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Abstract: We prove the consistency of the different approaches for deriving the black hole radiation
for the spherically symmetric case inside the theory of Massive Gravity. By comparing the results
obtained by using the Bogoliubov transformations with those obtained by using the Path Integral
formulation, we find that in both cases, the presence of the extra-degrees of freedom creates the effect
of extra-particles creation due to the distortions on the definitions of time defined by the different
observers at large scales. This, however, does not mean extra-particle creation at the horizon level.
Instead, the apparent additional particles perceived at large scales emerge from how distant observers
define their time coordinate, which is distorted due to the existence of extra-degrees of freedom.

Keywords: Massive Gravity; Hawking radiation; Path Integral method; Bogoliubov transformation
method; extra-degrees of freedom

1. Introduction

The theory of general relativity (GR) predicts the existence of black holes. The classical
theory suggests that no object can escape from a black hole once it crosses the event horizon.
In this way, although the thermodynamics of black holes was developed a long time
ago, it was believed by then that these objects could not emit radiation [1–4]. However,
Hawking demonstrated in a seminal paper that quantum effects can make the black holes
evaporate by emitting particles at a rate defined by the surface gravity [5]. In its original
derivation, Hawking used the method of Bogoliubov transformations to compare two
different vacuums, one located at the future null infinity and the other one located at the
past null infinity. The effect of particle creation then appeared as a consequence of the
mix of positive and negative frequencies. The particle emission process was also proven
using the Path Integral method, where the periodicity of the poles of the propagators of a
scalar field is equivalent to the effect of particle creation [6]. In this paper, we make the two
derivations of the black hole temperature as it is perceived by observers in Massive Gravity.
In both methods, there appear modifications of the surface gravity due to the presence of
the extra-degrees of freedom entering as a distortion of the notion of time in the theory.
Note that the modifications appear as a consequence of the way how the observers define
the notion of time with respect to the preferred time direction defined by the Stückelberg
function T0(r, t), which contains the effect of the extra-degrees of freedom of the theory.
This means that the fact that observers located at large scales in Massive Gravity define
a different surface gravity with respect to observers in GR does not mean that there is an
extra-particle creation at the horizon level. Instead, what is happening, in reality, is that
since the notion of the particle depends on the way how we define the positive frequencies,
and simultaneously, the definition of a positive frequency depends on the way how we
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define the time coordinate, then the disagreement in the number of particles between GR
and Massive Gravity comes out from the fact that the extra-degrees of freedom affect and
distort the time coordinate in Massive Gravity. In other words, an observer in GR located
at large scales from a black hole will define the time in a different way in comparison with
an observer located at the same scale but operating inside the theory of Massive Gravity.
The definition of time naturally affects the definition of frequency. The paper is organized
as follows: In Section 2, we briefly review the most generic black hole solution inside
the scenario of Massive Gravity. In Section 3, we revise the Bogoliubov transformation
method applied to Massive Gravity to calculate the number of particles perceived by an
observer located at a large distance with respect to the black hole. In Section 4, we develop
the Path Integral method for analyzing the same amount of particles perceived by an
observer located at large scales with respect to the center of the black hole. We then proceed
to compare the results with those obtained via Bogoliubov transformations. Finally, in
Section 5, we conclude.

2. The Black Hole Solution in Massive Gravity

The black hole solutions in Massive Gravity can be obtained after solving the field
equations which come from the massive action

S =
1

2κ

∫
d4x
√
−g(R + m2

gU(g, φ)) (1)

Here, U(g, φ) is the potential term, and it is defined as

U(g, φ) = U2 + α3U3 + α4U4 . (2)

Here, α3 and α4 are the two free parameters of the theory. The definitions for each order of
the potential Un(g, φ) can be found in [7–9]. The field equations are then

Gµν = −m2
gXµν , (3)

with the energy-momentum tensor given by

Xµν =
δU

δgµν −
1
2

Ugµν . (4)

In Equation (3), mg corresponds to the graviton mass. The spherically symmetric solutions
for the previous field equations are obtained as

ds2 = Gttdt2 + GttS2
0dr2 + Grt(drdt + dtdr) + S2

0r2dΩ2
2 , (5)

where
Gtt = − f (S0r)(∂tT0(r, t))2, Grr = − f (S0r)(∂rT0(r, t))2 + 1

f (S0r) ,
Gtr = − f (S0r)∂tT0(r, t)∂rT0(r, t) .

(6)

Here, f (S0r) = 1− 2GM
S0r −

1
3 Λ(S0r)2, with M being the mass of the black hole, Λ being a

constant and S0 being a parameter to be defined here. In a compact form, the spherically
symmetric solutions can be found to be

ds2 = − f (S0r)dT0(r, t)2 +
S2

0dr2

f (S0r)
+ S2

0r2dΩ2 , (7)

working in unitary gauge [7]. In this metric, the Stückelberg function operates as a preferred
direction of time, different in general from the ordinary time coordinate direction t. Then it
is necessary to define two different time-like Killing vectors, one in the direction T0(r, t)
and another one pointing in the direction of the ordinary time coordinate t. This mismatch
between the directions of the two Killing vectors will generate a difference between the
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number of particles perceived by observers defined in Massive Gravity and the number of
particles perceived by observers satisfying the same conditions of motion in GR [10,11]. In
general, it is known that

T0(r, t) = S0t + A(r, t) . (8)

Here, T0(r, t) behaves as a preferred time-direction [12–14]. S0 is a scale factor depending
on the two free parameters of the theory [7]. However, in this paper, we still focus on the
case where the relation β = α2 is satisfied. This reduces the number of free parameters to
only one, and then S0 is defined as

S0 =
α

1 + α
. (9)

Here, the connection between α and β with the two free-parameters α3 and α4 given in
Equation (2) is the following [7]

α = 1 + 3α3, β = 3(α3 + 4α4). (10)

Then in this paper, we will analyze the particle creation process of the black hole solution in
Massive Gravity for the solution (7) and for the case where we only have one free parameter
satisfying the condition β = α2.

3. The Bogoliubov Transformation Method in Massive Gravity: Hawking Radiation

In the Bogoliubov transformation method, we have to define a couple of vacuums.
Both vacuums will define a different Stückelberg function and, consequently, a different
value for the function A(r, t). Then both vacuums will be inequivalent in general. This
inequivalence between the pair of vacuums under study can be perceived by the observers
in Massive Gravity as a particle creation effect. However, as was the case when we analyzed
the Path Integral formulation, the amount of particles emitted by the black hole at the
event horizon does not change in this case with respect to the situation analyzed in GR.
However, the fact that the extra-degrees of freedom create the distortion effect can make the
observers located at large scales believe that there are extra particles emitted by the black
hole. In fact, this is just an illusion in the sense that there are no extra-particles coming
from the horizon. However, the effect is real in the sense that the distortion of time is
equivalent to a distortion of the notion of vacuum, and then the observer’s detectors will
really perceive an extra-component of radiation. The results obtained for the observers
defining the time coordinate in agreement with T0(r, t) will not differ with respect to the
results reported by observers in GR. Then we can use the standard and well-known Penrose
diagrams if we use the transformed Stückelberg functions U(r, T0(r, t)) = u + T0(r, t) and
V(r, T0(r, t)) = v + T0(r, t). Then the causal structure of the spacetime defined with respect
to T0(r, t) will be the same as in GR. Without loss of generality, we will take the spacetime.

Defined with respect to T0(r, t) as asymptotically flat. The asymptotically flat diagram
can be seen in Figure 1. The deviations with respect to the usual notion of time due to
the presence of the extra-degrees of freedom have to be appreciable enough to create
distortions of time over the observers located at large scales and define the time arbitrarily.
This distortion will affect the way how the particles are defined in the theory of Massive
Gravity and possibly the causal structure of spacetime. If we define on J+ the vector na,
which is a future-directed null vector at x, pointing radially inward. Then the vector −εna

joins the future event horizon with a surface of constant U(r, T0(r, t)). We then define
another null vector tangent to the horizon such that the normalization nala = −1 is valid.
Here, we will demonstrate that the presence of the extra-degrees of freedom in massive
gravity creates a distortion that will modify the relation between the coordinate u and the
affine parameter −ε [5]. After doing the corresponding parallel transport of the vectors, we
obtain the relation

ε = CeκU(r,T0) , (11)
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between the affine parameter and the Stückelberg function U(r, T0(r, t)). To understand
the previous relation, we have to define the scalar field moving around the black hole by
expanding it in terms of positive and negative frequencies as

φ = ∑
i
( fi âi + f i â

+
i ) . (12)

Here, the solutions for fi form a complete set of orthonormal functions over the past
infinity J−. Then they contain positive frequencies only with respect to the canonical
affine parameter on J− [5]. In the coming analysis, we will need to define the orthonormal
condition, given by

1
2

∫
S
( fi f j;a − f j fi;a)dΣa = δij (13)

Here, the integration is performed over a suitable surface S. The upper bar over the
functions means complex conjugation operation. We remark that the functions fi have
all the Cauchy data defined over the past infinity. Then the operators âi and â+i have the
natural interpretation of annihilation and creation operators for particles over the past
infinity (incoming particles). We can define everywhere the field in the form given by its
expansion with respect to the functions fi. However, it is also possible to expand the same
field as follows

φ = ∑
i

(
pi b̂i + pi b̂

+
i + qi ĉi + q̄i ĉ+i

)
. (14)

Here, the functions pi have zero Cauchy data at the future event horizon, and they represent
outgoing components. They form an orthonormal family over the surface J+, and they
only have positive frequencies with respect to the affine parameter along the null geodesic
generators on J+. Then the operators b̂i and b̂+i represent the annihilation and creation
operators for particles on the future infinity J+. On the other hand, the functions qi have
zero Cauchy data at the future infinity J+. They form a complete set of orthonormal
functions over the event horizon. However, it is not possible to define, in this case, a region
over which we can define positive frequencies and then the meaning of the operators ĉi and
ĉ+i is not clear for this case, although not important at the moment of doing the calculations
of the black hole radiation. What is important at this point is that the scalar field can either
be expanded in terms of the functions fi or in terms of the functions pi and qi. To keep the
canonical commutation relations, the previous functions, as well as the operators, must be
related to each other through the Bogoliubov transformations defined as follows [5].

pi = ∑
j

(
αij f j + βij f j

)
,

qi = ∑
j

(
γij f j + ηij f j

)
,

(15)

for the functions and

b̂i = ∑
j

(
αij âj + βij â

+
j

)
,

ĉi = ∑
j

(
γij âj + ηij â

+
j

)
,

(16)

for the annihilation operators. The creation operators can be obtained by applying the
adjoint operation over the previous operators. It is then clear that the fact that we have
an initial vacuum with no particles âi|0〉 = 0, does not guarantee that other vacuums
defined in other locations of spacetime share the same definition of particle. This happens
when βij 6= 0, which is the coefficient mixing the positive and negative frequencies. Then
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the observers located at the future infinity J+ will perceive particle creation. In fact, the
expectation value of the number operator defined by using the operators b̂i is

〈0|b̂+i b̂j|0〉 = ∑
j
|βij|2 (17)

This just corresponds to the standard understanding of the concept of a particle in asymp-
totically flat spacetime [15]. In what follows, we will divide the analysis into two parts,
namely, the case of GR, which is equivalent to saying that the observers in Massive Gravity
take the time coordinate as T0(r, t), and the other case is when the observers assume an
arbitrary direction for the time coordinate. The way how observers define their local time
depends on their conditions of motion.

Figure 1. The Penrose diagram for the Schwarzschild geometry in GR as is shown in [5]. In Massive
Gravity, the same diagram is valid if we express the black hole solution in terms of the Stückelberg
functions. The past-null infinity (J−) of the diagram corresponds to the event where the black hole
has not yet formed. The future null infinity (J+), on the other hand, corresponds to the case where
the black hole is already formed.

3.1. The Case of GR: Observers Defining the Time in Agreement with T0(r, t) in Massive Gravity

For this case, we can use safely the relation (11). In such a case, it is easy to see that
the surfaces of constant phase ωU(r, T0(r, t) are defined as

ωU = −ω

κ
(log ε− log C) . (18)

On the past infinity J−, the Killing vector Ka is parallel to the vector na. Then we can
assume a relation na = DKa, which just rescales the time coordinate and then the phase of
the solution in the past infinity is given by

−ω

κ
(log(V0 −V)− log D− log C) . (19)

Here again, V corresponds to the light-like Stückelberg function, and it depends explicitly
on r and T0(r, t). The solutions corresponding to the Fourier components, expressed in
spherically symmetric form and in terms of advanced and retarded time (Stückelberg
functions) are defined as

fω′ ,l,m =(2π)−1/2r−1(ω′)−1/2Fω′(r)e
iω′VYl,m(θ, φ) ,

pω,l,m =(2π)−1/2r−1(ω)−1/2Pω(r)eiωUYl,m(θ, φ) .
(20)

Here, Yl,m(θ, φ) are the spherical harmonics normalized in the standard form. Due to the
Bogolibov transformations, we can express the functions pi as a linear combination of the
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functions fi, as has been explained previously. This is possible after doing the integration
over the frequency ω′ as follows

pω =
∫ ∞

0
dω′

(
αω,ω′ fω′ + βω,ω′ f ω′

)
. (21)

Here, we ignore the indices corresponding to the spherical harmonics, understanding that
formally they must appear. However, their presence will not contribute to the physics
developed in this section. If we replace the phase (19) inside the solution for the function
pω,l,m defined in Equation (20), then we get

p(2)ω ≈ (2π)−1/2r−1(ω)−1/2P−ω

(
V0 −V

CD

)−i ω
κe f f

. (22)

If we make a Fourier transformation with respect to V, it is trivial to demonstrate that the
Bogoliubov coefficients α

(2)
ω,ω′ and β

(2)
ω,ω′ are defined for large values of ω′ as

β
(2)
ω,ω′ ≈− iα(2)

ω,(−ω′) ,

α
(2)
ω,ω′ ≈(2π)−1P−ω (CD)

i ω
κe f f ei(ω−ω′)v0

(
ω′

ω

)1/2

×

Γ
(

1− iω
κ

)
(−iω′)

−1+i ω
κe f f

(23)

Here, α(2) can be obtained from β(2) if we make an analytical continuation of β(2) around

the logarithmic singularity is defined by the term (−iω′)
−1+i ω

κe f f in the previous results.
In fact, if we round the logarithmic singularity in the neighborhood of ω′ → 0 by taking
ω′ → eiπω′, then we obtain

|α(2)ω,ω′ | = e
πω

κe f f |β(2)
ω,ω′ | . (24)

This result corresponds to the standard one derived by Hawking [5], and it will define
the number of particles that an observer defining the time in agreement with T0(r, t) will
perceive. In this part of the paper, we have defined the surface gravity as κe f f . This quantity
will be defined as the effective surface gravity perceived by the observers defining the time
in agreement with T0(r, t). Observers defining the time in a different way will perceive a
different κ which can be connected functionally with κe f f .

3.2. The Case of Observers Defining the Time Arbitrary

In this subsection, we will derive the surface gravity κ for observers defining the time
arbitrarily by calculating first the effective surface gravity κe f f as a function of κ. Once again,
we remark that κe f f corresponds to the standard result perceived by the observers defining
the time T0(r, t). We can repeat the previous reasoning for the case of observers defining
the time arbitrarily, then some changes will appear due to the presence of the function
A(r, t) inside the advanced and retarded light-like Stückelberg functions U(r, T0(r, t)) and
V(r, T0(r, t)). Here, T0(r, t) is the standard Stückelberg function. By taking into account
that T0(r, t) = S0t + A(r, t) and rescaling the time coordinate as t → S0t [7]; then the
surfaces of the constant phase defined previously become

ωu = −ω

κ
(log ε− log C)−ωA(r, u) . (25)

This redefinition of the surfaces of the constant phase depends on A(r, u), which is the
distortion of time created by the extra-degrees of freedom at large scales. This function,
A(r, u), depends explicitly on the variable u. This point will be important at the moment of
calculating the black hole radiation perceived by the observers defining the time arbitrarily.
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Note that it is expected the function A(r, u) to vanish in the neighborhood of the future
event horizon if GR is recovered for strong gravitational fields, as the standard theory of
Massive Gravity suggests. We can express the contribution of A(r, u) in a different way,
such that the result looks like

ωu = −ω

κ
(log ε− log C− log(eκA(r,u))) . (26)

Here again on the past infinity, J−, the Killing vector Ka is parallel to the vector na. Then
we can assume the same relation na = DKa and then we get

−ω

κ
(log(V0 −V))− log D− log C− log(eκA(r,u)) , (27)

in close analogy to what happens in [5]. In Equation (27), V is defined as V = v + A(r, v).
However, near the past event horizon, it is also expected the extra-degrees of freedom to
become negligible and then V ≈ v. This approximation is not valid at scales far away
from the past event horizon, and then we will keep in mind the fact that we have to
include the function A(r, v) in the calculations. A detail to remark on is that here we
are taking A(r, u) as the function related to U(r, T0(r, t)) = u + A(r, u). This is the case
because here, we define the retarded time as given by u. On the other hand, we also define
V(r, T0(r, t)) = v + A(r, v) by defining, in this case, the advanced time as v. The relation
between u and v is defined by the result (19). Along the past infinity, the solution will be

p(2)ω ∼ (2π)−1/2ω−1/2r−1P−ω exp
(
− iω

κ
log
(

v0 − v− A(r, v)
CDeκA(r,u)

))
(28)

The difference between the standard case and the Massive Gravity one is the presence of the
term A(r, u), which will affect the integration over the variable v at the moment of doing
the Fourier transformation to find the Bogoliubov coefficients. Later, we will see that the
term A(r, v) does not affect the integration over v after doing the appropriate substitution
of variables. The case of A(r, u) is different due to the non-trivial relation between u and
v. However, the fact that we still have a black hole emitting particles in agreement with
the Fermi–Dirac statistic remains. The fraction of particles entering the black hole is given
by [5]

Γjn =
∫ ∞

0

(
|α(2)ω,ω′ |

2 − |β(2)
ω,ω′ |

2
)

. (29)

To find the Bogoliubov coefficient α(2), then we have to multiply the result (29) by f j;a here
defined by

f ω′ ;v = −i(1 + ∂v A(r, v))(2π)−1/2r−1(ω′)1/2Fω′(r)e
−iω′(v+A(r,v)) . (30)

This result is obtained from Equation (20) if we take the complex conjugate for the function
fω′ and we take the derivative with respect to v. Here, we have used the definition
V = v + A(r, v) and we have also ignored the spherical harmonics contribution, which
we assume to be normalized in the standard way. By multiplying the result (28) with the
previous result and then integrating over the variable v to make the Fourier transformation,
we obtain

α
(2)
ω,ω′ ≈ −(2π)−1P−ω (CD)i ω

κ

(
ω′

ω

)−1/2

×∫
(v0 − v− A(r, v))−i ω

κ eiωA(r,u)(1 + ∂v A(r, v))eiω′(v+A(r,v))dv .

(31)

Here, V0 ≈ v0 since v0 has a correspondence with the past event horizon by assuming that
the whole Penrose diagram corresponds to the vacuum Schwarzschild solution. Here, the
integration is performed for all the values of v. In this case, in general, we do not get the
same Gamma function obtained previously inside the standard calculations. Instead, the
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result in Equation (31) depends on the functional behavior of A(r, u). It is trivial to observe
that the result will not depend on A(r, v). If we make the replacement z = v0 − v− A(r, v),
in the previous integral, then we get

α
(2)
ω,ω′ ≈ −(2π)−1P−ω (CD)i ω

κ

(
ω′

ω

)−1/2

×∫
(z)−i ω

κ eiωA(r,u(z))e−iω′(v0−z)dz .

(32)

Here, we make one additional replacement by taking x = −iω′z, getting then the result

α
(2)
ω,ω′ ≈ −(2π)−1P−ω (CD)i ω

κ e−iω′v0

(
ω′

ω

)−1/2

×

(−iω′)−1+i ω
κ

∫
(x)−i ω

κ eiωA(r,u(x))e−xdx .

(33)

For the case when A(r, u) = 0, we recover the result (23). Here, however, we will take the
function A(r, u) as a polynomial expansion on the variable u as follows

A(r, u) ≈
∞

∑
n=0

anun . (34)

In addition, we have to take into account the relation between u and v already obtained in
Equation (19). Then here we use

A(r, u) ≈
∞

∑
n=0

an

(
−1

κ
log
(

v0 − v− A(r, v)
DC

))n
(35)

Then the contribution of A(r, u) to the integral in Equation (33) is

eiωA(r,u(x)) =

(
v0 − v− A(r, v)

CD

)iωΣn
nan
κn

. (36)

If we make the same changes of variables as before, this previous expression is given by

eiωA(r,u(x)) = (−iω′)iωΣn
nan
κn (DC)iωΣn

nan
κn (x)−iωΣn

nan
κn (37)

In the previous series, the coefficient a1, corresponding to n = 1, can be defined in a
convenient way, such that it is possible to write the result (33) as

α
(2)
ω,ω′ ≈ −(2π)−1P−ω (CD)iω ∑n

nan
κn e−iω′v0

(
ω′

ω

)−1/2

×

(−iω′)−1+iω ∑n
nan
κn

∫
(x)−iω ∑n

nan
κn e−xdx .

(38)

The result is simply given by

β
(2)
ω,ω′ ≈− iα(2)

ω,(−ω′) ,

α
(2)
ω,ω′ ≈(2π)−1P−ω (CD)iω ∑n

nan
κn ei(ω−ω′)v0

(
ω′

ω

)1/2

×

Γ

(
1− iω ∑

n

nan

κn

)
(−iω′)−1+iω ∑n

nan
κn

(39)

Here, the relation between α(2) and β(2) is not modified. In fact, if we make the an-
alytical continuation around the logarithmic singularity defined this time by the term
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(−iω′)−1+iω ∑n
nan
κn , to get α(2) and β(2) by using ω′ → eiπω′, then we obtain

the relation

|α(2)ω,ω′ | = eπω ∑n
nan
κn |β(2)

ω,ω′ | . (40)

This has a correspondence to the result (24). Then the total number of particles created in a
given mode is defined by the relation

|β(2)
ω,ω′ | ≈ Γω′

(
e2πω ∑n

nan
κn − 1

)−1
, (41)

still consistent with the statistics followed by the black body radiation. From this previous
result, however, we can define an effective surface gravity given by

κe f f =

(
∑
n

nan

κn

)−1

=
1

4GM
. (42)

Here, κ is the surface gravity perceived by an observer defining the time in an arbitrary way.
On the other hand, κe f f is the surface gravity perceived by an observer defining the time
in agreement with T0(r, t). Here, we have used some specific functional dependence for
A(r, u), and the result can change depending on how this function behaves. The method
developed is, however, general, and the functional behavior selected is a polynomial
expansion which is what should be expected. The radial dependence of this function
is irrelevant since this variable will not enter the integration over v. If we want to find
the surface gravity perceived by the observers defining the time arbitrarily, we have to
solve Equation (42) for κ. It is evident that the result will be different from the standard
one. Before moving forward with the Path Integral method, we must remark that the
Bogoliubov method studies the gravitational collapse of the black hole. This is the case
because the past null infinity J− represents the vacuum state when there is no black hole or
the standard vacuum state without particles. However, the future null-infinity J+ represents
the case where the black hole is already formed, and although locally, an observer can
still define a vacuum state, when we compare the vacuum state at J−, with the vacuum
state at J+, then we find that there are a certain amount of particles emerging at J+ for the
corresponding observers. It is for this reason that the Penrose diagrams are representations
of the gravitational collapse.

4. The Path Integral Formulation of the Black Hole Radiation in Massive Gravity

The Path Integral formulation for evaluating the black hole temperature in Massive
Gravity was developed in [10,11]. The result suggested that the periodicity of the poles of
the propagator for the scalar field is affected by the presence of the extra-degrees of freedom.
This is consistent with the fact that T0(r, t) behaves as a preferred direction of time, and in
general, the analytical extension of T0(r, t) will differ from the analytical extension defined
for the ordinary time coordinate t. The condition of regularity for the Cauchy data means
that the following result must be satisfied [10,11]

−4πGM < ψ(r, t) < 0 . (43)

Here, ψ(r, t) = µ + A(r, t), where we have defined the time coordinate as t = γ + iµ,
separating it in the real and imaginary parts. In addition, A(r, t) = Re(A(r, t)) + iĀ(r, t),
having this function real and imaginary part as well. We can notice that the imaginary
part of the time coordinate defines the periodicity of the propagator. The periodicity will
be affected for the observers defining the time arbitrarily, if the function A(r, t) has an
imaginary component, namely, if Ā(r, t) = 0. The result (43) can then be expressed more
explicitly as

−4πGM < µ + Ā(r, t) < 0 . (44)
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Then the number of particles perceived by an observer in Massive Gravity will depend
on how he/she defines the local time. If an observer defines the time in agreement with
T0(r, t), then the number of particles perceived will be the same as in the GR case. The
temperature perceived by the observers defining an arbitrary direction of time t will
depend on the explicit solution for µ coming from the condition of periodicity of the poles
of the propagator

8πGM = µ + Ā(r, t) . (45)

Then the problem is reduced in finding the solution for µ from this previous expression.
Here, Ā(r, t) can have any dependence. However, without loss of generality, we can take
the function Ā(r, t) to be a polynomial expansion of µ, Ā(r, t) = ∑∞

n=0 bnµn. Here again,
the linear term in the expansion can absorb the linear term µ, and then we can express the
result as

8πGM =
∞

∑
n=0

bnµn = µe f f . (46)

Here, µe f f is the complex component of time defined by the observers defining the time in
agreement with T0(r, t). On the other hand, µ is related to the observers defining the time
arbitrarily. Then we can define the black hole temperature as

Te f f =
1

µe f f
=

1
8πGM

=
1

∑n bnµn . (47)

In this way, we can see that the observers defining the time arbitrarily will, in general,
perceive a different temperature with respect to the standard one calculated in GR. Order by
order, there is a direct correspondence between this previous result and the one obtained in
Equation (42). This can be seen after taking into account the well-known relation between
surface gravity and temperature here expressed as

T =
1

2π
κ =

1
µ

. (48)

This result is the temperature perceived by observers defining the time arbitrarily. µ can
be found by solving the polynomial Equation (46). The solution is, in general, non-trivial.
Equation (47) has a direct relation with the expansion performed in Equation (42), where
the Bogoliubov methods were used.

Further Analysis

To see that the method used here is general, we will analyze the functional dependence
of Ā(r, γ + iµ). In [10,11], it was assumed that it was always possible to find Ā(r, t), and
then the surface gravity was defined for the simplest case. Here, however, we go deeper
into the analysis to explain that our previous result is general. For simplicity, to illustrate
the consistency, we will assume that µ << t, namely, that the imaginary component of the
analytically extended time coordinate is much smaller than the real component. In such a
case we can define the expansion

A(r, γ + iµ) ≈ ∑
n=even

(
n!∂(n)iµ A(r, t)µ=0

)
cos µ

+ i ∑
n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ

(49)

Then in this case we define the analytically extended Stückelberg function as

Ā(r, t) ≈ ∑
n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ . (50)
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From this definition, it is evident that the analytical extension of T0(r, t) will be different
from the analytical extension of t. This is the mismatch that makes the concept of particle
ambiguous in Massive Gravity for observers located at large scales. This distortion effect is
absent in GR, and then it is a consequence of the extra-degrees of freedom. Whenever the
time is distorted, the notion of the particle is modified with respect to the same observers
defined in GR. This will generate the effect of particle creation for observers located at
large scales in Massive Gravity. However, this does not mean that there are extra-particles
coming from the event horizon because the effects come from the ambiguity of the vacuum
definitions generated by the extra-degrees of freedom of the theory. This is an interesting
effect, and it helps us to understand that not only the curvature effects make it possible to
perceive Hawking radiation, but also any other contribution able to create distortions in
the concept of time will generate Hawking radiation. This effect is general, and it might
appear whenever there are degrees of freedom or any other physical effect able to affect the
way how we define time at different scales. Going further into the previous calculations,
we can then express the analyticity condition for the propagator as

−4πGM < µ + ∑
n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ < 0 (51)

The associated periodicity condition will be

8πGM = µ + ∑
n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ . (52)

If we define the temperature for an observer taking the time coordinate as t, then such an
observer will define its imaginary time coordinate as µ. In such a case, then the surface
gravity (temperature) perceived by the observer will be given by Equation (48), with µ
defined as the solution to the equation

y = 8πGM− ∑
n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ = µ . (53)

The solution for this equation is the intersection of the straight line y = µ and the function
y = 8πGM−∑n=odd

(
n!∂(n)iµ A(r, t)µ=0

)
sin µ. It is then evident that the temperature per-

ceived by an observer defining the time in agreement with t will differ from that defined
by observers taking the time T0(r, t).

5. Conclusions

In this paper, we have calculated, by using two different methods, the black hole
temperature for a spherically symmetric black hole in the non-linear formulation of massive
gravity. For illustration, we have focused on the solution satisfying the relation β = α2.
Then we reduce the theory to one free parameter. Interestingly, we have found that both
methods, namely, the Path Integral method and the Bogolibov transformation one provides
results consistent with each other. The results suggest that the observers defining the time
coordinate in agreement with the Stückelberg function T0(r, t) will perceive a temperature
equivalent to the one observed in GR. On the other hand, the observers defining the time
arbitrarily t will perceive a different value of temperature with respect to the one perceived
in GR with equivalent conditions of motion. This happens at large scales where the effects
of the distortion of the time coordinate generated by the extra-degrees of freedom become
appreciable. The distortion of the time coordinate affects the way how the observers define
the coordinate t perceive the periodicity of the poles of the propagator if they use the Path
Integral method in their calculations. Equivalently, from the perspective of the Bogoliubov
method, the distortion of the time coordinate affects the relation between the advanced and
the retarded time coordinates when we relate the vacuum over the future infinity (J+) with
the vacuum defined over the past null infinity (J−) in the analytically extended Penrose
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diagrams, which are descriptions of the process of gravitational collapse. This is the case
because what the Penrose diagrams portrait is (1). The vacuum state before the formation
of the black hole (J−). (2). The vacuum state after the formation of the same black hole (J+).
The mentioned distortion of the time coordinate generated by the extra-degrees of freedom
in Massive Gravity then affects the final result obtained for the coefficient βω,ω′ , which is
obtained after comparing the mentioned vacuum states. The same coefficient mixes the
positive and negative frequencies. The effect described here is not standard, and it does not
correspond to the emission of extra particles from the event horizon. At the event horizon
scale, it is still expected that the black holes in Massive Gravity emit the same amount of
particles as in GR. The effect discussed in this paper rather appears as a consequence of
the ambiguity in the definitions of vacuum for the observers located at large scales with
respect to the black hole. The definitions of vacuum, naturally, depend on how the time
coordinate is defined for each observer.

Author Contributions: All the authors contributed equally to this research. All authors have read
and agreed to the published version of the manuscript.

Funding: I.A was supported by the University of Saint Joseph in Macau/China. C.S. is supported by
catedras CONACYT.

Data Availability Statement: Not applicable.

Acknowledgments: I.A. appreciates the invitation coming from UNAM (Universidad Nacional
Autonoma de Mexico) to give a seminar and keep discussions with the members in the Oaxaca
branch. I.A. appreciates the support from this institution.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170.

[CrossRef]
2. Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [CrossRef]
3. Bekenstein, J.D. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 1974, 9, 3292–3300. [CrossRef]
4. Bekenstein, J.D. Universal Bound on the Entropy to Energy Ratio for Bounded Systems. Phys. Rev. D 1981, 23, 287–298. [CrossRef]
5. Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220; Erratum in Commun. Math. Phys. 1976,

46, 206. [CrossRef]
6. Hartle, J.B.; Hawking, S.W. Path-Integral derivation of black-hole radiance. Phys. Rev. D 1976, 13, 2188–2203. [CrossRef]
7. Kodama, H.; Arraut, I. Stability of the Schwarzschild-de Sitter black hole in the dRGT Massive Gravity theory. Prog. Theor. Exp.

Phys. 2014, 2014, 023E02. [CrossRef]
8. De Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [CrossRef]

[PubMed]
9. De Rham, C.; Gabadadze, G. Generalization of the Fierz-Pauli Action. Phys. Rev. D 2010, 82, 044020. [CrossRef]
10. Arraut, I. On the apparent loss of predictability inside the de-Rham-Gabadadze-Tolley non-linear formulation of Massive Gravity:

The Hawking radiation effect. EPL 2015, 109, 10002. [CrossRef]
11. Arraut, I. Path-Integral derivation of black-hole radiance inside the de-Rham-Gabadadze-Tolley formulation of Massive Gravity.

Eur. Phys. J. C 2017, 77, 501. [CrossRef]
12. Arraut, I. The Black Hole Radiation in Massive Gravity. Universe 2018, 4, 27. [CrossRef]
13. Rubakov, V.; Tinyakov, P.G. Infrared-modified gravities and massive gravitons. Phys.-Usp. 2008, 51, 759–792. [CrossRef]
14. Rubakov, V. Lorentz-violating graviton masses: Getting around ghosts, low strong coupling scale and VDVZ discontinuity. arXiv

2004, 0407104.
15. Birrell, N.D.; Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1984.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01645742
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1103/PhysRevD.23.287
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.13.2188
http://dx.doi.org/10.1093/ptep/ptu016
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://www.ncbi.nlm.nih.gov/pubmed/21770493
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1209/0295-5075/109/10002
http://dx.doi.org/10.1140/epjc/s10052-017-5072-6
http://dx.doi.org/10.3390/universe4020027
http://dx.doi.org/10.1070/PU2008v051n08ABEH006600

	Introduction
	The Black Hole Solution in Massive Gravity
	The Bogoliubov Transformation Method in Massive Gravity: Hawking Radiation
	The Case of GR: Observers Defining the Time in Agreement with T0(r, t) in Massive Gravity
	The Case of Observers Defining the Time Arbitrary

	The Path Integral Formulation of the Black Hole Radiation in Massive Gravity
	Conclusions
	References

