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Abstract: In the description of transport phenomena, diffusion represents an important aspect. In
certain cases, the diffusion may appear together with convection. In this paper, we study the diffusion
equation with the self-similar Ansatz. With an appropriate change of variables, we have found an
original new type of solution of the diffusion equation for infinite horizon. We derive novel even
solutions of diffusion equation for the boundary conditions presented. For completeness, the odd
solutions are also mentioned as well, as part of the previous works. We have found a countable set of
even and odd solutions, of which linear combinations also fulfill the diffusion equation. Finally, the
diffusion equation with a constant source term is discussed, which also has even and odd solutions.
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1. Introduction

It is evident that mass diffusion or heat conduction is a fundamental physical process
which attracted enormous intellectual interest from mathematicians, physicists and engi-
neers over the last two centuries. The existing literature about mass and heat diffusion is
immense; we only mention some fundamental textbooks [1–5].

Regular diffusion is the cornerstone of many scientific disciplines, such as surface
growth [6–8], reactions diffusion [9] or even flow problems in porous media. In our last
two papers, we gave an exhaustive summary of such processes with numerous relevant
reviews [10,11].

In connection with thermal diffusion [12,13], the simultaneous presence of heat and
mass transfer is also possible, which may lead to cross effects [14]. One may find relevant
applications related to general issues of heat transfer or engineering in [15]. Important
diffusive phenomena occur in the universe [16], which is another field of interest.

The study of population dynamics or biological processes [17–19] also involves dif-
fusive processes, especially in spatial extended systems. In environmental sciences, the
effects of spreading, distribution and adsorption of particulate matter or pollutants are
also relevant [20–23]. Furthermore, diffusion coefficients have been measured for practical
purposes in food sciences as well [24].

New applications of diffusion have gained ground in social sciences in the last decades
as well. As examples, we can mention diffusion of innovations [25,26], diffusion of tech-
nologies and social behavior [27] or even diffusion of cultures, humans or ideas [28,29].
One may also find aspects related to diffusion in the theory of pricing [30,31]. The struc-
ture of the network has also a crucial role which influences the spread of innovations,
ideas or even computer viruses [32]. Parallel to such diffusion activities, generalization of
heat-transport equations was done by Ván and coauthors [33], e.g., fourth-order partial
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differential equations (PDE)s were formulated to elaborate the problem of non-regular
heat conduction phenomena. Finally, we should not forget the continuously developing
numerical methods of PDEs; it is worth mentioning the new results obtained by Kovács
and coworkers [34,35]. Such spirit of the times clearly shows that investigation of diffusion
(and heat conduction) is still an important task.

Having in mind that diffusion can be a general, three-dimensional process beyond
Cartesian symmetry, here we investigate the one-dimensional diffusion equation. The
change in time of variable C(x, t) is influenced by the presence of it in the neighbors:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 , (1)

where D is the diffusion coefficient which should have positive real values. Usually, it can
be considered constant for given temperature and pressure in gases. A counter-example
is the heat diffusion process in large-temperature-gradient semiconductor crystals where
heat conduction coefficients have a complicated temperature dependence [36].

One assumes that C(x, t) is a sufficiently smooth function together with existing
derivatives regarding both variables. In this general form, one may observe that if C(x, t) is
a solution, then C(x, t) + C0 is also a solution, where C0 is a constant.

In this study, we consider a constant diffusion coefficient. From a practical point of
view, a typical case is the diffusion in gases, where at constant temperature and constant
pressure, the diffusion coefficient is constant as is described in [37].

For a finite horizon or interval, in case the concentration is fixed at the two ends
C(x = 0, t) = C0 and C(x = L, t) = C0, the solutions are

Ck(x, t) = C0 + e−D π2k2t
L2 · sin

(
kπ

L
x
)

, (2)

where k = 1, 2, 3 . . .; it can be any positive integer number. In general, beyond C0, any
linear combination of the product of the exponent and sine for different k is a solution. For
finite horizon, in the case when the density is fixed to zero on both ends, the solutions are
changed to

Ck(x, t) = C0 + e−D π2n2t
L2 · cos

(nπ

L
x
)

, (3)

where n = 1, 2, 3 . . . can be any positive integer number. Thanks to the Fourier theorem,
with the help of Equations (2) and (3) arbitrary diffusion profile can be approximated on
a closed interval. These are well-known analytic results and can be found in any usual
physics textbooks such as [1,2].

In the present study—with the help of the self-similar Ansatz—we are going to present
generic symmetric solutions for infinite horizon. These solutions have their roots at the
very beginning of the theory, in the form of the Gaussian [1,2]:

C(x, t) = Const. · 1√
t
e−

x2
4Dt . (4)

For infinite horizon, there are also certain works which present a given aspect of the
diffusion, and it may arrive to a slightly more general aspect than the classical solution
presented above [38].

In the following, we will go much beyond that point and will present and analyze
completely new type of solutions. For finite horizon, an even initial condition can be
expressed as a linear combination of the countable solutions of Equation (3), for t = 0. For
positive times, the linear combination gives the dynamics of C(x, t). In a similar way, we
expect in the following that if we can find a countable set of even solutions, for infinite
horizon, then by linear combinations of these functions, we can give the dynamics in time
of a certain number of even functions. The initial conditions for infinite horizon can be set
more easily after the change of variables, which will be discussed in more detail later.
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2. Theory and Results

In the case of infinite horizon, when we want to derive the corresponding solutions,
we make the following self-similar transformation:

C(x, t) = t−α f
(

x
tβ

)
= t−α f (η). (5)

Note that the spatial coordinate x now runs along the whole real axis. The role of of α and
β is illustrated on Figure 1. As is indicated in the figure, β shows the spreading and α the
decay in time.

Figure 1. The importance of α and β in case of the change of variables of Equation (5).

This kind of Ansatz has been applied by Sedov [39], and was later also used by Raizer
and Zel’dowich [40] For certain systems, Barenblatt applied it successfully [41] as well. We
have also used it for linear or non-linear partial differential equation (PDE) systems, which
are from fluid mechanics [42–44] or quantum mechanical systems [45]. In certain cases, the
equation of state of the fluid also plays a role [46,47]. Diffusion-related applications of the
self-similar analysis method can be found in relatively recent works as well [48–50].

The transformation takes into account the (4) formula, and before the function f ,
instead of 1/

√
t there is a generalized function 1/tα, and in the argument of f , the fraction

x/tβ is possible, with a β which should be determined later.
We evaluate the first and second derivative of relation (5), and insert it in the equation

of diffusion (1). This yields the following ordinary differential equation (ODE)

−αt−α−1 f (η)− βt−α−1η
d f (η)

dη
= Dt−α−2β d2 f (η)

dη2 . (6)

The reasoning is self-consistent if all three terms have the same decay in time. This is
possible if

α = arbitrary real number, β = 1/2, (7)

and yields the following ODE

−α f − 1
2

η f ′ = D f ′′. (8)

This ODE is a kind of characteristic equation, with the above-presented change of variable.
One can observe that for α = 1/2, this equation can be written as

−1
2
(η f )′′ = D f ′′. (9)
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If this equation is integrated once

Const0 −
1
2

η f = D f ′, (10)

where Const0 is an arbitrary constant, which may depend on certain conditions related to
the problem. If we take this Const0 = 0, then one arrives to the generic solution

f = f0e−
η2
4D , (11)

where f0 is a constant. Inserting this form of f in form of C(x, t) given by Equation (5)—for
α = 1/2 as it was mentioned earlier—one obtains an even solution for the space variable:

C(x, t) = f0
1

t
1
2

e−
x2

4Dt . (12)

By this, we have recovered the generic Gaussian solution, which can be seen in Figure 2a.

Figure 2. The solution C(x, t) for (a) α = 1/2, (b) α = 3/2 (c) α = 5/2 and (d) α = 7/2, respectively.

If we want to find further solutions, the Equation (8) has to be solved for general α.
The general solution for infinite horizon of (8) can be written as:

f (η) = η · e−
η2
4D

(
c1M

[
1− α,

3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

])
, (13)

where c1 and c2 are real integration constants, which are fixed by the initial conditions, and
M(, , ) and U(, , ) are the Kummer’s functions. For exhaustive details, consult [51].
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If α are positive integer numbers, then both special functions M and U are finite

polynomials in terms of the third argument η2

4D

f (η) = η · e−
η2
4D

(
κ0 + κ1

η2

4D
+ . . . + κn−1 ·

[
η2

4D

]n−1)
. (14)

These give the odd solutions of the diffusion equation for α = n, (where n positive integer),
in terms of the space variable. It follows for the complete solution C(x, t)

C(x, t) =
1
tn f (η) =

1
tn

x√
t
e−

x2
4Dt ·

(
κ0 + κ1

x2

4Dt
+ . . . + κn−1 ·

[
x2

4Dt

]n−1)
. (15)

These odd solutions have been studied thoroughly by Mátyás and Barna in previous
works [10,11] and for completeness, we present these solutions in Appendix A.

For the even solutions, we denote by g(η) the following function

f (η) = η · e−
η2
4D g(η), (16)

Inserting this equation into Equation (8), we have

ηg′′ + 2g′ − η2

2D
g′ + (α− 1)

η

D
g = 0. (17)

In concordance with Equation (13), we get the general solution

g(η) =
(

c1M
[

1− α,
3
2

,
η2

4D

]
+ c2U

[
1− α,

3
2

,
η2

4D

])
. (18)

At this point, we make the conjecture from the forms of U and M, that if we had the classical
spatially even solution for α = 1/2, than the next spatially even solution would be for
α = 3/2, with the form of g

g(η) = K0
1
η
+ K1η, (19)

where K0 and K1 are arbitrary constants, which should be determined later. We insert this
form of g in (17); we find that the form (19) fulfills the Equation (17) if

K1 = − 1
2D

K0. (20)

We obtain the same result if we insert the form

f (η) = η · e−
η2
4D

(
K0

1
η
+ K1η

)
, (21)

directly into the Equation (8). By this, for α = 3/2, we get for the function f

f (η) = K0 · η · e−
η2
4D

(
1
η
− 1

2D
η

)
= K0 · e−

η2
4D

(
1− 1

2D
η2
)

. (22)

Substituting this form into (5), one gets

C(x, t) = K0
1

t
3
2

e−
x2

4Dt

(
1− 1

2D
x2

t

)
. (23)

This result is visualized in Figure 2b.
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If we follow the case α = 5/2 = 2.5, then the following form for the function g(η) can
be considered

g(η) = K0 ·
1
η
+ K1 · η + K2 · η3. (24)

If we insert this form in the Equation (17), the following relations for the constants K0, K1
and K2 can be derived

K1 =
K0

D
, (25)

and
K2 = − K1

12D
=

K0

12D2 . (26)

By this, we get for the g(η)

g(η) = K0

(
1
η
− 1

D
η +

1
12D2 η3

)
. (27)

Correspondingly the final form for f (η) for α = 2.5 is

f (η) = K0 · e−
η2
4D

(
1− 1

D
η2 +

1
12D2 η4

)
. (28)

Inserting this form into (5), one gets

C(x, t) = K0
1

t
5
2

e−
x2

4Dt

(
1− 1

D
x2

t
+

1
12D2

x4

t2

)
. (29)

This result can be seen in Figure 2c.
If we follow the case α = 7/2 = 3.5, then the following form for the function g(η) can

be considered:
g(η) = K0 ·

1
η
+ K1 · η + K2 · η3 + K3 · η5. (30)

If we replace this form into Equation (17), the next relations among the constants K0, K1, K2
and K3 can be derived:

K1 = −3
2

K0

D
, (31)

for the next coefficient
K2 = − K1

6D
=

K0

4D2 . (32)

Finally, for the third coefficient one obtains

K3 = − K2

30D
= − K0

120D3 . (33)

Inserting these coefficients into the Formula (30), one obtains the following expression

g(η) = K0

(
1
η
− 3

2D
· η +

1
4D2 · η

3 − 1
120D3 · η

5
)

. (34)

This form of g yields, by Equation (16), for the function f

f (η) = K0 · e−
η2
4D

(
1− 3

2D
η2 +

1
4D2 η4 − 1

120D3 η6
)

. (35)

Inserting this form into (5), one obtains

C(x, t) = K0
1

t
7
2

e−
x2

4Dt

(
1− 3

2D
x2

t
+

1
4D2

x4

t2 −
1

120D3
x6

t3

)
. (36)
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This result is clearly visualized in Figure 2d.
It is evident that by including higher terms in the finite series of Equation (30), the

solutions for α = 9/2, 11/2, etc. can be evaluated in a direct way.
For completeness, we present the shape functions f (η)s on Figure 3. Note that solu-

tions with higher α values have more oscillations and quicker decay. The same features
appear for odd solutions as well.

Figure 3. Even shape functions f (η) of Equation (16) for three different self-similar α exponents. The
black, blue and red curves are for α = 1/2, 3/2 and 5/2 numerical values, with the same diffusion
constant (D = 2), respectively. Note that shape functions with larger αs have more zero transitions.
We will show that for α > 0 integer values, the integral of the shape functions give zero on the whole
and the half-axis as well.

As we can see, at this point, the solutions fulfills the boundary condition C()→ 0 if
x → ±∞, for positive α values.

The general initial value problem can be solved with the usage of the Green’s functions
formalism. According to the standard theory of the Green’s functions, the solution of the
diffusion Equation (1) can be obtained via the next convolution integral:

C(x, t) =
1

2
√

πt

∫ +∞

−∞
w(x0)G(x− x0)dx0, (37)

where w(x0) defines the initial condition of the problem, C|t=0 = w(x0). The Green’s
function for diffusion is well defined and can be found in many mathematical textbooks
e.g., [52–55]:

G(x− x0) = exp
[
− (x− x0)

2

4tD

]
. (38)

On the other side, the Gaussian function is a fundamental solution of diffusion.
We will see in the following that for some special forms of the initial conditions, such as

polynomials, Gaussian, Sinus or Cosines, the convolution integral can be done analytically.
In the following, we evaluate the convolution integral for α = 1/2.
As an example for the initial condition problem, we may consider the following

smooth function with a compact support:

w(x0) =
Heaviside(3− x0) ·Heaviside(3 + x0) · (9− x2

0)

9
. (39)
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This initial condition is a typical initial distribution for diffusion, and one can see on
Figure 4a.

The convolution integral for α = 1/2:

C(x, t) =
1

2
√

πt

∫ +∞

−∞

Heaviside(3− x0) ·Heaviside(3 + x0) · (9− x2
0)

9
· e

(x−x0)
2

4Dt dx0. (40)

The result of this evaluation is

C(x, t) = 1
2
√

πt

[√
πt erf

(
3+x
2
√

t

)
+ 2

9 xt e−
6x+x2+9

4t + 2
3 t e−

6x+x2+9
4t − 2

9 t
3
2
√

π erf
(

3+x
2
√

t

)
− 1

9 x2
√

πt erf
(

3+x
2
√

t

)
−
√

πt erf
(

x−3
2
√

t

)
− 2

9 xt e−
−6x+x2+9

4t + 2
3 t e−

−6x+x2+9
4t

+ 2
9 t

3
2
√

π erf
(

x−3
2
√

t

)
+ 1

9 x2
√

πt erf
(

x−3
2
√

t

)]
, (41)

which is presented on Figure 4b.

Figure 4. (a) The initial condition (39) (b) The convolution integral for α = 1/2 of Equation (40).

3. The Properties of the Shape Functions and Solutions

In the following, we study some properties of the shape functions f (η) and of the
complete solutions C(x, t). First, we consider the L1 integral norms.

For the case α = 1/2 the form of∫ ∞

−∞
f (η)dη =

∫ ∞

−∞
f0e−

η2
4D dη = f0 2

√
πD. (42)

The constant f0 is chosen, depending on the problem. If C stands for the density which
diffuses, f0 in the above integral is related to the total mass of the system.

Correspondingly,∫ ∞

−∞
C(x, t)dx =

∫ ∞

−∞
f0

1√
t
e−

x2
4Dt dx = f0 2

√
πD. (43)

For the case α = 3/2:∫ ∞

−∞
f (η)dη =

∫ ∞

−∞
K0 · e−

η2
4D

(
1− 1

2D
η2
)

dη = 0. (44)
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It is interesting to see that the integral of first even shape function beyond Gaussian is zero.
An even more remarkable feature is, however, that∫ 0

−∞
f (η)dη =

∫ ∞

0
f (η)dη = 0. (45)

So the oscillations, the positions of the zero transitions, divide the function in such a way
that the integral is not only on the whole real axis (−∞ . . . ∞) but on the half axis (0 . . . ∞)
or (−∞ . . . 0) gives zero as well.

Evaluating the same type of integrals for the corresponding solution C(x, t), we have

∫ ∞

−∞
C(x, t)dx =

∫ ∞

0
C(x, t)dx =

∫ 0

−∞
C(x, t)dx =

∫ ∞

−∞
K0 ·

1
t3/2 e−

x2
4Dt

(
1− 1

2D
x2

t

)
dx = 0,

at any time point, (and for any diffusion coefficient D).
The same property is true for all possible higher harmonic solutions if α is positive half-

integer number α = (2n + 1)/2 when (n ε N). This property has far-reaching consequences.
The linearity of the regular diffusion equation and this additional property of this even
series of solutions makes it possible to perturb the usual Gaussian in such a way that the
total number of particles is conserved during the diffusion process; however, the initial
distribution can be changed significantly. One can see from the final form of the solutions
C(x, t)α ∼ 1

tα that the decay of these perturbations are, however, short-lived because they
have a quicker decay than the standard Gaussian solutions. For completeness, we present
a C(x, t) solution which is a linear combination of the first two even solutions α = 1/2, 3/2
in the form of

C(x, t) =
60

t
1
2

e−
−x2

4t − 0.001

t
3
2

e−
−x2

4t

(
1− x2

2t

)
, (46)

on Figure 5. Note that coefficients with different orders of magnitude have to be applied to
reach a visible effect when the sum of two functions have to be visualised with different
power-law decay.

As a second property, we investigate the cosine Fourier transform of the shape
functions:

Cα(k) =
∫ ∞

−∞
Cos(k · η) fα(η)dη. (47)

It can be shown with direct integration that the Fourier transform is

Cα= 2N+1
2

(k) ∝ l ·
√

π · k2N · DN · e−k2D√
1
D

, (48)

for all N ε N\0 positive integer and l is a real constant. This means that qualitatively, the
spectra for all positive half integer α are similar. They start from zero, have a global positive
maximum and a quick decay to zero. It is generally known from spectral analysis that
pulses of finite length have band spectra which have a minimal, a maximal and a central
frequency.

In Appendix A, the corresponding normalization coefficients are given for the odd
functions as well.
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Figure 5. The function C(x, t), solution of Equation (46).

4. The Diffusion Equation with Constant Source

At this point we try to find solutions of the diffusion equation, mainly with the self
similar Ansatz, where on the right hand side, there is a constant source term:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 + n. (49)

For this equation, one also apply the self-similar transformation (5), and we get a modified
equation relative to the homogeneous one

−αt−α−1 f (η)− βt−α−1η
d f (η)

dη
= Dt−α−2β d2 f (η)

dη2 + n. (50)

The free term on the r.h.s. has no explicit time decay; consequently, we expect the same
from the other terms, which means

−α− 1 = 0 (51)

−α− 2β = 0. (52)

The two equations have to be fulfilled simultaneously. Solving these equations, we get the
following values for α and β:

α = −1 and β =
1
2

(53)

Inserting these values to the Equation (50), we get the following ODE

f (η)− 1
2

η
d f (η)

dη
= D

d2 f (η)
dη2 + n. (54)

We emphasize that we arrived to this equation by a self-similar transformation. At this
point, we observe that if we shift the function f by a constant, and introduce the function h:

h(η) = f (η)− n (55)

we arrive to a slightly modified equation

h(η)− 1
2

η
dh(η)

dη
= D

d2h(η)
dη2 . (56)
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One may observe that if the transformation η → −η and h(−η) = h(η) is applied, the
equation still remains the same; consequently, we expect at least one even solution.

If we look for the even solution by polynomial expansion,

h(η) = A + Bη2 + . . . (57)

then, we get by direct substitution

A = 2 · B · D. (58)

This means that the even solution reads as follows

h(η) = B(2D + η2) (59)

where B is a constant depending on initial conditions.
Furthermore, we observe that the transformation η → −η and h(−η) = −h(η) also

leaves Equation (56) unchanged. This means that it is worthwhile to look for an odd
solution as well. The odd solution of the equation is

h(η) = 2D η e−
η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)
(60)

One can see the form of this odd solution in Figure 6.

Figure 6. The shape function h(η), described by Equation (60), the odd solution of Equation (56).

We mention, that Equation (56) may have a further solution, which eventually does
not have the symmetry to be even or odd, and that may be expressed in terms of a Hermite
function with a negative integer as one can see in Equation (8) of the Reference [11]. Such a
solution reads as follows

h(η) = e−
η2
4D · Hermite[−3,

η

2
√

D
] (61)

We try to find certain relevant features of this result. In an interesting way, the series
expansion of the above solution (61) means a sum of an even function with second order
and another odd function, which appears to be proportional to the series of solution (60).
The first terms of these series are presented in Appendix B.

If n is positive in the Equation (49), then we can talk about a source in the equation,
and if n is negative, than we say that there is a sink in the diffusion process. The sink can
be considered physical by the time C(x, t) ≥ 0. Diffusive systems with sinks have been



Universe 2023, 9, 264 12 of 16

studied in ref. [56], and water purification by adsorption also means a process with change
of concentration in space and decrease in time [57].

A general solution for the shape function can be obtained from the linear combination
of the even and odd solutions presented above

h(η) = κ1

[
2D η e−

η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)]
+ κ2[2D + η2] (62)

where κ1 and κ2 are constants depending on the initial or boundary conditions of the
problem.

Inserting this shape function to the general solution (5), we get for the final form of
C(x, t) in the presence of a constant source

C(x, t) = t ·
[

κ1

(
2D

x√
t

e−
x2

4Dt +
√

π

(
2D3/2 +

√
D

x2

t

)
er f
(

1
2

x√
Dt

))
+ κ2

(
2D +

x2

t

)
+ n

]
(63)

For relatively shorter times, the general solution has interesting features depending
on the weight of the even or the odd part of the solution, as one can see in Figure 7a.

Figure 7. The shape function C(x, t), solution of Equation (63), for D = 1 and n = 1, in case
(a) κ1 = 0.1 κ2 = 0.03 and (b) κ1 = 0.2 κ2 = 0.2.

The long time behavior is dominated by the constant of the even solution and the source
term. Correspondingly, for sufficiently long times, the relation C(x, t) ∼ (2κ2 D + n) · t charac-
terizes the dynamics, as one can see in Figure 7b.

5. Summary and Outlook

Applying the well-known self-similar Ansatz—together with an additional change of
variables—we derived symmetric solutions for the one-dimensional diffusion equations.
Using the Fourier series analogy, we might say that these solutions may be considered as
possible higher harmonics of the fundamental Gaussian solution. As unusual properties,
we found that the integral of these solutions—beyond Gaussian—gives zero on both the
half and the whole real axis as well. Thanks to the linearity of the diffusion equation,
these kinds of functions can be added to the particle- (or energy-) conserving fundamental
Gaussian solution; therefore, a new kind of particle diffusion process can be described. Due
to the higher α self-similar exponents, these kinds of solutions give relevant contributions
only at smaller time coordinates, because the corresponding solutions decay more quickly
than the usual Gaussian solution. In case of a constant source or sink term in the diffusion
equation, the value of α is no more arbitrary; it has a constant value α = −1. Even for
this fixed value of α, the diffusion equation with source term has even and odd solutions
as well.



Universe 2023, 9, 264 13 of 16

These kinds of solutions can also be evaluated for two- or three-dimensional, cylin-
drical or spherical symmetric systems as well. Work is in progress to apply this kind of
analysis to more sophisticated diffusion systems as well. We hope that our new solutions
have far-reaching consequences and that they will be successfully applied in other scientific
disciplines such as quantum mechanics, quantum field theory, astrophysics, probability
theory or in financial mathematics in the near future.
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Appendix A

For completeness and for direct comparison, we show the first five odd shape functions
f (η) and the corresponding solutions C(x, t):

f (η) = er f
(

η

2
√

D

)
,

f (η) = κ0 · η · e−
η2
4D ,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

6D
η2
)

,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

3D
η2 +

1
60

1
D2 η4

)
,

f (η) = κ0 · η · e−
η2
4D ·

(
1− 1

2D
η2 +

1
20

1
D2 η4 − 1

840
1

D3 η6
)

, (A1)

for α = 0, 1, 2, 3, 4 . . .N. The first case with the change of variable x/
√

t with no α (or
implicitly α = 0) dates back to Boltzmann [58], as is also mentioned by [59,60].

All integrals of the functions from (A1) on the whole real axis give zero:∫ ∞

−∞
fα(η)dη = 0, (A2)

However, on the half-axis: ∫ ∞

0
fα=0(η)dη = ∞, (A3)

and for additional non-zero integer αs, we get:∫ ∞

0
fα(η)dη =

D
α− 1/2

. (A4)

Integrals on the opposite half-axis (−∞ . . . 0] have the same value with a negative sign,
respectively. The forms for odd C(x, t)s are the following:
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C(x, t) = er f
(

x
2
√

Dt

)
,

C(x, t) =

(
κ1x

t
3
2

)
e−

x2
4Dt ,

C(x, t) =

(
κ1x

t
5
2

)
e−

x2
4Dt

(
1− x2

6Dt

)
,

C(x, t) =

(
κ1x

t
7
2

)
e−

x2
4Dt

(
1− x2

3Dt
+

x4

60(Dt)2

)
,

C(x, t) =

(
κ1x

t
9
2

)
e−

x2
4Dt

(
1− x2

2Dt
+

x4

20(Dt)2 −
x6

840(Dt)3

)
. (A5)

The space integrals of
∫ ∞
−∞ Cα(x, t)dx = 0 for all positive integers αs. On the positive

half-axis for α = 0, the integral of the error function in infinite, for positive αa, it is:

∫ ∞

−∞
Cα(x, t) =

Dt
1
2−α

α− 1
2

. (A6)

which are well-defined values for finite, D, t and α. On the (−∞ . . . 0] half axis, the sign is
opposite. Additional detailed analysis of the odd functions was presented in our former
study [11].

Appendix B

The power series of the Equation (61) reads as follows

e−
η2
4D · Hermite[−3,

η

2
√

D
] =

√
π

8
− η

4
√

D
+

√
πη2

16D
(A7)

− η3

48D3/2 +
η5

1920D5/2 −
η7

53760D7/2 + o(η9)

=

√
π

8
+

√
π

16
η2

D

+
1
16

(
−4

η√
D
− 1

3
η3

D3/2 +
1

120
η5

D5/2 −
1

3360
η7

D7/2

)
+ o(η9).

The series of relation (60) yields the following

2D η e−
η2
4D +

√
π (2D3/2 +

√
D η2) er f

(
1
2

η√
D

)
= (A8)

= D3/2
(

4
η√
D

+
1
3

η3

D3/2 −
1

120
η5

D5/2 +
1

3360
η7

D7/2 + o(η9)

)
.

As one can see—based on power expansions—the solution related to the Hermite function
(A7) is still a kind of linear combination of the quadratic even solution and the odd solution
(A8).
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