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Abstract: Within the frameworks of the logarithmic superfluid model of physical vacuum, we demon-
strate the emergence of four-dimensional curved spacetime from the dynamics of quantum Bose
liquid in three-dimensional Euclidean space. We derive the metric tensor of this spacetime and study
its special cases and limits, such as the linear-phase flow and linearized gravity limit. We show
that the value of speed of light, which is a fundamental parameter in a theory of relativity, is a
derived notion in superfluid vacuum theory: its value is a combination of the Planck constant and
original parameters of the background superfluid. As for the gravitational potential, then it can be
defined in terms of the quantum information entropy of the background superfluid. Thus, relativistic
gravity and curved spacetime are shown to result from the dynamics of quantum excitations of the
background superfluid being projected onto the measurement apparatus of a relativistic observer.

Keywords: emergent spacetime; modified gravity; quantum gravity; superfluid vacuum; logarithmic fluid

1. Introduction

In superfluid vacuum theory (SVT), Lorentz symmetry and four-dimensional space-
time are approximate notions, which emerge in the low-momentum small-fluctuations
limit of the background superfluid’s dynamics; a pedagogical introduction can be found in
the monographs [1,2]. This background superfluid is a quantum object whose dynamics is
defined in three-dimensional Euclidean space, the latter, however, being unobservable, or
“fictitious”, for someone detecting only small fluctuations of the superfluid wavefunction.
Instead, such an observer perceives four-dimensional spacetime with a pseudo-Riemannian
metric tensor of a certain form, for which reason they are called a relativistic or R-observer
in what follows, to differentiate from the F(ull)-observers. This mapping is the main
underlying feature of superfluid vacuum theory, making this post-relativistic approach
fundamentally different from habitual modified gravity theories [3,4].

This naturally simplifies the problem of gravity’s quantization: instead of quantiz-
ing the spacetime (which is essentially a set of length- and time-measurement rules and
mappings, or “rods and clocks”), one quantizes the matter, being the background quantum
liquid in this case, in the conventional quantum-mechanical way; and then projects the
results onto what is “seen” by R-observer’s measuring apparatus. In other words, a theory
of gravitational interaction, at both the classical and quantum level, can be formulated
as a subset of the theory of physical vacuum, with the latter being treated as a state of
matter, although somewhat different from those we usually deal with [5]. The general
theory of condensed matter itself has clear physical foundations and methods which have
rich history and solid experimental evidence. This should help to narrow down a set of
mathematical variations of an SVT-based quantum gravity and cosmology, as well as to
explore the applicability borders of a relativistic theory of gravity—and to go beyond,
towards a generalization thereof.

However, the difference exists here from canonical condensed matter theory: in
superfluid vacuum theory, one still has to establish the “dictionary” of the above-mentioned
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R-observer projection, which would translate between the R- and F-observer’s pictures.
This is a nontrivial mathematical task on its own, because of the complexity of fluid
dynamics on one side and Riemannian geometry on another. Nevertheless, it is known to
be largely possible in the low-momentum small-fluctuations limit of SVT, via the formal
mapping known as the fluid/gravity correspondence [6]; the latter being usually used for
mimicking general relativistic effects within suitable laboratory materials.

In order to fully achieve the goal of describing the physical vacuum, the background
superfluid’s microscopical structure must be further specified on a theoretical level, for
which purpose one needs specific models. One of the popular models in a theory of
diluted Bose–Einstein condensates, described by Gross–Pitaevskii (or cubic Schrödinger)
equation, is unlikely suitable for this purpose because it is based on the assumption of the
two-body delta-singular interparticle interaction potential, which is a way too restricting to
be applicable to the case of physical vacuum.

In previous works on the theme, to mention the landmark works [7,8], we advocated
a superfluid vacuum theory based on the assumption that the background superfluid
belongs to a class of logarithmic fluid models. The latter have already found applications in
modeling quantum Bose liquids produced in a laboratory, such as helium superfluids and
Bose–Einstein condensates (BEC) of alkali atoms [9–12]. Moreover, those studies resulted in
a strong intuitive feeling that the logarithmic models are a crucial ingredient and theoretical
tool necessary for a consistent explanation/description of vacuum effects in laboratory
quantum Bose liquids. It was thus natural to apply logarithmic fluid models to the physical
vacuum itself.

The outline of this paper follows. In Section 2, we give an idea of how relativistic
gravity emerges from the non-relativistic background superfluid dynamics: we show that
small fluctuations of the superfluid density are governed by Lorentz covariant equations in
curved spacetime; in Section 2.2 we derive the metric tensor of such spacetime. In Section 3,
we consider various approximations and spacial cases of the emergent spacetime. Section 4
is devoted to the linearized limit of the emergent spacetime, where we derive both the
effective gravitational potential and the speed of light, in the conformal Newtonian gauge.
Conclusions are drawn in Section 5.

2. Spacetime as an Emergent Phenomenon

In order to see the emergence of spacetime from superfluid vacuum, one needs to
perform two consecutive mappings. First, one rewrites the original three-dimensional
wave equation describing the motion of the logarithmic Bose liquid in the fluid-mechanical
form, which is broadly called the fluid-Schrödinger analogy, see Section 2.1. Second, one
demonstrates that small fluctuations of superfluid’s wavefunction obey the equations of
motion which have the local Lorentz symmetry and derives the corresponding spacetime
interval, see Section 2.2.

2.1. Fluid-Schrödinger Analogy

In this section, a formal mapping is derived between wave equations of type (2) and
motion equations for inviscid flow of fluid substances.

Let us also assume that the state of such a substance can be described by a single
complex-valued function defined in the three-dimensional Euclidean space, Ψ = Ψ(x, t),
which obeys the normalization condition∫

V
|Ψ|2dV =

∫
V

ρ dV = M > 0, (1)

where ρ = ρ(x, t) = |Ψ(x, t)|2 is a fluid density M and V are the total mass and volume of
the material.

Let us consider a nonlinear U (1)-symmetric Schrödinger equation of the general form:

i∂tΨ =

[
−D

2
∇2 +

1
h̄

V(x, t)− 1
h̄

b(x, t) ln
(
|Ψ|2/ρ0

)]
Ψ, (2)
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where b(x, t) is a real-valued coupling function, D and ρ0 are positive constants, and V(x, t)
is external potential, often called trap potential in the conventional BEC theory. While the
parameter ρ0 is just a scaling one, the coupling function b is a dynamical value related
to quantum temperature, a more detailed discussion can be found in [13] (there were
also extensive mathematical studies of the logarithmic nonlinear models and around, to
mention just very recent literature [14–24]).

The constant parameter D can be written as

D = h̄/m, (3)

where m is a mass of a background superfluid’s particle. The latter should not be confused
with the relativistic particles which are defined based on irreducible representations of the
Poincaré group and thus emerge together with superfluid-induced spacetime. Instead, the
superfluid particle is a Euclidean quantum-mechanical object which is thus unobservable
by an R-observer directly. Moreover, this particle cannot be observed by the full observer
either, if the background superfluid is in the state close to the Bose–Einstein condensate. In
that case, according to the BEC theory, the full observer would “see” a condensate’s wave
function which is a collective state, not a plain cloud of original particles. The superfluid
particle can be detected on its own only if the condensate is broken, which can be regarded
as the “vacuum breakdown”, from the viewpoint of an R-observer.

Furthermore, our wavefunction can be always written in the Madelung form [25,26]

Ψ =
√

ρ exp (iS), (4)

where S = S(x, t) is a phase of wavefunction, which will be related to the fluid velocity in
what follows. If one applies the Madelung ansatz to the wave Equation (2), and separates
real and imaginary parts, then one obtains a set of two equations for the wavefunction’s
amplitude squared and phase

∂tρ +D∇ · (ρ∇S) = 0,

∂tS − D2
[
∇ ·

(∇√ρ√
ρ

)
+

(∇√ρ)2

ρ − (∇S)2
]
= 1

h̄ b(x, t) ln(ρ/ρ0)− 1
h̄ V(x, t),

(5)

where a dot denotes an inner scalar product.
Furthermore, we take a gradient of the last equation and introduce

u = D∇S , (6)

the fluid velocity. We then obtain fluid-mechanical equations for mass and momentum
conservation

∂tρ +∇ · (ρu) = 0,
ρDtu = ρ[∂tu + (u ·∇)u] = ∇ ·T+ fV ,

(7)

where we denoted

fV = −D
h̄

ρ∇V, T = −D
2

4ρ
∇ρ⊗∇ρ− p̃ I, p̃ = p− 1

4
D2∇2ρ, (8)

where Dt = D/Dt is a material derivative, fV is the body force per unit volume, and T is
the stress tensor being of the Korteweg form with capillary effects [27,28], I is the identity
matrix, p̃ is the capillary pressure, and p = p(x, ρ) is the pressure given by the equation of
state in a differential form

∇p = −D
h̄

ρ∇[b(x, t) ln(ρ/ρ0)]. (9)
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In the absence of heat transfer, Equations (6)–(9) form a closed system, which describes
the isothermal inviscid flow of the fluid with internal capillarity. Because this system is
equivalent to the original system (5), in what follows we shall use both sets of equations.

Finally, to gain more clear understanding of the fluid described by the equation of
state (9), let us rewrite the latter in the form

∇
(

p +
D
h̄

bρ

)
=
D
h̄

ρ[1− ln(ρ/ρ0)]∇b, (10)

which can be easily integrated for a case of the constant or slowly varying coupling function:

p = c2
s ρ +O(∇b), (11)

where we introduced the averaged speed of acoustic oscillations

c2
s = −D

h̄
b(x, t), (12)

and O( f ) represents terms of order f . Same result can be obtained for a case of anisotropic
logarithmic fluid by choosing a frame of reference aligned along the vector ∇b, such that
∇b = |∇b|n; then Equation (10) can be exactly integrated in the transverse directions to
the normal n, hence we obtain p⊥ = c2

s ρ.
Equations (11) and (12) indicate that our quantum Bose liquid behaves as an ideal

fluid in the leading-order approximation, because c2
s does not dependent on density. This

feature originates from the logarithmic term in Equation (2), which makes logarithmic
fluid models outstanding in their category. It also connects this theory to the origin of
Einstein’s second postulate, as discussed in more details in [7] and below.

To date, we were describing the picture seen by an F-observer, operating in Euclidean
three-dimensional space. What does the R-observer see?

2.2. Superfluid-Spacetime Correspondence

In this section, we discuss the projection of the background superfluid effects onto the
R-observer’s measuring apparatus. To begin with, let us consider small perturbations of
logarithmic superfluid. We therefore introduce some shorthand notations

φ ≡ −D S , u = −∇φ, (13)

and perform the following expansions

ρ = ρ(0) + ρ(1), φ = φ(0) + φ(1), u = u(0) + u(1), (14)

where bracketed subscripts denote the orders of approximation, such that |ρ(1)| � |ρ(0)|
and so on.

Then we linearize Equations (5)–(9) by keeping only first powers of the first-order
values. We obtain the following set of equations
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∂tρ(0) −∇ ·
(

ρ(0)∇φ(0)

)
= 0, (15)

∂tρ(1) −∇ ·
(

ρ(0)∇φ(1) + ρ(1)∇φ(0)

)
= 0, (16)

∂tφ(0) −
1
2

(
∇φ(0)

)2
= −D

h̄
b ln
(

ρ(0)

ρ0

)
+
D
h̄

V(x, t)− D
2

4

∆ρ(0)

ρ(0)
− 1

2

(
∇ρ(0)

ρ(0)

)2
, (17)

∂tφ(1) −∇φ(0) ·∇φ(1) = −
D
h̄

b
ρ(1)

ρ(0)
+

D2

4

ρ(1)∆ρ(0)

ρ2
(0)

−
∆ρ(1)

ρ(0)
+

∇ρ(0) ·
(

ρ(0)∇ρ(1) − ρ(1)∇ρ(0)

)
ρ3
(0)

, (18)

whereas the perturbative expansion of the pressure can be done using equations of state (10)
or (11); although this three-dimensional pressure p is not really needed for further compu-
tations related to spacetime emergence, see also remarks at the end of this section.

Furthermore, from Equation (18) we derive

ρ(1) =
ρ(0)

Ab

(
∂tφ(1) −∇φ(0) ·∇φ(1) + B

)
, (19)

where
Ab = A + c2

s = A− D
h̄

b(x, t), (20)

and

A =
D2

4

∆ρ(0)

ρ(0)
−
(
∇ρ(0)

ρ(0)

)2
 =

D2

4
∇ ·

(
∇ρ(0)

ρ(0)

)
, (21)

B =
D2

4

(
∆ρ(1)

ρ(0)
−

∇ρ(0) ·∇ρ(1)

ρ2
(0)

)
=
D2

4
∇ ·

(
∇ρ(1)

ρ(0)

)
. (22)

Substituting Equation (19) into Equation (16), we obtain

−∂t

[
ρ(0)

Ab

(
∂tφ(1) −∇φ(0) ·∇φ(1) + B

)]
+

∇ ·
[

ρ(0)∇φ(1) +
ρ(0)

Ab
∇φ(0)

(
∂tφ(1) −∇φ(0) ·∇φ(1) + B

)]
= 0, (23)

which can be rewritten in the explicitly four-dimensional Lorentz-covariant form

∂µ( f µν∂νφ(1)) + ∂µ( f 0µB) = 0, (24)

where we assume the Einstein summation convention for repeating Greek indices labeling
the coordinates xµ = {t, x} and introduce the rank-4 matrix

f µν ∝
ρ(0)

Ab

 −1
... ∂jφ(0)

· · · · · · ·

∂iφ(0)
... Abδij − ∂iφ(0)∂jφ(0)

, (25)

where Latin indices label spatial coordinates and the proportionality symbol indicates that
this matrix is defined up to a multiplicative constant. The matrix determinant (without a
multiplicative constant) is given by f = −ρ4

(0)/Ab.
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Furthermore, we restore the wavefunction notation

φ(0) = −D S , φ(1) = −D δS , ρ(0) = |Ψ|2, (26)

and rewrite Equation (24) in the form

1√−g
∂µ(
√
−ggµν∂νδS)−D−1 1√−g

∂µ(
√
−gg0µB) = 0, (27)

where we introduced the metric tensor

gµν ∝
1√
− f

f µν ∝
1

ρ
√

Ab

 −1
... −D∂jS

· · · · · · ·

−D∂iS
... Abδij −D2∂iS ∂jS

, (28)

gµν = (gµν)−1 ∝
ρ√
Ab

 −N2 ... −D∂jS
· · · · · · ·

−D∂iS
... δij

, (29)

where

N2 ≡ Ab −D2(∇S)2 =
D
2

(
∂tS +

1
h̄

V
)
− D

h̄
b
[

1 +
1
2

ln(ρ/ρ0)

]
− D

2

4
∆ρ

ρ
, (30)

Ab = A− D
h̄

b, A =
D2

4
∇ ·

(
∇ρ

ρ

)
, B =

D2

4
∇ ·

(
∇δρ

ρ

)
, (31)

where we also used the second of Equation (5) to derive Equation (30). The conformal
factor of the metric plays a role of the gauging function, determining the choice of units
for clocks and measuring rods. Due to this gauge freedom, the physical frame is a priori
unknown, but its choice can be made based on the physical properties of spacetime.

Equation (27) indicate that fluctuations of the three-dimensional background super-
fluid’s wavefunction can indeed be described as relativistic fields in four-dimensional
spacetime, thus confirming the aforesaid. In the SVT framework, they obviously have a
finite range of applicability, namely, outside special points or domains, such as spacetime
singularities or null surfaces, where the small-fluctuation approximation of SVT is unlikely
to be valid. In those cases, one has to resort to the F-observer formulation of SVT in terms
of the background superfluid.

In this picture, massless excitations, such as photons, are somewhat analogous to
acoustic waves, or phonons, which also obey a linear dispersion law and propagate along
null geodesics of the induced metric. One can easily show that in the (conformally) flat limit,
source-free Maxwell equations are insensitive to the conformal factor [29,30]. Other relativis-
tic particles can be viewed as projections of small excitations of the background superfluid
onto the R-observer’s measuring apparatus: because of the emergent Lorentz symmetry,
they must transform according to the irreducible representations of the Poincaré group.

Furthermore, Einstein field equations can be now interpreted as a definition for an
effective stress–energy tensor, describing the matter, which would be observed by the
R-observers:

T̃µν ≡ κ−1
[

Rµν(g)− 1
2

gµνR(g)
]

, (32)

where κ = 8πG/c2
(0), G is the Newtonian constant of gravitation, c(0) ≈ c, and

c ≈ 2.998× 1010 cm s−1 is historically called the speed of light in vacuum. A theoretical
value of c(0) can be derived from the linearized limit of the metric (29), provided that both
the superfluid wavefunction and physical frame are known, cf. Section 4 below.
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The physical meaning of the stress–energy tensor (32) is obvious: it describes the
gravitating matter which is “seen” by R-observers by means of observing geodesics of
test particles, therefore, Einstein field equations are automatically valid for such observers,
because the reverse procedure, the derivation of the original metric from this stress–energy
tensor, is always possible. One can even reconstruct a corresponding action functional, one
example being given in Section 5.3 of [7].

It should be stressed that this effective matter cannot be merely viewed as the relativis-
tic perfect fluid with the values of density and pressure taken from Section 2.1. Those values
refer to the non-relativistic three-dimensional superfluid observed by F-observers but not
by R-observers. The latter see a rather different matter and environment instead—for exam-
ple, inside the flow described in Section 5.3 of [7], R-observers see themselves embedded in
the Friedmann–Lemaître–Robertson–Walker-type universe with a scalar dilaton field. In all
cases, a specific form of the effective matter is determined only by the emergent metric (29)
and corresponding stress-energy tensor (32).

Finally, note that SVT approach does not have to reproduce all pseudo-Riemannian
manifolds, especially considering that many of those are not physically relevant anyway.
Instead, even in its simplest form (inviscid, irrotational, isothermal, isentropic), our model
induces spacetimes with conformal 3 + 1 foliation (the generalized ADM decomposition),
which is a rather large class of manifolds; it includes all physically relevant cases we know
so far, both cosmological and asymptotically flat. Naturally, one can consider more general
types of flow, which would result in inducing more general manifolds, if such a need occurs.

3. Approximations and Special Cases

In this section, we consider various limits and approximations of the spacetime met-
ric (29)–(31), which allow to extract physical information without actually solving the
original Equation (2).

3.1. Small-Slow Density Perturbations

Although our metric was already derived under the assumptions of small density
perturbations δρ� ρ, one can still impose additional smallness assumptions. For instance,
one can assume that spatial variations of density perturbations are small,

`δ|∇δρ|/ρ� 1, (33)

or that the rates of density variations are small

`ρ|∇ρ|/ρ� 1, (34)

where `’s being some characteristic length scales.
If we impose these assumptions simultaneously then we can neglect both functions A

and B in the leading-order approximation. Therefore, the metric tensor (29) simplifies to

gµν ∝
ρ√
|b|

 −N2 ... −D∂jS
· · · · · · ·

−D∂iS
... δij

, (35)

N2 =
D
2

(
∂tS +

1
h̄

V
)
− Db

h̄

[
1 +

1
2

ln(ρ/ρ0)

]
, (36)

which is formally equivalent to neglecting terms of the order D2 ∼ h̄2. Therefore, this
metric could serve as a semiclassical approximation of the metric (29), which is probably
sufficient for describing gravity phenomena in the regions where vacuum fluctuations are
relatively small compared to the background wavefunction’s value.

As usual in our formalism, spacetime described by metric (35) can have special points
or domains, such as spacetime singularities, null surfaces, or any regions with fast varying
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superfluid density; where this small-slow-fluctuation approximation is not likely to be
robust. In such cases, one has to consider a more general metric (29), or even involve the
F-observer picture, i.e., the original superfluid dynamics in the “fictitious” Euclidean space.

3.2. Linear Phase

This is a special exact case which does not require solving the original Equation (2)
to deduce the main properties of the corresponding spacetime which emerges. If the
background superfluid is in a stationary state, with a phase linear with respect to time and
spatial coordinates then we can assume that

S = ωt +D−1u0 · x, u0 = const, (37)

which means that it flows with the constant velocity D∇S = u0 = const, with respect to
Euclidean space. As discussed before, both this flow and Euclidean space themselves are
unobservable to R-observers. Instead, those observe, according to Equation (29), spacetime
with the metric tensor

gµν ∝
ρ∣∣∣Dh̄ b− D2

2 ∇ ·
(
∇ρ

ρ

)∣∣∣1/2


D
h̄ b− D2

2 ∇ ·
(
∇ρ

ρ

)
+ u2

0
... −(u0)j

· · · · · · ·

−(u0)i
... δij

, (38)

supplemented with consistency conditions in the form of differential equations for the
wavefunction amplitude squared

D2

2
∇ ·

(
∇ρ

ρ

)
+
D2

4

(
∇ρ

ρ

)2
+
D
2h̄

[b ln(ρ/ρ0)−V] =
D
2

ω + u2
0, (39)

∂tρ + u0 ·∇ρ = 0, (40)

as long as the initial and boundary conditions are specified. The latter of these equations
can be easily solved by the method of characteristics; its solution is that the wavefunction
amplitude squared must be a function of the three-dimensional scalar,

s = |x− u0t| =
√
(x− u0t) · (x− u0t), (41)

while the shape of the function ρ(s) itself is determined by the initial and boundary conditions.
As for Equation (39), then it can be viewed as an eigenvalue problem for the energy

parameter h̄ω and differential equation for the unknown function ρ = ρ(s). Because ω
is an eigenvalue parameter here, it generally contains parameters from the original wave
equation and the normalization condition, thus ω = ω(D, b, ρ0) in general; examples of
some eigensolutions can be found in [13].

4. Linearized Gravity

The linearized gravity limit is instrumental for establishing the physical interpretation
of metric tensor components. More specifically to our case, it yields the interpretation
in terms of gravitational field potential and effective speed of light, as measured by R-
observers.

In Section 5.3 of [7], it was argued that in absence of any local density inhomogeneities,
the emergent spacetime must be conformally flat, at least in the leading-order approxima-
tion. The occurrence of local (“induced”) matter induces distortions of that flatness. If,
however, the density values of that matter are small compared to the background density,
then one can assume that the distorted spacetime is a small perturbation of the (conformally)
flat spacetime. Therefore, the conditions of Section 3.1 are applicable to this case.
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The background superfluid can be assumed in a stationary state, therefore

Ψ(x, t) = exp (iωt)Ψ̃(x), (42)

hence
|Ψ̃|2 = ρ̃ = ρ, ∂tS = ω, (43)

and we also neglect trap potential for simplicity. Then metric tensor (35) takes the form

gµν ∝
ρ√
|b|

 −N2 ... −D∂jS
· · · · · · ·

−D∂iS
... δij

, (44)

N2 ≈ Dω

2
− b

2m
[2 + ln(ρ/ρ0)], (45)

where we assume metric tensor’s off-diagonal terms being small compared to the diagonal
ones, and remember the notation (3). We remind that ω = ω(D, b, ρ0) is an eigenvalue
parameter here, therefore it generally contains parameters from the original superfluid
equations, as discussed at the end of Section 3.2.

Furthermore, if the coupling function contains an additive constant (it usually does [13]),
i.e., b(x, t) = b0 + [b](x, t), then the lapse function (45) can be rewritten in the form

N2 = c2
(0) + 2Φ, (46)

where we denoted

Φ ∼ − b
4m

ln
(
|Ψ|2/ρ0

)
− [b]

2m
, (47)

c2
(0) ∼

Dω

2
− b0

2m
=

1
2m

(h̄ω− b0), (48)

where we used the notations “∼” to emphasize the ambiguities discussed below, and [b]
is the truncated coupling function with any additive constant (denoted by b0) removed.
If we correctly guessed the physical frame (defined by the conformal factor of the metric
tensor and set of correct coordinates), then Φ and c(0) can be interpreted, respectively, as
the classical gravitational potential and speed of light in the Minkowski limit, written in
the conformal Newtonian gauge.

It is important to clarify here the terminology ‘gravitational potential’. From Equation (47),
it is obvious that no potential exists per se, but many-body quantum-mechanical effects in the
background superfluid act as what we perceive as gravity. The logarithmic term is directly
related to quantum information entropy of the superfluid, cf. [8,31,32]; therefore, it is the
change of the entropy of background superfluid that induces the “thermodynamic” force
and associated “potential”. One can imagine a classical analogue of this phenomenon: in
diffusive systems, suspended particles move from regions of higher to lower concentrations,
as if they were driven by some macroscopic potential, but in reality it is just that the total
system tries to find a state with a minimum free energy.

It is worth summarizing the built-in ambiguities:

(i) the physical metric is derived up to a conformal factor, due to the remaining choice of
a physical frame (units),

(ii) for a given conformal frame, values Φ and c(0) are defined up to a factor, due to time
coordinate transformation,

(iii) the coupling b is defined up to a factor, due to the U (1) symmetry of the original wave
equation, metric signature choice and coordinate transformations, and
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(iv) values Φ and c2
(0) are defined up to, respectively, additive function and additive

constant, due to some terms being neglected because of various small density pertur-
bation approximations.

For these reasons, we regard the physical interpretation of values (47) and (48) as
gravitational potential and speed of light as the ‘simplest’, while keeping in mind that it is
not unique until the above-mentioned ambiguities (i)–(iv) are fixed.

Finally, it is instructive to compare the derived ‘simplest’ form (47) of gravitational
potential with its semi-heuristic analogue from [8,33], Φ = b

m ln
(
|Ψ|2/ρ0

)
, assuming

vanishing external potential in both cases. The two potentials are identical up to the
coupling b’s rescaling and additive function [b]/2m = (b− b0)/2m. The rescaling obviously
cannot affect the phenomenological outcomes of [33], for it only requires the rescaling of
some fitting parameters. The additive function does not affect galaxy rotation curves either,
because, for the choice of b made in [8,33], it would yield the extra term proportional to
the inverse radius squared, which can be safely neglected on astronomical scales.

5. Conclusions

In this paper, we discussed the emergence mechanism of four-dimensional spacetime
from the dynamics of three-dimensional quantum Bose liquid in Euclidean space, while
adopting the logarithmic superfluid model motivated in our earlier papers on the theme.
This mechanism lies at the heart of the theory of superfluid vacuum, which is a viable
candidate for a theory of classical and quantum gravity and relativistic particles.

According to this theory, relativistic symmetry is an approximate symmetry of Nature,
which is robust in a low-momentum small-fluctuations limit of the quantum dynamics
of the logarithmic superfluid; the latter thus plays the role of vacuum or non-removable
background. Although such superfluid is defined in three-dimensional Euclidean space,
the latter is unobservable by an observer dealing with small fluctuations of the super-
fluid, who, instead, detects relativistic particles moving along geodesics in curved four-
dimensional spacetime.

We derived the metric tensor of this emergent spacetime and studied some of its
special cases and limits, such as linear-phase flow and the linearized gravity limit. The
latter was particularly interesting to us due to the correspondence principle and connection
with the relativistic theory.

It turns out that the value of the speed of light, which is a fundamental parameter
in the theory of relativity, is a derived notion in superfluid vacuum theory. Its value
is a combination of the Planck constant and the original parameters of the background
superfluid. The whole theory thus contains only two essential fundamental constants: the
Planck constant and the mass of a constituent particle of the background superfluid.

Furthermore, we considered the linearized limit of the emergent spacetime and derived
effective gravitational potential, subject to a number of conditions. It turns out that gravity,
which is regarded as a fundamental interaction in the Newtonian or Einstein’s theories
of gravity, can be viewed as a result of the dynamics of quantum excitations inside the
background superfluid being projected onto a measurement apparatus of a relativistic
observer, which confirms the picture [7,8]. The specific form of the gravitational potential
is determined by quantum information entropy density, which is (implicitly) present in
logarithmic nonlinear wave equations.

We compared the result with the potential semi-heuristically derived in our earlier
paper [8]. For our standard choice of the coupling function b, two potentials are shown to
be empirically equivalent at the macroscopical scale [33], because their difference is the
Reissner-Nördstrom-type term (proportional to the inverse radius-vector squared), which
tends to zero at spatial infinity much faster than the Newtonian (Schwarzschild) term.
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