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Abstract: The ability of bumblebee gravity models to explain dark energy, which is the phenomenon
responsible for the universe’s observed accelerated expansion, is one of their most significant applica-
tions. An effect that causes faster expansion can be linked to how much the Lorentz symmetry of our
universe is violated. Moreover, since we do not know what generates dark energy, the bumblebee
gravity theory seems highly plausible. By utilizing the physical changes happening around a rotating
bumblebee black hole (RBBH), we aim to obtain more specific details about the bumblebee black
hole’s spacetime and our universe. However, as researched in the literature, slow-spinning RBBH
(SRBBH) spacetime, which has a higher accuracy, will be considered instead of general RBBH. To this
end, we first employ the Rindler–Ishak method (RIM), which enables us to study how light is bent in
the vicinity of a gravitational lens. We evaluate the deflection angle of null geodesics in the equatorial
plane of the SRBBH spacetime. Then, we use astrophysical data to see the effect of the Lorentz
symmetry breaking (LSB) parameter on the bending angle of light for numerous astrophysical stars
and black holes. We also acquire the analytical greybody factors (GFs) and quasinormal modes
(QNMs) of the SRBBH. Finally, we visualize and discuss the results obtained in the conclusion section.

Keywords: bumblebee gravity theory; gravitational lensing; black holes; quasinormal modes; Lorentz
symmetry breaking; greybody factors

1. Introduction

The study of the Lorentz invariance [1], a fundamental principle in Einstein’s theory of
general relativity, has been a topic of great interest in the scientific community. The Lorentz
invariance states that the laws of physics are the same for all observers, regardless of the
relative motion. In recent years, various experimental and theoretical attempts have been
made to test the validity of this principle, and possible violations have been suggested [2–6].
While we acknowledge that there are many studies [7–10] that discuss the effect of quantum
gravity on black holes, our study focuses specifically on the effect of the Lorentz invariance
violation (LIV) on the properties of black holes.

The bumblebee gravity theory [11,12] is a modification of general relativity that in-
cludes a non-zero scalar field, also known as the “bumblebee field”. This field allows for
the LIV [13–15], and has been proposed as a way to explore possible deviations from the
standard model of physics [16,17]. One of the earliest studies on the bumblebee gravity
theory was introduced as a toy model by Kostelecky et al. [2,18–20] and by Bertolami
and Paramos [21], who derived the vacuum solutions of a bumblebee gravity model with
vector-induced spontaneous LSB. This was followed by a series of papers [5,22–38] that
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investigated various aspects of bumblebee gravity, including its effects on the early uni-
verse and gravitational lensing, its relation to dark energy, its implications for gravitational
waves and thermal radiation, and new black hole and wormhole solutions. In particular, in
recent years, there has been growing interest in the studies of bumblebee black holes [39],
which are solutions to the field equations of bumblebee gravity. Casana et al. [22] initially
reported an almost Schwarzschild spacetime solution using the bumblebee model, with the
bumblebee field having only a radial component. Very recently, Xu et al. [40] significantly
extended Casana et al.’s static solution and discovered spherical solutions with a temporal
component of the bumblebee field. The kinetic term seen in the action [40] has suggested
that the radial component is non-dynamic and can be removed from the field equations.
They found two families of solutions, one from a set of two second-order differential
equations and another from a set of three. The temporal component of the bumblebee
field is crucial for both families of solutions as it dramatically changes the behavior of the
metric near the black hole event horizon. Remarkably, it enables the existence of solutions
with a non-vanishing gtt at the event horizon. The static bumblebee black hole solutions
have been followed by RBBH studies [25,28,41–43], which account for rotation. In those
spinning bumblebee gravity models, the gravitational field is described by a metric that
includes cross-diagonal terms that are associated with the rotation of the black hole. The
field equations are also modified to account for rotation, resulting in a more complex set of
equations [27]. However, studies on RBBH have gained momentum in recent years. The
first RRBH solution was found in 2019 by Ding et al. [25], who showed that the bumblebee
field can impact the properties of rotating black holes, including their shapes, sizes, and
gravitational attraction. This was followed by several other studies that investigated the
effects of rotation on bumblebee black holes, including their QNMs, GFs, shadow, superra-
diant instability, and many other features [5,23,28,29,32,34,36,44–50]. These studies have
shed new light on the properties and behaviors of bumblebee black holes and their poten-
tial implications for our understanding of the universe. On the other hand, gravitational
lensing (the bending of light due to the gravitational attraction of massive objects), GFs
(factors that describe how the emission spectrum of the black hole differs from a completely
uniform black-body spectrum), and QNMs (characteristic ringing patterns produced by
black holes after disturbances) are promising methods for probing the LIV effects.

Gravitational lensing is a fascinating phenomenon in which the path of light is bent by
the gravitational force of a massive object, such as a galaxy or a cluster of galaxies. This
effect was first predicted by Einstein’s theory of general relativity in 1915, and it has since
been observed and studied by astronomers around the world [51–53]. Gravitational lensing
allows us to study objects that are otherwise too distant or faint to observe directly, as the
lensing effect can magnify and distort their appearance. Moreover, by analyzing the way
in which the light is bent and distorted, we can learn about the properties of the lensing
object and the distribution of matter in the universe. Gravitational lensing has, therefore,
become an important tool for studying astrophysics and cosmology, providing us with
valuable insights into the nature of the universe and the objects within it. For computing
gravitational lensing, there are various methods [54]. RIM [55,56] is a particular method
used for calculating the bending of light by a black hole. This method is based on the
Rindler approximation, which describes the spacetime around a black hole in a simplified
way. The RIM also considers the effect of the black hole’s rotation on the trajectory of light
and calculates the amount of bending that occurs as a result. This method is widely used to
study the properties of rotating black holes and has been applied to a variety of problems
in astrophysics and cosmology [55,57–67].

In this article, we aim to explore the potential of probing LIV through the gravitational
lensing, GFs, and QNMs of RBBHs. Meanwhile, in black hole physics, a GF [68–73] (also
known as an absorption coefficient or a transmission coefficient) is the measure of how
much of an incoming wave is absorbed by a black hole and how much is scattered or
transmitted away. When a wave (such as a photon or a particle) approaches a black hole,
it can be partially absorbed by the black hole’s gravitational field, and the remaining
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energy can be scattered or transmitted away. The probability of absorption depends on
the properties of the wave (such as its energy, frequency, and angular momentum) and
the properties of the black hole (such as its mass, charge, and spin). A black hole’s GF
is the ratio of the absorbed flux to the incident flux of the wave. It is called a “greybody”
factor because it represents a partial absorption of the wave, as opposed to a complete
absorption (which would result in a blackbody spectrum). Namely, GFs are important
in black hole physics because they affect the thermal radiation emitted by a black hole
(known as Hawking’s radiation [74–76]). The Hawking radiation spectrum is related to
the GFs of the black hole and can provide information about the properties of the black
hole. In summary, GFs are important in the study of black hole thermodynamics and in the
search for black hole candidates in astrophysics. In this context, it is one of the important
aims of this study to explore the fingerprints of the LIV parameter with GFs with the
semi-analytical bound method [71,77–80], which is a powerful technique used in black hole
physics to compute the GFs. The semi-analytical bound method (the so-called Miller–Good
transformation method [80]) involves combining analytical and numerical techniques to
calculate the GFs. The analytical part of the method involves finding a set of bounds
on the GFs, based on the properties of the black hole and the radiation being emitted.
These bounds can be computed using the perturbation theory. One advantage of the semi-
analytical bound method is that it can be applied to a wide range of black hole geometries
and radiation types, including scalar, electromagnetic, and gravitational radiation. It is
also computationally efficient, making it well-suited for studying the properties of black
holes in astrophysical scenarios, such as accretion disks and binary systems [81]. In short,
we shall employ the RIM for the gravitational lensing phenomenon, the Miller–Good
transformation method for the GF computations, and the unstable circular null geodesic
method, whose results are in agreement with the WKB approximation method [82,83], for
the derivation of analytical QNMs. As a result, we aim to shed new light on the nature
of LIV and its implications for our understanding of the universe. In the meantime, it
can be questioned as to why these different subjects are discussed in the same article. We
should clarify this issue as follows: Many theories and models have been proposed to
explain gravity, each with its own unique features and characteristics. Among the various
theories, the bumblebee gravity theory has been studied extensively in recent years. In
the bumblebee gravity theory, the vector field responsible for carrying the gravitational
force has an additional symmetry that is not present in the GR theory. This symmetry,
called gauge symmetry, is a mathematical property that describes the symmetry of the
field under certain transformations. One of the important aspects of gravity is its ability
to cause gravitational lensing. Gravitational lensing occurs when light passing through a
gravitational field is bent, creating a distortion of the image of the object being observed.
This effect has been observed in many astronomical phenomena, such as galaxy clusters and
black holes. Hence, the bumblebee gravity theory is an interesting area of research in the
field of astrophysics. For this reason, it can be studied in conjunction with other important
concepts, such as gravitational lensing, GFs, and QNMs, to gain a deeper understanding
of the behavior of bumblebee gravity and its interactions with matter. The study of these
concepts and their interrelationships have the potential to yield many exciting discoveries
about the bumblebee gravity theory in the years to come.

This paper is organized as follows. Section 2 presents a brief review of SRBBH
spacetime and its physical features. In Section 3, we study the gravitational lensing of
SRBBH and discuss the results obtained by comparing the real astrophysical data of stars. In
Section 4, we use the Miller–Good transformation method to compute the GFs of the SRBBH.
Then, in Section 5, for a dilatory RBBH spacetime, we derive the analytical QNMs via the
unstable circular null geodesic method. Finally, we draw our conclusions in Section 6.

En passant, unless otherwise stated, we use geometrized (natural) units G = c = h̄ =
kB = 1 and (−,+,+,+) metric signature in this paper.



Universe 2023, 9, 225 4 of 21

2. RBBH Spacetime

In this section, we will provide a brief overview of the Einstein–bumblebee gravity
model and its associated black hole solutions. This model is an example of an extension
to the standard general relativity framework. By utilizing the appropriate potential, the
bumblebee vector field Bµ obtains a non-zero vacuum expectation value, resulting in the
breaking of Lorentz symmetry within the gravitational sector. The action for a single
bumblebee field Bµ that is coupled to gravity can be defined as follows [22,27]

S =
∫

d4x
√
−g
[

1
2κ

(
R+ $BaBbRab

)
− 1

4

(
BabBab + 4V

)]
+ LM, (1)

where κ = 8πGN ,Rab is the Ricci tensor, andR denotes the Ricci scalar. The actual strength
of the connection between non-minimal gravity and the bumblebee field is determined by
the real coupling constant, which is denoted as $. The magnitude of the bumblebee field
Bab is specified by a definition of its intensity:

Bab = ∂aBb − ∂bBa. (2)

The bumblebee field Ba has a vacuum expectation value that should not be zero, so
a potential V is selected accordingly. The potential V has a minimum at y0 = BaBa ± b2

where b is a real, positive constant. Therefore, the potential can be represented using the
formula given in the 2018 paper by Casana [22].

V = V(y0). (3)

The possibility of a non-zero vacuum value 〈Ba〉 = ba exists and it can be triggered by
a certain potential, which satisfies the condition: baba = ∓b2. The process of calculating
the variation in action (1) leads to the formulation of two equations: one describes the
behavior of gravity in an empty space (known as the vacuum gravitational equation), and
the other describes how the bumblebee field moves (known as the equation of motion for
the bumblebee field). Hence, one has

Rab −
1
2

gabR = κTB
ab, (4)

∇aBab = 2V ′Bb −
$

κ
BaRab. (5)

where TB
ab denotes the bumblebee energy-momentum tensor [25]:

TB
ab = BacBc

a −
1
4

gabBcdBcd − gabV + 2BaBbV ′ +
$

κ

[
1
2

gabBcBdRcd − BaBcRcb − BbBcRca

+
1
2
∇c∇a(BcBb) +

1
2
∇c∇b(BcBa)−

1
2
∇2(BaBb)−

1
2

gab∇c∇d

(
BcBd

)]
,

(6)

Moreover, V ′ = ∂V(y)/∂y at y = y0. With the trace of Equation (5), one obtains the
trace-reversed version:

Rab =κTB
ab + 2κgabV − κgabBcBcV ′ +

$

4
gab

(
∇2(BcBc) + 2gab∇c∇d(BcBd)

)
. (7)

Now, without loss of generality, one can assume that the bumblebee field is frozen at
its vacuum expectation value. This assumption makes the specific form of the potential,
which is irrelevant to its dynamics, resulting in V = 0 and V′ = 0. With these conditions,
the first two terms in Equation (6) are similar to those of the electromagnetic field, except
for the coupling terms to the Ricci tensor. Given this, Equation (7) leads to the equations
for the gravitational field [25]: Rab = 0, with

Rab =Rab − κbacbc
b +

κ

4
gabbcdbcd + $babcRcb + $bbbcRca −

$

2
gabbcbdRcd + B̄ab, (8)
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B̄ab =− $

2

[
∇c∇a(bcbb) +∇c∇b(bcba)−∇2(babb)

]
. (9)

Overall, the condition of Rab = 0 determines whether the obtained spacetime is an
exact solution of the vacuum Einstein–bumblebee action or not. Additional elaborations
regarding this matter were presented in a very recent study by Liu et al [49].

In 2020, Ding et al. [25] revealed that by imposing the condition baba = const. and
utilizing the bumblebee field ba = (0, ρb0∆1/2, 0, 0), a Kerr-like black hole solution for the
Einstein–bumblebee theory can be obtained. This solution is expressed as follows:

ds2 = −
(

1− 2Mr
ρ2

)
dt2 + ρ2

(
1
∆

dr2 + dθ2
)
+

1
ρ2

(
−4Mrã sin2 θdtdϕ +A sin2 θdϕ2

)
. (10)

where

A =
(

r2 + ã2
)2
− ∆ã2 sin2 θ, (11)

ρ2 =r2 + ã2 cos2 θ, (12)

∆ =(1 + `)−1(r2 − 2Mr) + a2, (13)

ã =
√

1 + `a. (14)

The Lorentz-violating parameter (we shall also call it the bumblebee or LSB parame-
ter [84]) in metric (10) is denoted by ` = $b2

0, and a is the rotation parameter; this metric
represents a rotating spacetime with a radial bumblebee field. When ` → 0, the metric
reduces to the usual Kerr metric, while it becomes the static Einstein–bumblebee metric
when a → 0. However, the metric given in Equation (10) is not a correct RBBH solution
according to the findings of Maluf and Muniz [33]; their work was supported by [28,32,49].
In particular, it was shown in [33] that

∇θbθr +
$

κ
brRrr 6= 0, (15)

∇rbrθ +
$

κ
brRrθ 6= 0. (16)

However, it was again emphasized by Maluf and Muniz [33] that metric (10) becomes
correct in the slow rotation limit. To address this issue, we can expand the metric to the
second order of the rotation parameter ã by assuming that ã is sufficiently small, and we
obtain the following metric:

ds2 ≈ −
(

1− 2M
r

+
2Mã2 cos2 θ

r3

)
dt2 − 4Mã sin2 θ

r
dtdϕ +

(1 + `)ρ2

∆̃
dr2

+
(

r2 + ã2 cos2 θ
)

dθ2 + sin2 θ

[
r2 + ã2

(
1 +

2M
r

sin2 θ

)]
dϕ2, (17)

In the second order of ã, ∆̃ is the same as ∆. This enables us to identify the horizons r+
(event) and r− (inner) by finding the roots of ∆̃.

∆̃ = (r− r+)(r− r−). (18)

where

r+ = 2M− rp, r− = rp, (19)

in which

rp =
ã2

2M
. (20)
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Metric (17) still does not fully satisfy certain components of the field Equation (8). On
the other hand, the non-zero terms for the field equations are all linked to the rotation
parameter a. Therefore, metric (17) can be viewed as the slow RBBH (SRBBH) estimation of
the Einstein–bumblebee equation: R̄ab = 0. More information about this issue can be found
in the Appendix section of Reference [49]. For the slowest or dilatory RBBH (DRBBH),
one can consider the case of ã2 → 0 and hence r+ → 2M and r− = rp → 0. In this case,
metric (17) becomes

ds2 ≈ − f (r)dt2 − 2r+ ã sin2 θ

r
dtdϕ + g(r)dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (21)

where

f (r) =1− r+
r

, (22)

g(r) =
(1 + `)

f (r)
. (23)

At this stage, to avoid lengthy computations and prioritize clarity and comprehensibil-
ity, let us discuss the thermodynamic features of the DRBBH. To this end, we first consider
a particle’s behavior in close proximity to the event horizon by utilizing the following
four-velocity [85]:

uα →
((
−gtt)1/2, 0, 0,

−gtϕ

(−gtt)1/2

)
. (24)

The zero angular momentum observer (ZAMO) always behaves well because gtt < 0
for all cases outside the horizon (r > r+). The ZAMO always co-rotates with the black hole
at the following angular velocity (as seen from spatial infinity):

ΩZAMO =
uϕ

ut = − gtϕ

gtt = −
gtϕ

gφϕ
(25)

One may ask at a given (r, θ) what the range of the allowed dϕ/dt is. One can judge
that this is possible by the following metric condition:

gtt + 2gtϕ
dϕ

dt
+ gϕϕ

(
dφ

dt

)2
< 0, (26)

or Ωmin < dϕ
dt < Ωmax with

Ωmax,min = ΩZAMO ±

√(
gtϕ

)2 − gttgϕϕ

gϕϕ
. (27)

What is interesting is that as we approach the event horizon r+, although gφφ remains

finite,
((

gtϕ

)2 − gttgϕϕ

)
→ 0 :; thus, all particles near the event horizon must have

dφ

dt
≈ ΩH = ΩZAMO(r+) =

a
r2
+

. (28)

Thus, ΩH is called the angular velocity of the horizon or the black hole. It is obvious
that the RBBH metric is stationary and axisymmetric, with Killing fields ξa = (∂/∂t)a and
ψa = (∂/∂φ)a. Moreover, the RBBH is asymptotically flat, which can be seen crudely from
the fact that the metric components (17) or (21) approach those of the Minkowski spacetime
in spherical polar coordinates as r → ∞. Employing the black hole mass definition of
Wald [86]

M̃ = − 1
8π

∫
S

εabcd∇cξd, (29)
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where the integral is taken over a sphere, S, one can obtain the mass of the DRBBH

M̃ =
r+

2
√

1 + l
=

M√
1 + l

. (30)

Moreover, the total angular momentum of RBBH can be computed via the following
expression [86]:

J =
1

16π

∫
S

εabcd∇cψd, (31)

which yields the following expression for the DRBBH

J =
ãr+

2
√

1 + l
=

ar+
2

= Ma. (32)

As the metric components solely rely on r and θ, the acceleration of a particle can be
derived from

aα = Γα
µνuµuν = −gαµ∂µ ln ut. (33)

According to Reference [86], the surface gravity (κ) is defined as

κ = lim
r→r+

√
aαaα(ut)−1. (34)

As an exemplary study, if we apply the above formulation of the surface gravity
(
i.e.,

Equation (34)
)

to metric (21), and make some straightforward calculations, we obtain the
surface gravity of the DRBBH as follows

κ =
1
2

∂r f |r=r+ =
1

2r+
√

1 + `
. (35)

Thus, the Hawking temperature of the DRBBH reads

TH =
κ

2π
=

1
4πr+

√
1 + `

. (36)

The black hole area is given by

ABH =
∫ 2π

0
dϕ
∫ π

0

√
−gdθ = 4πr2

+. (37)

Therefore, one can easily derive the entropy of the DRBBH as follows

SBH =
ABH
4} = πr2

+. (38)

The obtained thermodynamical quantities of the DRBBH, which are given in Equations (28),
(30), (32), (36), and (38) imply that the first law of thermodynamics [76]

dM̃ = THdSBH + ΩH dJ, (39)

=
dr+

2
√

1 + l
+

a2dr+
2r2

+

,

holds when ( a
M )2 → 0. Thus, both the nearly static DRBBHs and/or the significantly

massive DRBBHs satisfy the first law of thermodynamics.

3. Gravitational Lensing of SRBBH via RIM

Gravitational lensing is a phenomenon in black hole physics where the intense grav-
itational field of a black hole bends and distorts the path of light passing near it. This
can result in the creation of multiple images of the same source, or even the formation



Universe 2023, 9, 225 8 of 21

of a complete ring of light known as the Einstein ring. In the vicinity of a black hole, the
strong gravitational field warps spacetime, causing the paths of light rays to curve. This
can lead to an effect where a distant object appears distorted or magnified when viewed
from a certain angle. This phenomenon is similar to how a magnifying glass bends and
focuses light to make objects appear larger. Gravitational lensing has been observed in a
variety of astrophysical contexts, including around supermassive black holes at the centers
of galaxies, and around smaller black holes in binary systems. In some cases, it has even
been used to indirectly detect the presence of black holes themselves, by observing the
effects of their gravity on the light from nearby stars or gas. In this section, we shall analyze
the gravitational lensing of SRBBH via RIM [56]. This method is based on the invariance of
the angle, which is obtained as a result of the scalar product of two vectors:

cos(ψ) =
diδi√(

didi
)(

δjδj
) (40)

where the vector directions d and δ can be represented geometrically in the standard
symmetry plane (θ = π/2 plane), with t = const., as shown in Figure 1.

Figure 1. The one-sided bending angle is given by ε = ψ− ϕ. The upper straight line symbolizes the
undistorted light rays defined by the solution of the homogeneous part of Equation (45).

The geometrical polar coordinates of the directions can be written as

d = (dr, dϕ) = (A, 1)dϕ dϕ < 0,

δ = (δr, 0) = (1, 0)δr, (41)

where A(r, ϕ) = dr
dϕ . By mapping metric (21) to the following general rotating spacetime:

ds2 = − f (r)dt2 − 2g(r)dtdϕ + h(r)dr2 + p(r)dϕ2, (42)

in which

f (r) =1− 2M
r

,

g(r) =
2Mã

r
, (43)

h(r) =
(`+ 1)2

1− 2M
r + ã

r2

,

p(r) =r2 + ã2
(

1− 2M
r

)
,



Universe 2023, 9, 225 9 of 21

One can obtain the following null geodesic equation [87] through the standard change
of variable process, u = 1

r (recall the classical Kepler problems), and subsequently derive
the evolution of the light curve in the SRBBH spacetime (21):

d2u
dϕ2 =

1
2

d
du

[
u4( f (u)p(u) + g2(u)

)(
p(u)− 2g(u)b− f (u)b2)

h2(u)(g(u) + f (u)b)2

]
, (44)

where E and L are the energy and angular momentum of the photon, respectively, and the
parameter defined as b = E/L is called the impact parameter. If we put the metric function
into Equation (44), the generic null geodesic equation becomes

d2u
dϕ2 + βu '

Mu2
(
−3a2b(`+ 1)− 2a

√
`+ 1

(
9a2(`+ 1) + 12M2)+ 3b3

)
b3(`+ 1)2 −

2aM
b3(`+ 1)3/2 , (45)

and

β =

(
−3a2b(`+ 1) + 8a

√
`+ 1M2 + b3

)
b

3

(`+ 1)2. (46)

If we use the standard approximation of u =
sin[
√

βϕ]
b to solve Equation (45) and put

the homogeneous solution into the inhomogeneous side of Equation (45), then the first
order perturbative solution can be found as follows

u(ϕ) ≈
sin
[√

βϕ
]

b
+

M
(
cos
(
2
√

βϕ
)
+ 3
)

2b2β(`+ 1)2 − 2aM
b3β(`+ 1)3/2 + O

(
1
b

)4
. (47)

The closed distance approach r0 is analyzed at ϕ = π/2. Thus, one can obtain the
closed distance as follows

1
r0

=
sin
[√

βπ/2
]

b
+

M
(
cos
(√

βπ
)
+ 3
)

2b2β(`+ 1)2 − 2aM
b3β(`+ 1)3/2 . (48)

The invariant formula of RIM for the rotating spacetimes is given by [87]

tan(Ψ) =

[
h−1(r)p(r)

]1/2

|A(r, ϕ)| . (49)

When we substitute Equation (47) into the definition of A(r, ϕ), we can find

A(r, ϕ) = −
(
cos
(√

βϕ
)(

bβ(`+ 1)2 − 2M sin
(√

βϕ
)))

b2
√

β(`+ 1)2
r2. (50)

If we use the standard approximations of the RIM, ϕ = 0 and M
R << 1, Equations (47)

and (50) then yield

r ≈ b2β(`+ 1)2

2M
, A(r, ϕ = 0) ≈ −r2

√
β

b
. (51)

When we use expression (51) and the related metric functions, Equation (43) in
Equation (49), and perform the small angle approximation, ε = tanψ0 ≈ ψ0, the bend-
ing angle of the SRBBH can be found as follows:
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ε ≈ 2M
β3/2(`+ 1)3b

{
1− 2M2

β(1 + `)2b2 +
4M2a2

β2(1 + `)3b4 −
16M4a2

β3(1 + `)5b6

+
8M2(a4(`+ 1)M2 + 4a2M4)

β4(`+ 1)7b8

}
+ O

(
1
b

)9
.

(52)

We analyzed the gravitational lensing phenomenon for stars whose masses, radii, and
rotational parameters are recorded in Reference [87], for specific values of the ` parameter,
by utilizing the graphs presented in Figure 2. The analysis of the plots depicted in Figure 2
for various real stars observed in the cosmos demonstrates a clear correlation between
the bumblebee parameter ` and the bending angle at low b

Rstar
values. It is worth noting

that the units used in the calculation are first converted to standard international units,
or S.I units. In order to convert the mass (M) to S.I units, it is multiplied by Gc−2, where
G = 6.67408× 10−11 m3kg−1s−2 is the gravitational constant and c = 3× 108 ms−1 is the
speed of light. This results in the one-sided bending angle being measured in radians.
Specifically, as the value of ` increases, the bending angle also increases. This observation
suggests that the bumblebee parameter plays a crucial role in determining the gravitational
lensing effects of stars. Furthermore, this trend is only observed at low b

Rstar
values, which

indicates that the impact of the bumblebee parameter may be negligible under certain
conditions. Overall, these findings provide valuable insights into the underlying physics of
gravitational lensing and offer a potential avenue for further investigation into the nature
of the bumblebee parameter and its role in gravitational lensing.
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Figure 2. Bending angle ε versus b
R star graphs. The Rstar represents the radius of the star entitled in

each graph. The effects of varying bumblebee parameters on the bending angle are illustrated.

4. GFs of SRBBH Spacetime

The calculation of GFs is an important aspect of studying black hole thermodynamics
and Hawking’s radiation. According to Hawking’s famous calculation [74,75], black holes
emit radiation due to quantum effects, and radiation has a thermal spectrum with a
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temperature proportional to the black hole’s surface gravity. However, this calculation
assumes that the black hole is a blackbody, namely a perfect absorber, which is not the case
in reality. The GF takes into account the deviation from perfect absorption and modifies the
thermal spectrum accordingly. In this section, our aim is to derive the GFs of the SRBBH
spacetime. In this regard, we use the massive Klein–Gordon equation, which plays an
important role in the study of black hole physics. It is a relativistic wave equation that
describes the behavior of a scalar field in the presence of a massive particle. In the context
of black holes, this equation is often used to describe the behavior of matter fields around
black holes. In general, the massive Klein–Gordon equation can be written as [6]:

1√−g
∂µ(
√
−ggµν∂νφ) = µ2φ, (53)

where µ indicates the mass of the scalar field. By substituting metric (21) in Equation (53)
with the following ansatz:

φ =
Ψ(r)√
r2 + a2

e−iωtY(θ, φ), (54)

and, in the sequel, expanding the result up to the first order of ã, we have as follows (for a
similar analysis, the reader is referred to [49] and references therein):

d2

dx2 Ψ(1)
l + V(1)

l Ψ(1)
l = 0, (55)

where dr/dx = F = 1− 2M
r . The effective potential V(1)

l is given by

V(1)
l = (1 + `)

(
ω2 −

√
1 + `

4amMω

r3

)
− F

(
2M
r3 + (1 + `)(

λ

r2 + µ2)

)
. (56)

In Equation (56), λ = l(l + 1) is the eigenvalue of the wave equation and l stands for
the angular quantum number. Moreover, the second-order expansion of Equation (53) with
respect to ã recasts in

d2

dr2∗
Zl + V(2)

l Zl = 0, (57)

where dr
dr∗

= (1+`)δ̃
r2+a2 and

Z1 = Ψ(2)
l + a2clΨ

(2)
l−2 − a2cl+2Ψ(2)

l+2, (58)

in which

cl =
(1 + l)(µ2 −ω2)

2(2l − 1)

√
(l − 1)2 −m2

4(l − 1)2 − 1

√
l2 −m2

4l2 − 1
. (59)

Furthermore, the effective potential in Equation (57) can be found as follows

V(2)
l = V(1)

l − 24M2a2

r6 +
2Ma2

r5 (6− 2l(l + 1)(1+ `)− 3`− 2r2(1+ `)µ2 + r2(1+ `)2ω2)

+
a2

r4 (l − 1 + 2`− l`2 + m2(1 + `)2 − l2(`2 − 1) + r2µ2 − r2(ω2 + `2µ2 − `2ω2))

− a2F
r2 (1 + `)2(µ2 −ω2)(

l2 −m2

4l2 − 1
)(
(l + 1)2 −m2

4(l + 1)2 − 1
). (60)

Figure 3 shows the effective potentials represented in Equations (56) and (60). It is
evident that the effective potentials increase as a barrier with the increase of the bumblebee
parameter `.
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Figure 3. σl(ω) versus ω graphs of the effective potential for the first order (left) and second order
(right) of ã. The physical parameters are chosen as M = m = 1, ã = 0.1, λ = 6 (l = 2), and ω = 10.

To derive the GFs, we apply the general semi-analytic bounds, defined by

σ(ω) ≥ sec h2
[∫ +∞

−∞
℘dr∗

]
, (61)

where

℘ =

√
(h′2) + (ω2 −Ve f f − h2)2

2h
, (62)

In which h(x), seen in the integrand of Equation (61), is a positive function that fulfills
the two conditions: (1) h(r∗) > 0 and (2) h(−∞) = h(+∞) = ω. After applying the afore-
mentioned conditions to the effective potentials, one may observe a direct proportionality
between the GFs and the effective potential, where the metric function plays a significant
action in this process. Thus, Equation (61) becomes

σ(ω) ≥ sec h2
[∫ +∞

rh

Ve f f

2ω

dr
dr∗

]
. (63)

One advantage of using a massless scalar field is that it allows for the propagation
of waves at the speed of light, which is a fundamental feature of many physical systems.
Additionally, massless fields are mathematically simpler to work with and can lead to more
elegant and concise solutions to certain problems. For this reason, by taking cognizance
of massless fields and substituting Equation (56) in Equation (63) with dr

dr∗
≡ dr

dx , one can
obtain the GFs of the SRBBH for the first order of ã as follows

σ
(1)
` (ω) ≥ sec h2

(
1

2ω

[
4aMmω((1 + `)

√
1 + `)

( 1
2r2

h
+

2M
3r3

h
+

M2

r4
h

+
8M3

5r5
h

)
+

M + rhλ(1 + `)

r2
h

])
. (64)

The behavior of the GFs for the first order of the rotating parameter ã for the vary-
ing bumblebee parameter ` is depicted in Figure 4. The figure demonstrates that in-
creasing the bumblebee parameter ` results in a decreased probability of encountering
Hawking radiations.
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Figure 4. σl(ω) versus ω graphs for the massless scalar field propagating in the SRBBH with the
first-order expansion of ã. The physical parameters are chosen as M = 1, λ = 6, and ã = 0.1

The GFs for the second order of ã can be determined using a similar procedure by
substituting Equation (60) into Equation (63). One can obtain

σ`(ω)(2) ≥
[

σ
(1)
` (ω) + sec h2

(
1

2ω(1 + `)

[
−A
7r7

h
+

B
6r6

h
+

C
5r5

h
+

D
4r4

h
+

E
3r3

h
+

H
2r2

h

])]
, (65)

by which
A = 24M2a2(a2 − r+r− + 4M2), (66)

B = 2Ma2(a2 − r+r− + 4M2)(6− 2l(l + 1)(1 + `) + 3`)− 48M3a2, (67)

C = a2(a2 − r+r− + 4M2)(l − 1 + 2`− `2l + m2(1 + `)2 − l2(`2 − 1))

+ 4M2a2(3`− 2l(l + 1)(1 + `)), (68)

D = 2Ma2(1 + `)2ω2(a2 − r+r− + 4M2) + 2Ma2(l − 1 + 2`− l`2 + m2(1 + `)2 − l2(`2 − 1))

+ 2Ma2(6− 2l(l + 1)(1 + `) + 3`), (69)

E = Fa2(1 + `)2ω2(a2 − r+r− + 4M2)(
l2 −m2

4l2 − 1
+

(l + 1)2 −m2

4(l + 1)2 − 1
)− a2ω2(a2 − r+r− + 4M2)

× (1 + `2) + 4M2a2(1 + `)2ω2 + a2(l − 1 + 2`− l`2 + m2(1 + `)2 − l2(l2 − 1)), (70)
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H = 2Ma2(1 + `)2ω2 − 2Ma2ω2(1 + `2) + 2FMa2(1 + `)2ω2(
l2 −m2

4l2 − 1
+

(l + 1)2 −m2

4(l + 1)2 − 1
), (71)

where r+r− = (2M− (1 + `) a2

2M )(1 + `) a2

2M . Figure 5 represents the relationship between
the GFs of the second order of ã and the bumblebee parameters. The right figure is drawn
for both the first order σ`(ω) and second order σ

(2)
` (ω); however, the left figure represents

the GFs of the SRBBH together with the first and second orders of σ`(ω), i.e., Equation (65).
Again, it is obvious that the increase in the ell parameter decreases the GFs.

Figure 5. σl(ω) versus the ω graph for the massless scalar field and first-order expansion of ã for
RBBH. The left figure represents the GFs of SRBBH for both the first order (solid lines) and second
order (dashed line) of ã. The right one shows the GFs of the SRBBH with the combination of both the
first and second orders of ã; see Equation (65).

5. QNMs of Extremely Slow Rotating DRBBH via Unstable Circular Null
Geodesic Method

Ever since the unveiling of the LIGO experiment [88], there has been an increased
interest in gravitational waves, specifically those emitted by disturbed black holes. These
waves are predominantly characterized by “quasinormal ringing” [89], which refers to the
damped oscillations at specific frequencies that are unique to the system in question. These
QNM frequencies can be determined by calculating the scalar perturbation of a massless
field around a black hole:

∂µ

(√
−ggµv∂νΨ

)
= 0. (72)

In the extreme slow-rotation approximation, the DRBBH metric (21) can be approxi-
mated to the static bumblebee black hole [22], which is given by

ds2 ≈ −F(r)dt2 +
1

g(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (73)

where we recall that F(r) = 1− 2M
r and

g(r) = (`+ 1)
(

1− 2M
r

)
. (74)

One can separate the scalar wave Equation (72) by considering the following ansatz:

Ψ = R(r)Ylm(ϑ)eimφe−iωt, (75)



Universe 2023, 9, 225 15 of 21

where R(r) is nothing but the radial function and Ylm denotes the spherical harmonics. By
employing the tortoise coordinate transformation r∗ =

∫ dr√
f (r)g(r)

, Equation (72) reduces

to a one-dimensional Schrödinger-like wave equation:

d2R(r∗)
dr2∗

+
(

ω2 −V(r∗)
)

R(r∗) = 0, (76)

where ω = ωR − iωI is a complex quasinormal mode frequency and the effective potential
read is given by [90]

V(r) = H(r)
(

H′(r)
r
− l(l + 1)

r2

)
, (77)

where H(r) =
√

f (r)g(r); recall that l is the angular quantum number, and the prime
symbol denotes the derivative with respect to r. Hence, one obtains

V(r) =
(r− 2M)

(
2M

r3
√

1+`
+ l(l+1)

r2

)
r
√

1 + `
. (78)

The behaviors of the effective potential for the massless bosonic waves propagating in
the extremely slow-spinning DRBBH geometry (73) are depicted in Figure 6. It is clear from
the figure that increasing the bumblebee parameter ` decreases the height of the potential
barrier, while increasing the angular quantum number l increases the apex of the barrier.

ℓ

/0,ψ

= 2 ℓ= =ℓ1 0.5

V(r)

r
ℓ=0.1 ℓ 0=

Figure 6. Plots of effective potential (78) for massless spin-0 waves propagating in the extremely
slow-spinning DRBBH (73). The physical parameters are chosen as M = 1 and a ≈ 0. The curves are
labeled by the values of l: l = 0 curves are represented by solid lines; dotted curves stand for l = 1.
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In Reference [82], it was noted that the parameters governing the unstable circular
null geodesics around any stationary spherically symmetric and asymptotically flat black
holes—such as the angular velocity ΩC and the principal Lyapunov exponent λLexp—have
a remarkable correspondence with the QNMs emitted by the black hole in the eikonal
(i.e., short wavelengths or high l number) part of its spectrum, as discussed in Reference [7].
We now employ the WKB approximation method [91] along with the unstable circular null
geodesic method [92] to determine the frequency of the quasinormal mode. Specifically, in
the large-l limit, it was shown that the eikonal QNM frequencies are given by [82]

ωl�1 = lΩC −
i
2
(2n + 1)

∣∣λLexp
∣∣, (79)

where n = 0, 1, 2, . . . is the overtone number, λLexp denotes the Lyapunov exponent, and
ΩC represents the angular velocity at the unstable null geodesics, which is given by [83,93]

ΩC =

√
H
(
rps
)

rps
, (80)

where rps is the radius of the photon sphere, which can be calculated by finding the largest
root of this relation:

H
(
rps
)

H′
(
rps
) =

−2Mrps + r2
ps

2M
=

rps

2
. (81)

After making a straightforward calculation, one can easily find that rps = 3M. The
expression of λLexp can be derived as follows [82]

λLexp =

√√√√H
(
rps
)[H

(
rps
)

r2
ps
− 1

2
H′′(rps)

]
. (82)

Table 1 illustrates the behaviors of the QNMs under varying values of the bumblebee
parameter `, angular quantum number l, and overtone number n. Specifically, we observe
that as ` increases, both the real and imaginary parts of the QNMs change. The real part
(Re(ω)) corresponds to the frequency of oscillations, while the imaginary part (Im(ω))
dictates the rate at which the oscillations decay. Interestingly, all of the QNMs shown in
Table 1 have negative imaginary parts, indicating that they are stable modes. In short,
increasing the value of ` results in a decrease in the frequency ω of the scalar perturbations,
which in turn causes the oscillations to decay more slowly. In other words, the higher
values of ` correspond to longer-lived oscillations. Moreover, one can also observe that the
increments in the l and n-values increase the values of Re(ω) and Im(ω), respectively.

Table 1. Effects of the bumblebee parameter `, angular quantum number l, and the overtone number
n on the QNM frequencies for the fixed mass parameter M = 1.

` l n Re(ω) Im(ω)

0 0 0 0 −0.09622504490
0 0 1 0 −0.2886751347
0 0 2 0 −0.4811252245
0 1 0 0.1924500898 −0.09622504490
0 1 1 0.1924500898 −0.2886751347
0 1 2 0.1924500898 −0.4811252245
0 2 0 0.3849001795 −0.09622504490
0 2 1 0.3849001795 −0.2886751347
0 2 2 0.3849001795 −0.4811252245
0.1 0 0 0 −0.09174698047
0.1 0 1 0 −0.2752409415
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Table 1. Cont.

` l n Re(ω) Im(ω)

0.1 0 2 0 −0.4587349024
0.1 1 0 0.1879186773 −0.09174698047
0.1 1 1 0.1879186773 −0.2752409415
0.1 1 2 0.1879186773 −0.4587349024
0.1 2 0 0.3758373544 −0.09174698047
0.1 2 1 0.3758373544 −0.2752409415
0.1 2 2 0.3758373544 −0.4587349024
1 0 0 0 −0.06804138176
1 0 1 0 −0.2041241452
1 0 2 0 −0.3402069088
1 1 0 0.1618305907 −0.06804138176
1 1 1 0.1618305907 −0.2041241452
1 1 2 0.1618305907 −0.3402069088
1 2 0 0.3236611813 −0.06804138176
1 2 1 0.3236611813 −0.2041241452
1 2 2 0.3236611813 −0.3402069088

6. Conclusions

In this paper, we presented a comprehensive discussion on gravitational lensing,
GFs, and QNMs in RBBH spacetime. The study has provided impressive results in four
dimensions when considering general relativity coupled with the bumblebee theory. After
introducing some physical features of the SRBBH, which was proven to be the more
physically correct metric version of RBBH (17), to compute the gravitational lensing, we
employed the RIM. The null geodesics and spherical photon orbit conditions were discussed
to describe the gravitational lensing of SRBBH. By adjusting the Lorentz-violating parameter
` and modeling real stars to the SRBBH spacetime, gravitational lensing was depicted and
its usual behavior was explored. We found that the presence of the Lorentz-violating
parameter ` affects the bending angle of light moving in the SRBBH geometry, which
increases with an increase in the Lorentz-violating parameter `. In summary, this result
provides compelling evidence for indirectly detecting the existence of the Lorentz-violating
parameter ` and is, thus, a confirmation of the bumblebee gravity theory.

In a further analysis, we discussed the scattering by using massive bosonic fields via
the Klein–Gordon equation in SRBBH. In the sequel, we computed the GFs of the SRBBH by
applying the semi-analytical bounds method. It has been found that the GFs of the SRBBH
decrease with the increasing Lorentz-violating parameter `. We then extended our analysis
to determine the QNM frequencies of the DRBBH. To this end, the null geodesics and
spherical photon orbit conditions were discussed in order to employ the unstable circular
null geodesic method using the Lyapunov exponents. After obtaining the one-dimensional
Schrödinger-like wave equation from the radial part of the Klein–Gordon equation, we
illustrated the obtained effective potentials in Figure 6 by varying the bumblebee parameter
`, overtone number n, and angular quantum number l. We found that the existence of the
Lorentz-violating parameter ` affects the potential barrier in such a manner that the peak
values of the potentials reduce with the increasing bumblebee parameter `. Finally, we
explored the QNMs in the large l-limit, which consists of the imaginary (decaying) and
real (oscillatory) parts. Our results show that both oscillatory and decaying sectors of the
QNMs decrease with an increase in the magnitude of the Lorentz-violating parameter `.

Our work can be extended to Kerr-like RBBH spacetimes for polarized light [27] as
it opens up a new avenue to understand the bumblebee vector field with LSB and its
interaction with the electromagnetic fields. Hence, the study of gravitational lensing, GFs,
and QNMs in the effective bumblebee gravity metric for polarized light will be a natural
extension of our work in the near future. Another possible future problem of bumblebee
gravity in black hole physics is that it could lead to the formation of exotic objects known
as “gravastars” [94]. These objects are believed to be made up of a type of dark energy
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that can counteract the effects of gravity and prevent the formation of a singularity at the
center of a black hole. While gravastars are still hypothetical, they could have important
implications for our understanding of black hole physics and the nature of dark energy. We
will also keep this issue among our possible future works.
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İ.S.; resources, İ.S.; data curation, S.K.; writing—original draft preparation, İ.S, M.M. and S.K.;
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