gauge group (19). In
other words, one can demonstrate that

Di f f (M3) 6⊂ GCS , but Di f f (M3) ⊂ Gtotal = GCS n GHT .

Let us examine this in detail. The diffeomorphism transformation

xµ → x′µ = xµ + ξµ(x) , (24)

determined by the parameter ξµ(x) represents a subgroup Di f f (M) of the full gauge
symmetry of some given action, if for every field φ(x) in the theory and every choice of
diffeomorphism parameters ξµ(x), there exists a choice of the gauge parameters εgauge(x)
and the HT parameters εHT(x), such that:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (25)

In other words, if a theory has diffeomorphism symmetry, the diffeomorphism form
variations of all the fields in the theory should be expressible in terms of their ordinary
gauge and HT form variations.

In the case of Chern–Simons theory, this can be demonstrated explicitly. If one chooses
the gauge parameters εg

I and the HT parameters εI J
µν as

εg
I = −ξλ AI

λ , εI J
µν = −1

2
ξλελµνgI J , (26)

where gI J is the inverse of gI J ≡ 〈TI , TJ〉g, one can apply Equations (25) using (17) and (23)
to reproduce precisely the well-known diffeomorphism form variation of the connection
AI

µ:
δ0

diff AI
µ = −AI

λ∂µξλ − ξλ∂λ AI
µ . (27)

Therefore, as expected, despite the fact that Di f f (M3) 6⊂ GCS, one obtains that Di f f (M3) ⊂
Gtotal = GCS n GHT . Note that the choice of HT parameters in (26) is nontrivial, which
emphasizes the role of HT transformations and the fact that the full group of gauge sym-
metries is Gtotal rather than GCS. As we shall see in the next section, this property is not
specific only to the Chern–Simons theory.

4. HT Symmetry in 3BF Theory

After discussing the Chern–Simons theory as a toy example, we move to the more
important case of the 3BF theory. This theory is relevant for building models of quantum
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gravity; see [8,20,21,33,35]. Therefore, it is important to study its gauge symmetry and, in
particular, the role of HT transformations.

4.1. Review of the 3BF Theory

Analogous to the fact that Chern–Simons theory is a topological theory based on a
Lie group and a 3-dimensional manifold, the 3BF theory is also a topological theory based
on a notion of a three-group and a 4-dimensional manifold. The notion of a three-group
represents a categorical generalization of the notion of a group, in the context of higher
gauge theory (HGT); see [15] for a review and motivation. For the purpose of defining the
3BF theory, we are interested in particular in a strict Lie three-group, which is known to be
isomorphic to a so-called Lie two-crossed module; see [17–19] for details.

A Lie two-crossed module, denoted as (L δ→ H ∂→ G ,B , {_ , _}pf), is an algebraic
structure specified by three Lie groups G, H, and L, together with the homomorphisms
δ : L → H and ∂ : H → G, an action B of the group G on all three groups, and a
G-equivariant map, called the Peiffer lifting:

{_ , _}pf : H × H → L .

In order for this structure to form a two-crossed module, the structure constants of algebras
g, h, and l (the Lie algebras corresponding to the Lie groups G, H, and L, respectively), as
well as the maps ∂ and δ, the action B, and the Peiffer lifting, must satisfy certain axioms;
see [20] for details.

Given a two-crossed module and a four-dimensional compact and orientable spacetime
manifoldM4, one can introduce the notion of a trivial principal three-bundle, in analogy
with the notion of a trivial principal bundle constructed from an ordinary Lie group and a
manifold; see [15]. Then, one can introduce the notion of a three-connection, an ordered
triple (α, β, γ), where α, β, and γ are algebra-valued differential forms, α ∈ A1(M4, g),
β ∈ A2(M4, h), and γ ∈ A3(M4, l); see [17–19]. The corresponding fake hree-curvature
(F ,G,H) is defined as:

F = dα + α ∧ α− ∂β , G = dβ + α ∧B β− δγ ,

H = dγ + α ∧B γ + {β ∧ β}pf .
(28)

Then, for a four-dimensional manifoldM4, one can define the gauge-invariant topological

3BF action, based on the structure of a two-crossed module (L δ→ H ∂→ G ,B , {_ , _}pf), by
the action

S3BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l , (29)

where B ∈ A2(M4, g), C ∈ A1(M4, h), and D ∈ A0(M4, l) are Lagrange multipliers and
F ∈ A2(M4, g), G ∈ A3(M4, h), and H ∈ A4(M4, l) represent the fake three-curvature
given by Equation (28). The forms 〈_ , _〉g, 〈_ , _〉h, and 〈_ , _〉l are G-invariant symmetric
nondegenerate bilinear forms on g, h, and l, respectively. The action (29) is an example of
the so-called higher gauge theory.

By choosing the three bases of generators τα ∈ g, ta ∈ h, and TA ∈ l of the three respec-
tive Lie algebras, one can expand all fields in the theory into components as

B =
1
2

Bα
µν(x)dxµ ∧ dxν ⊗ τα , α = αα

µ(x)dxµ ⊗ τα ,

C = Ca
µ(x)dxµ ⊗ ta , β =

1
2

βa
µν(x)dxµ ∧ dxν ⊗ ta ,

D = DA(x)TA , γ =
1
3!

γA
µνρ(x)dxµ ∧ dxν ∧ dxρ ⊗ TA .
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One can also make use of the following notation for the components of all maps present in
the theory, in the same three bases:

[τα , τβ] = fαβ
γτγ , gαβ = 〈τα , τβ〉g , τα B τβ = Bαβ

γτγ , δTA = δA
ata ,

[ta , tb] = fab
ctc , gab = 〈ta , tb〉h , τα B ta = Bαa

btb , ∂ta = ∂a
ατα ,

[TA , TB] = fAB
CTC , gAB = 〈TA , TB〉l , τα B TA = BαA

BTB , {ta , tb}pf = Xab
ATA .

The complete gauge symmetry of the 3BF action was studied in [8] using the tech-
niques of Hamiltonian analysis. It consists of five types of gauge transformations, G-, H-,
L-, M-, and N-gauge transformations, determined with the independent parameters εg

α(x),
εh

a
µ(x), εl

A
µν(x), εm

α
µ(x), and εn

a(x), respectively. The form variations of the fields B, C,
D, α, β, and γ, obtained in [8] are given as follows:

δ0Bα
µν = fβγ

αεg
βBγ

µν + 2Ca[µ|εh
b
|ν] Bβb

agαβ − DA BβB
Aεl

B
µνgαβ − 2∇[µ|εm

α
|ν]

+βbµν Bβa
bεn

agαβ ,

δ0Ca
µ = Bαb

aεg
αCb

µ + 2DAX(ab)
Aεh

b
µ − ∂a

αεm
α

µ −∇µεn
a ,

δ0DA = BαB
Aεg

αDB + δA
aεn

a ,

δ0αα
µ = −∂µεg

α − fβγ
ααβ

µεg
γ − ∂a

αεh
a

µ ,

δ0βa
µν = Bαb

aεg
αβb

µν − 2∇[µ|εh
a
|ν] + δA

aεl
A

µν ,

δ0γA
µνρ = BαB

Aεg
αγB

µνρ + 3!βa
[µνεh

b
ρ]X(ab)

A +∇µεl
A

νρ −∇νεl
A

µρ +∇ρεl
A

µν .

(30)

The gauge transformations (30) form a group G3BF:

G3BF = G̃ n (H̃L n (Ñ × M̃)) , (31)

where G̃ denotes the group of G-gauge transformations, the H-gauge transformations
together with the L-gauge transformations form the group H̃L, while M̃ and Ñ are the
groups of M- and N-gauge transformations, respectively. All these groups are determined
from the structure of the initial chosen two-crossed module that defines the theory; see [8]
for details.

However, as we have seen in the general theory in Section 2 and in the example
of the Chern–Simons theory in Section 3, the symmetry group G3BF determined by the
Hamiltonian analysis does not include HT transformations, and therefore, the total gauge
group should in fact be

Gtotal = G3BF n GHT . (32)

4.2. Explicit HT Transformations

Let us explicitly define the HT transformations for the 3BF action (29). If we denote
the dimensions of the Lie algebras g, h, l as

dim(g) = p , dim(h) = q , dim(l) = r ,

the number of independent field components in the theory can be counted according to the
following table:

Bα
µν Ca

µ DA αα
µ βa

µν γA
µνρ

6p 4q r 4p 6q 4r

The total number of independent field components is, therefore,

N = 6p + 4q + r + 4p + 6q + 4r = 10p + 10q + 5r .
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Let φi denote all field components, where i = 1, 2, . . . , N. We can write the fields schemati-
cally as a column-matrix with six blocks:

φi =



Bα
µν

Ca
µ

DA

αα
µ

βa
µν

γA
µνρ

 .

The HT transformation is then defined via the parameters εij(x) as

δ0φi = εij δS
δφj .

The requirement that the variation of the action vanishes enforces the antisymmetry restric-
tion on the parameters, εij = −εji, for all i, j ∈ {1, . . . , N}. These transformations can be
represented more explicitly as a tensorial 6× 6 block-matrix equation, in the following form:



δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



εαβ
µνσλ εαb

µνσ εαB
µν εαβ

µνσ εαb
µνσλ εαB

µνσλξ

µaβ
µσλ εab

µσ εaB
µ εaβ

µσ εab
µσλ εaB

µσλξ

µAβ
σλ µAb

σ εAB εAβ
σ εAb

σλ εAB
σλξ

µαβ
µσλ µαb

µσ µαB
µ εαβ

µσ εαb
µσλ εαB

µσλξ

µaβ
µνσλ µab

µνσ µaB
µν µaβ

µνσ εab
µνσλ εaB

µνσλξ

µAβ
µνρσλ µAb

µνρσ µAB
µνρ µAβ

µνρσ µAb
µνρσλ εAB

µνρσλξ





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (33)

The coefficients multiplying the variations of the action in the column on the right-hand
side are there to compensate the overcounting of the independent field components. Due
to the antisymmetry of HT parameters, all µ blocks (below the diagonal) are determined in
terms of the ε blocks (above the diagonal), as follows. For the first column of the parameter
matrix in (33), we have:

µbα
σµν = −εαb

µνσ , µBα
µν = −εαB

µν , µβα
σµν = −εαβ

µνσ ,

µbα
σλµν = −εαb

µνσλ , µBα
σλξµν = −εαB

µνσλξ .
(34)

For the second column, we have:

µBa
µ = −εaB

µ , µβa
σµ = −εaβ

µσ ,

µba
σλµ = −εab

µσλ , µBa
σλξµ = −εaB

µσλξ .
(35)

The µ parameters in the third column are determined via:

µβA
σ = −εAβ

σ , µbA
σλ = −εAb

σλ , µBA
σλξ = −εAB

σλξ , (36)

while the remaining µ parameters in the fourth and fifth columns are determined as:

µbα
σλµ = −εαb

µσλ , µBα
σλξµ = −εαB

µσλξ , µBa
σλξµν = −εaB

µνσλξ . (37)
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Finally, in addition to all these, the parameters in the blocks on the diagonal also have to
satisfy certain antisymmetry relations, specifically:

εαβ
µνσλ = −εβα

σλµν , εab
µσ = −εba

σµ , εAB = −εBA ,

εαβ
µσ = −εβα

σµ , εab
µνσλ = −εba

σλµν , εAB
µνρσλξ = −εBA

σλξµνρ .
(38)

Like in the example of the Chern–Simons theory from the previous section, these antisym-
metry relations can be satisfied in various multiple ways. All those possibilities are allowed,
as long as the identities (38) are satisfied. The final ingredient in (33) is the expressions for
the variation of the action with respect to the fields, and these are given as follows:

δS
δBβ

νρ
=

1
2

ενρστFβστ ,

δS
δCb

ρ
=

1
3!

ερστλGbστλ ,

δS
δDB =

1
4!

εστλξHBστλξ ,

δS
δαβ

ρ
=

1
2

ερτλξ

(
∇τ Bβλξ −Bβa

bCbτ βa
λξ +

1
3
BβB

ADAγB
τλξ

)
,

δS
δβb

νρ
= ενρστ

(
∇σCbτ −

1
2

∂b
αBαστ + X(ab)

ADAβb
στ

)
,

δS
δγB

µνρ
= εµνρσ(∇σDB + δB

aCaσ) .

(39)

4.3. Diffeomorphisms

As in the case of the Chern–Simons theory, it is instructive to discuss diffeomorphism
symmetry. The 3BF action (29) obviously is diffeomorphism invariant, since it is formulated
in a manifestly covariant way, using differential forms. However, one can check that
the diffeomorphisms are not a subgroup of the gauge symmetry group G3BF given by
Equation (31), but nevertheless can be obtained as a subgroup of the total gauge group (32):

Di f f (M4) 6⊂ G3BF , but Di f f (M4) ⊂ Gtotal = G3BF n GHT . (40)

Let us demonstrate this. Like in the Chern–Simons case, we want to demonstrate that the
form variation of all fields corresponding to diffeomorphisms can be obtained as a suitable
combination of the form variations for the ordinary gauge transformations (30) and the
HT transformations (33). In other words, for an arbitrary choice of the diffeomorphism
parameters ξµ(x) from (24), Equation (25) should hold in the case of the 3BF theory as well:

δ0
diff φ = δ0

gaugeφ + δ0
HTφ . (41)

Indeed, this can be shown by a suitable choice of parameters. Regarding the parame-
ters of the gauge transformations (30), the appropriate choice is given as:

εg
α = ξλαα

λ , εh
a

µ = −ξλβa
µλ , εl

A
µν = −ξλγA

µνλ ,

εm
α

µ = −ξλBα
µλ , εn

a = ξλCa
λ .

(42)
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Regarding the parameters of the HT transformations (33), we chose the following special
case, with the majority of the parameters equated to zero:

δ0Bα
µν

δ0Ca
µ

δ0DA

δ0αα
µ

δ0βa
µν

δ0γA
µνρ


=



0 0 0 εαβ
µνσ 0 0

0 0 0 0 εab
µσλ 0

0 0 0 0 0 εAB
σλξ

µαβ
µσλ 0 0 0 0 0

0 µab
µνσ 0 0 0 0

0 0 µAB
µνρ 0 0 0





1
2

δS
δBβ

σλ

δS
δCb

σ

δS
δDB

δS
δαβ

σ

1
2

δS
δβb

σλ

1
3!

δS
δγB

σλξ


. (43)

Of course, due to antisymmetry, the nonzero µ blocks take negative values of the corre-
sponding ε blocks, in accordance with (34), (35), and (36). The three independent nonzero ε
blocks are chosen as

εαβ
µνσ = ξρgαβεµνσρ , εab

µσλ = ξρgabερµσλ , εAB
σλξ = ξρgABεσλξρ . (44)

Finally, substituting (42) and (44) into (30) and (43), respectively, and then substituting all
those results into (41), after a certain amount of work, one obtains precisely the standard
form variations corresponding to diffeomorphisms:

δ0
diffBα

µν = −Bα
λν∂µξλ − Bα

µλ∂νξλ − ξλ∂λBα
µν ,

δ0
diffCa

µ = −Ca
λ∂µξλ − ξλ∂λCa

µ ,

δ0
diffDA = −ξλ∂λDA ,

δ0
diffαα

µ = −αα
λ∂µξλ − ξλ∂λαα

µ ,

δ0
diffβa

µν = −βa
λν∂µξλ − βa

µλ∂νξλ − ξλ∂λβa
µν ,

δ0
diffγA

µνρ = −γA
λνρ∂µξλ − γA

µλρ∂νξλ − γA
µνλ∂ρξλ − ξλ∂λγA

µνρ .

(45)

This establishes both relations (40), as we set out to demonstrate. We note again that the
HT transformations play a crucial role in obtaining the result, since we had to choose the
parameters (44) in a nontrivial manner.

4.4. Symmetry Breaking in 2BF Theory

Let us now turn to the topic of symmetry breaking and the way it influences HT
transformations. To that end, we studied the topological 2BF action, which is a special case
of the 3BF action (29) without the last term:

S2BF =
∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h . (46)

In order to be even more concrete, let us fix a two-crossed module structure with the
following choice of groups:

G = SO(3, 1) , H = R4 , L = {e} .

In other words, we interpret group G as the Lorentz group, group H as the spacetime
translations group, while group L is trivial, for simplicity. This choice corresponds to
the so-called Poincaré two-group; see [16] for details. Since the generators of the Lorentz
group can be conveniently counted using the antisymmetric combinations of indices from
the group of translations, instead of the G-group indices α, we shall systematically write
[ab] ∈ {01, 02, 03, 12, 13, 23}, where a, b ∈ {0, 1, 2, 3} are H-group indices, and the brackets
denote antisymmetrization. With a further change in notation from the connection 1-form
α to the spin-connection 1-form ω, the curvature 2-form F (α) to R(ω), and interpreting
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the Lagrange multiplier 1-form C as the tetrad 1-form e, the 2BF action can be rewritten in
new notation as

S2BF =
∫
M4

B[ab] ∧ R[ab] + ea ∧ Ga . (47)

The ordinary gauge symmetry group for this action has a form similar to (31):

G2BF = G̃ n (H̃ n (Ñ × M̃)) , (48)

while the total group of gauge symmetries is extended by the HT transformations, so that

Gtotal = G2BF n GHT . (49)

The explicit HT transformations are written as a tensorial 4× 4 block-matrix equation, in
the form

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ





1
4

δS
δB[cd]

σλ

δS
δec

σ

1
2

δS
δω[cd]

σ

1
2

δS
δβc

σλ


, (50)

where the usual antisymmetry rules apply. Here, we have

δS
δB[cd]

σλ

= εµνσλR[cd]µν ,

δS
δω[cd]

σ
= εσµνρ

(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δS
δec

σ
=

1
2

εσµνρ∇µβcνρ ,

δS
δβc

σλ
= εµνσλ∇µecν .

(51)

The 2BF action (46) is topological, in the sense that it has no local propagating degrees
of freedom. In this sense, it does not represent a theory of any realistic physics. In order
to construct a more realistic theory, one proceeds by introducing the so-called simplicity
constraint term into the action, which changes the equations of motion of the theory so that
it does have nontrivial degrees of freedom. An example is the action

SGR =
∫
M4

B[ab] ∧ R[ab] + ea ∧∇βa − λ[ab] ∧
(

B[ab] − 1
16πl2

p
εabcdec ∧ ed

)
, (52)

where the new constraint term features another Lagrange multiplier two-form λ[ab]. By
virtue of the simplicity constraint, the theory becomes equivalent to general relativity, in
the sense that the corresponding equations of motion reduce to vacuum Einstein field
equations (see [16] for the analysis and proof). In this sense, constraint terms of various
types are important when building more realistic theories; see [20] for more examples.

However, adding the simplicity constraint term also changes the gauge symmetry
of the theory. In particular, it breaks the gauge group G2BF from (48) down to one of its
subgroups, so that the symmetry group of the action SGR is

GGR ⊂ G2BF . (53)

This is expected and unsurprising. What is less obvious, however, is that the group of HT
transformations G̃HT of the action SGR is not a subgroup of the HT group GHT of the original
action S2BF:

G̃HT 6⊂ GHT , (54)
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which implies that
GGR

total 6⊂ G
2BF
total , (55)

despite (53).
Let us demonstrate this. Since the action (52) features an additional field λ[ab]

µν(x),
the HT transformations (50) have to be modified to take this into account and obtain the
following 5× 5 block-matrix form:

δ0B[ab]
µν

δ0ea
µ

δ0ω[ab]
µ

δ0βa
µν

δ0λ[ab]
µν


=



ε[ab][cd]
µνσλ ε[ab]c

µνσ ε[ab][cd]
µνσ ε[ab]c

µνσλ ζ [ab][cd]
µνσξ

µa[cd]
µσλ εac

µσ εa[cd]
µσ εac

µσλ ζa[cd]
µσξ

µ[ab][cd]
µσλ µ[ab]c

µσ ε[ab][cd]
µσ ε[ab]c

µσλ ζ [ab][cd]
µσξ

µa[cd]
µνσλ µac

µνσ µa[cd]
µνσ εac

µνσλ ζa[cd]
µνσξ

θ[ab][cd]
µνσλ θ[ab]c

µνσ θ[ab][cd]
µνσ θ[ab]c

µνσλ ψ[ab][cd]
µνσξ





1
4

δSGR
δB[cd]

σλ
δSGR
δec

σ

1
2

δSGR
δω[cd]

σ

1
2

δSGR
δβc

σλ

1
4

δSGR
δλ[cd]

σξ


, (56)

where
δSGR

δB[cd]
σλ

= εµνσλ
(

R[cd]µν − λ[cd]µν

)
,

δSGR

δω[cd]
σ

= εσµνρ
(
∇µB[cd]νρ − e[c|µβ|d]νρ

)
,

δSGR
δec

σ
=

1
2

εσµνρ
(
∇µβcνρ +

1
8πl2

p
εabcdλ[ab]

µνed
ρ

)
,

δSGR
δβc

σλ
= εµνσλ∇µecν ,

δSGR

δλ[cd]
σξ

= −εσξµν
(

B[cd]µν −
1

8πl2
p

εabcdea
µeb

ν

)
.

(57)

We can now investigate the differences in the form of HT transformations for the
topological and constrained theory. First, comparing (56) to (50), we see that the HT
transformations in the constrained theory feature more gauge parameters than are present
in the topological theory. Namely, compared to S2BF, the action SGR features an extra
Lagrange multiplier two-form λ[ab], which extends the matrix of HT parameters from
4× 4 blocks to 5× 5 blocks, and, therefore, introduces the new parameters ζ and ψ (and θ,
which are the negative of ζ due to antisymmetry). This means that the group G̃HT for the
constrained theory is larger than the group GHT for the topological theory. On the one hand,
this immediately proves (54) and, consequently, (55). On the other hand, one can ask the
opposite question—given that G̃HT is larger than GHT , is the latter maybe a subgroup of
the former?

The answer to this question is negative:

GHT 6⊂ G̃HT , (58)

which together with (54) implies our final conclusion:

GHT 6= G̃HT . (59)

In order to demonstrate (58), we can try to set all extra parameters ζ, ψ, and θ to zero
in (56), reducing it to the same form as (50). This would naively suggest that GHT indeed
is a subgroup of G̃HT . However, upon closer inspection, we can observe that this is not
true, since the functional derivatives (57) are different from (51). Namely, even taking into
account that the choice ζ = ψ = θ = 0 eliminates the fifth equation from (57), the first
four equations are still different from their counterparts (51) because of the presence of the
Lagrange multiplier λ[ab] in the action. The Lagrange multiplier is a field in the theory, and
generically, it is not zero, since it is determined by the equation of motion:

λ[ab]
µν = R[ab]

µν .
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Therefore, the HT transformations (56) in fact cannot be reduced to the HT transformations
(50) by setting the extra parameters equal to zero, which proves (58) and (59).

The overall consequences from the above analysis are as follows. The topological
action S2BF has a large ordinary gauge group G2BF and a small HT symmetry group GHT .
When one changes the action to SGR by adding a simplicity constraint term, two things
happen—the ordinary gauge group breaks down to its subgroup GGR, so that it becomes
smaller, while the HT symmetry group grows larger to a completely different group G̃HT . In
effect, the total gauge groups for the two actions are intrinsically different:

G2BF
total = G2BF n GHT 6= GGR

total = GGR n G̃HT ,

in the sense that neither is a subgroup of the other. This conclusion is often overlooked
in the literature, which mostly puts emphasis on the symmetry breaking of the ordinary
gauge group down to its subgroup.

Let us state here, without proof, that the action (52) represents an example of a non-
topological action, for which one can also demonstrate a property analogous to (40), that
diffeomorphisms are not a subgroup of its ordinary gauge group, but are a subgroup
of the total gauge group. Simply put, given that the simplicity constraint term in (52)
breaks the ordinary gauge symmetry group G2BF into its subgroup GGR (see (53)), one can
expect that diffeomorphisms are not a subgroup of GGR, since they are not a subgroup of
the larger group G2BF of the topological action (46). Nevertheless, since the action (52) is
written in a manifestly covariant form, diffeomorphisms are certainly a symmetry of the
action and, thus, must be a subgroup of the total gauge group GGR

total = GGR n G̃HT , in line
with the statement analogous to (40). We leave the details of the proof as an exercise for
the reader. The point of this analysis was to demonstrate that the interplay (40) between
diffeomorphisms and the HT symmetry is a generic property of a large class of actions,
including the physically relevant ones, and not limited to examples of topological theories
such as the Chern–Simons or nBF models.

As the last comment, let us remark that, in fact, almost all conclusions discussed for the
cases of the Chern–Simons, 3BF, and 2BF theories are not really specific to these concrete
cases. One can easily generalize our analysis to any other theory, and the conclusions
should remain unchanged, except maybe in some corner cases.

5. Conclusions

Let us review the results. In Section 2, we gave a short overview of HT gauge symme-
try and discussed its most-important general properties. First, the HT group is a normal
subgroup of the total group of gauge symmetries of any given action. Second, HT transfor-
mations exhaust all “trivial” (i.e., vanishing on-shell) symmetries, in the sense that there
are no trivial symmetries that are not of the HT type. Finally, adding additional terms into
the action substantially changes the HT group, often enlarging it. This may be considered
a counterintuitive result, since usually adding additional terms in the action serves the
purpose of fixing the gauge and, thus, is meant to reduce the gauge symmetry, rather than
to enlarge it.

After these general results, in Section 3, we discussed the HT symmetry of the Chern–
Simons action, which is a convenient toy example that neatly displays the general features
from Section 2. Special attention was given to the issue of diffeomorphisms, and it was
shown that, while they are not a subgroup of the ordinary gauge group of the Chern–Simons
action, they nevertheless do represent a proper subgroup of the total gauge symmetry, and
the HT subgroup plays a nontrivial role in demonstrating this.

Section 4 was devoted to the study of HT symmetry in the 2BF and 3BF theories, which
are relevant for the constructions of realistic quantum gravity models within the generalized
spinfoam approach and higher gauge theory. After a brief review and introduction to the
notion of three-groups and the 3BF theory, appropriate HT transformations were explicitly
constructed, complementing the ordinary group of gauge symmetries of the 3BF action
based on a given three-group. This gave us the total gauge symmetry group for this class
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of theories. We again discussed the issue of diffeomorphisms and demonstrated again that
they are a subgroup of the total gauge group, without being a subgroup of the ordinary
gauge group, just like in the case of the Chern–Simons theory. Finally, we introduced a
completely concrete example of the 2BF theory based on the Poincaré two-group, which
becomes classically equivalent to Einstein’s general relativity when one introduces the
additional term into the action, called the simplicity constraint. As argued in general in
Section 2, the presence of this constraint breaks the ordinary gauge group down into its
subgroup, while simultaneously enlarging the HT group, since it introduces an additional
Lagrange multiplier field into the action. This represents an explicit example of the general
statement from Section 2 that the total gauge symmetry group changes nontrivially, as
opposed to simply breaking down to its subgroup.

It should be noted that the analysis and results discussed here do not cover everything
that can be said about HT symmetry. Among the topics not covered, one can mention the
question of an explicit form of finite HT transformations, as opposed to infinitesimal ones.
Can one write down finite HT transformations in closed form, either for some conveniently
chosen action or maybe even in general? A related topic is the explicit evaluation of the
commutator of two HT transformations, or equivalently, the structure constants of the HT
Lie algebra, or in yet other words, the multiplication rule in the group GHT . Is the group
Abelian or not and for which choices of the action? Finally, one would also like to know the
topological properties of the group GHT , i.e., its global structure. All these are potentially
interesting topics for future research.

As a particularly interesting topic for future research, we should mention the nontrivial
change of the HT symmetry group when additional terms are being added to the action. In
Section 4.4, we briefly demonstrated that HT symmetry does change in a nontrivial way, on
the example action (52). Nevertheless, the precise properties and the physical interpretation
of this change are yet to be studied in full and for a general choice of the action. This topic
is the subject of ongoing research.

Finally, we would like to reiterate the differences in two possible approaches to the
notion of “the gauge symmetry” of a theory. The overwhelmingly common approach
throughout the literature is to factor out the HT group and work only with the ordinary,
nontrivial gauge group as the relevant symmetry. Admittedly, this approach does feature a
certain level of appeal due to its simplicity and economy, since it does not have to deal with
HT symmetry at all. Nevertheless, there are important situations where this is not enough,
and one really needs to take into account the total gauge symmetry group, which includes
HT transformations. As a rule, these situations always involve the gauge symmetry off-
shell, either for the purpose of quantization or otherwise. A typical example is the Batalin–
Vilkovisky formalism, where one needs to explicitly keep track of HT transformations
throughout the whole analysis. Another situation, which was discussed here in more detail,
is the question of diffeomorphism symmetry, where HT transformations are required in
order to prove that diffeomorphisms are a symmetry of the theory even off-shell. This is
especially relevant for building quantum gravity models. Finally, the third scenario would
be the discussion of the Coleman–Mandula theorem. One of the main assumptions of the
theorem is that the Poincaré group is a subgroup of the full symmetry group of the theory.
Given this assumption, and a number of other assumptions, the theorem implies that the
full symmetry group must be a direct product of the Poincaré subgroup and the internal
symmetry subgroup. In certain cases of theories (such as the 3BF action), the full symmetry
group is not explicitly expressed as such a direct product, and moreover, it is not obvious
that the Poincaré group is a subgroup of the full symmetry group to begin with. Therefore,
in order to verify whether the above assumption of the theorem is satisfied, one needs
to inspect if the Poincaré group is or is not a subgroup of the full symmetry group. At
this point, one may run into a scenario similar to diffeomorphisms: the Poincaré group
may fail to be a subgroup of the ordinary gauge group, but still be a subgroup of the total
gauge group, once the HT symmetry is taken into account. In this sense, HT symmetry
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may become relevant for the proper analysis and application of the Coleman–Mandula
theorem in certain contexts. This topic is the subject of ongoing research [34].

All of the above arguments suggest that it may be prudent to abandon the common
approach of factoring out the HT group and instead adopt the description of the symmetry
with the total gauge group, which includes HT transformations on equal footing as the
ordinary gauge transformations. In the long run, this may be a conceptually cleaner
approach. However, either way, we believe that HT symmetry is relevant for the overall
symmetry structure of a theory and that better understanding of its properties can add
value to and benefit research.
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