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Abstract: Neutron stars are the densest objects in the Universe. They have a microscopically homo-
geneous core and heterogeneous crust. In particular, there may be a specific layer inside neutron
stars, the mantle, which consists of substantially non-spherical nuclei immersed in a background of
relativistic degenerate electrons and quasi-free neutrons. In this paper, we reconsider the transverse
shear modulus for cylindrical phases of the mantle within the framework of the compressible liquid
drop model. We demonstrate that transverse shearing affects the shape of nuclear clusters: their
cross-section becomes elliptical. This effect reduces the respective elastic constant. Using a simple
model, we perform all derivations analytically and obtain the expression for the transverse shear
modulus, which can be useful for astrophysical applications.
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1. Introduction

The mantle is a specific microscopically inhomogeneous layer of a neutron star, where
nuclear cluster shapes are essentially non-spherical. This layer was predicted for the first
time in Refs. [1,2] by considering a set of symmetrical pasta-like nuclear shapes—cylinders,
plates, and their inverse configurations—along with spherical nuclei and spherical holes.
This set has become canonical and was considered in a large number of subsequent papers
(e.g., [3–23]), and some papers suggested more complex structures based on numerical
simulations [24–26]. In this paper, we limit ourselves to cylindrical nuclear shapes (both
inverse and normal).

The mantle affects neutron star evolution (e.g., [27] for review), through its effect on the
transport properties (e.g., [28–33]) and neutrino emissivity (e.g., [34–37]). However, in this
paper, we concentrate on another aspect of mantle properties: elasticity. Indeed, each pasta-
like layer of the mantle is similar to liquid crystal and can support shear stresses (see [38],
for example). Its elastic properties can affect present-day observations (e.g., quasi-periodic
oscillations, observed after magnetar flares [39–41] as well as constraints on quadrupole
ellipticity supported by the crust [40]), and, as a part of the crust elasticity, can potentially
affect the observations of the third generation of gravitational wave detectors (e.g., [42];
see, however, the critique in [43]).

The seminal work on the elastic properties of the mantle was made in Ref. [38]. Therein,
the authors calculated elastic constants for cylindrical and planar nuclear shapes in the
framework of a compressible liquid drop model (CLDM). Most of the results were obtained
analytically, using some simplified assumptions. The elastic properties of the mantle were
also studied using molecular dynamics [44] and relativistic-mean-field model [45]; special
attention was paid to the problem of effective shear modulus in a realistic case in which
non-spherical nuclei are not well ordered, considering global hydrodynamical scales of a
star, i.e., the mantle has a “polycrystalline” structure [46].

In this paper, we elaborate on CLDM for the elasticity of the mantle. Specifically,
we use our recent work [47], where we have demonstrated that shear deformation of a
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neutron star crust induces quadrupole deformation for the initially spherical nuclei, and
this effect reduces the effective shear modulus. Here, we generalize the approach of [47]
for cylindrical pasta phases and consider transversal shear, i.e., shear deformations in the
plane perpendicular to the symmetry axis of the cylinders. Regarding spherical nuclei,
we demonstrate that the respective elastic constant (coefficient C in notations of [38]) can
be analytically calculated within a simplified Wigner–Seitz approximation, and the result
agrees well with accurate lattice-based calculations [38], if the same assumption (enforced
circular shape of the cluster cross-section) is applied. As pointed out in [38], the shape
of nuclear clusters can be affected by transversal shear. We take this effect into account
analytically, allowing nuclear clusters to adjust their shape to minimize energy in response
to the shear of the lattice. We demonstrate that shear deformation indeed enforces nuclei
clusters to have elliptical cross-sections and, if one accounts for this effect, one obtains∼25%
reduction of the respective elastic constant at the most relevant parameters. In Section 2,
we present our formalism and derive the expression for transverse shear modulus for
cylindrical clusters. In Section 3, we show our results and compare them with previous
works. In Section 4, we present a summary of the results.

2. Formalism

Nuclear clusters in the mantle have a microscopical structure similar to that of liquid
crystals resembling an intermediate state between solids and liquids in terms of elastic
properties [38,44,46]. In what follows, we use terminology and the notation of Ref. [38]. For
the considered cylindrical phase, three elastic constants B, C, and K3 are generally required
to describe shear deformations (the compression is described by a fourth constant, the bulk
modulus, which can be easily calculated from the equation of state). The constant B charac-
terizes the response to elongation along the cylindrical axis, accompanied by compression
in the radial direction, K3 is associated with bending, and C describes transverse shearing.
In this paper, we limit ourselves to the elastic constant C.

To calculate the elastic constant C, we proceed in the same way as in [47]. First, we
note that a straightforward consideration of deformation for a system of cylindrical clusters,
ordered into a perfect static two-dimensional hexagonal lattice (as was carried out in [38])
is equivalent to the deformation of one unit cell with periodic boundary conditions. This
is obvious because the whole crystal (for both undeformed and deformed states) can be
presented as a set of periodic copies of the unit cell. Second, we replace a precise unit cell
(regular hexagon) with a smoother figure—a cylinder with a circular cross-section with
radius rc—and apply shear deformation

x → x (1 + ε) (1)

y → y/(1 + ε) (2)

z → z (3)

for this cell. Here, the z axis is along the cylindrical axis and ε is an infinitesimally small
strain parameter. As a result of this volume-conserving deformation, the approximate
unit cell for the deformed state becomes a cylinder with an elliptical cross-section with
semi-axes rc(1 + ε) and rc/(1 + ε) (see Figure 1). The high accuracy of the approach based
on the approximate unit cell is confirmed below by comparison with the results of [38]
(to do this, we provide an additional estimate of C, with an enforced circular shape of the
cluster cross-sections, as was assumed in [38]).

By definition (see Equation (11) in [38]), for the specified deformation (Equations (1)–(3)),
the energy density change is coupled with the elastic constant C by

δw = 2 Cε2. (4)

Thus, it is enough to calculate the energy density change δw to estimate C.
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Figure 1. Transversal cross-section of the lattice of cylindrical clusters (filled regions) in the spaghetti
phase before (left panel) and after (right panel) transversal shearing. Dotted lines represent the
accurate hexagonal boundaries of the Wigner–Seitz cell, and dashed lines are the circular/elliptical
approximations of the cell. The change in the cluster cross-section in response to the applied shear is
schematically shown in the right panel.

To calculate the energy density in the deformed and undeformed states, we apply a
compressible liquid drop model (CLDM) in the same way as in [48], i.e., we parametrize
the surface parameters for a plain interface using the neutron chemical potential µn, taking
into account neutron adsorption (adsorption of protons vanishes due to the choice of the
reference frame; see supplementary material in [48] for details), but neglect curvature
corrections. Below, we provide derivations for the non-inverted cylindrical phase,1 i.e., we
consider a cell with a neutron–proton cluster (with number densities nni and npi) located in
a central part, surrounded by a neutron matter with number density nno (see Figure 1). In
comparison with [38], we allow the cluster cross-section in the x, y plane to respond to the
applied shear. As long as we consider infinitesimal deformations, the cross-section in the
deformed state can be treated as ellipsoidal with semi-axes rp(1+ εp) and rp/(1+ εp). Here,
εp is an infinitesimal parameter, which allows us to adjust the cluster shape to minimize
energy density. Below, we consider the case when the semi-axis rp(1 + εp) of the cluster
cross-section lies along x. We have checked that it is this configuration, which corresponds
to the minimal energy density within a more general treatment, that allows the cluster
deformation to be oriented arbitrarily. Please note that the volume fraction, occupied by
the cluster, depends neither on ε nor on εp, and can be written as u ≡ (rp/rc)2. As usual,
we assume the cell to be quasi-neutral, filled by degenerate electrons with uniform density
in the whole cell. As a result, the energy density is

w = uwb(nni, npi) + (1− u)wb(nno, npo = 0) + wS + wC + we(ne). (5)

Here, wb(nn, np) is the bulk energy density of uniform nuclear matter at neutron
and proton number densities nn and np, and we(ne) is the energy density of degenerate
electrons with the number density ne = u npi. Finally, wS is the energy density associated
with the surface energy of the cluster, and wC is the Coulomb energy density (averaged
over the cell). These quantities are derived below.

As usual, within CLDM models, we assume that the internal parameters (nni, npi, nno,
rc, rp, εp) are adjusted to minimize the energy density at given external parameters. In the
case of a deformed lattice, the external parameters are the baryon number density nb and
the shear parameter ε.

To derive the energy density associated with surface energy wS, we remind the reader
that the surface energy per unit area is σ + µnνS, where σ is the surface tension, and νs is
the surface number density of the adsorbed neutrons (see [49,50], for example). The area
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of the cylindrical cluster is given by the product of the cluster height 2H to the perimeter
(circumference) of the cluster cross-section P. This allows the recording of the energy
density, associated with surface energy, in the form

wS =
(σ + µnνS)P

πr2
c

. (6)

As written above, we assume the cluster cross-section to be an ellipse with semi-axes
rp(1 + εp) and rp/(1 + εp). Assuming εp > 0, the major semi-axis is rp(1 + εp) and

P = 4rp(1 + εp)
∫ π/2

0

√
1− k2 cos2 t dt = 4rp(1 + εp)E(k2), (7)

where E(k) is the complete elliptic integral of the second kind (see, for example, [51])

and k =
√

1− 1/(1 + εp)4 is the eccentricity of the cluster cross-section. Using the se-

ries for E(k2) (see, for example, equation (17.3.12) in [51]) or straightforwardly applying
Equation (45) from [52], we obtain P = 2π rp

(
1 + 3ε2

p/4 + O(ε3
p)
)

,2 leading to the final
expression for the surface energy density

wS =
2 u (σ + µnνS)

rp

(
1 +

3
4

ε2
p

)
. (8)

It is easy to check that the same equation also holds for εp < 0 (for this aim, it is
enough to repeat derivations in this passage, taking into account that the major semi-axis

for εp < 0 is rp/(1 + εp), and thus eccentricity k =
√

1− (1 + εp)4).
Within CLDM, the calculation of the Coulomb energy density wC reduces to the essen-

tially electrostatic problem: the calculation of the energy of the neutral system composed of
a positively uniformly charged cylinder (protons inside the cluster) inserted into a nega-
tively charged cylinder (electrons). The Coulomb energy density can be written in the form

wC =
1

2πr2
c

∫
ρp(r)ϕp(r)d2r +

1
2πr2

c

∫
ρe(r)ϕe(r)d2r +

1
πr2

c

∫
ρp(r)ϕe(r)d2r, (9)

where the integrals are taken over vector r in the x, y plane, ϕp(r) and ϕe(r) are electrostatic
potentials, created by protons and electrons, respectively; ρp(r) and ρe(r) are charge
densities of protons and electrons, respectively. When considering this electrostatic problem
we assume ρp(r) = e npi inside the internal cylinder (cluster) and outside the internal
cylinder ρp(r) = 0; similarly, ρe(r) = −e ne inside the external cylinder (cell) and ρe(r) = 0
outside the external cylinder. Here, e is elementary charge.

To apply (9), it is sufficient to know electrostatic potential inside a uniformly charged
(charge density ρ) cylinder with an elliptical cross-section (semi-axes ax and ay along x and
y, respectively). This potential can be written as (e.g., [53]):

φ = πρ

{
2 ax ay

[
ln
(

4H
ax + ay

)
+

1
2

]
− 2

(
ay x2 + ax y2)

ax + ay

}
. (10)

Here, 2H is the height of the cylinder, which is assumed to be large (H � ax and
H � ay).

Taking into account that the ellipticities of the cell and cluster are infinitesimally small,
it is straightforward to write down

wC =
π

2
u e2n2

pir
2
p

[
u− 1− ln(u) + (2 u− 1)ε2

p − 2uεpε + ε2
]
+ . . . (11)

where terms of the third and higher order in cluster and cell ellipticities are omitted. As it
should be, H is canceled out in the final expression.
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Now, it is easy to write down equations for internal variables by minimizing the
energy density at fixed nb and ε. As in the case of spherical nuclei, considered in [47], the
majority of internal variables (nni, npi, nno, rc, rp) can be derived at ε = 0 up to corrections
of order of ε2,3 and only εp ∝ ε:

0 = πu e2n2
pir

2
p
[
(2 u− 1)εp − uε

]
+

3σu
rp

εp. (12)

Equations for ε = 0 are well known (e.g., [48] in the case of spherical nuclei); their
physical meaning is the chemical equilibrium within the cell, beta-equilibrium, pressure
balance for the cluster, and the equation for the equilibrium size of the cell. The latter is
often called virial theorem (see, for example, [1,2]), and it is the only equation that would
be required below in the explicit form:

σu
rp

=
π

2
ρ2

pr2
pu(u− 1− ln(u)). (13)

Virial theorem allows the exclusion of σ, removing explicit dependence of the subse-
quent results on the nuclear physical model. Indeed, the bulk contributions to the total
variation of energy are canceled out, and it can be written in the form

δw = πρ2
pr2

pu
[

1
2

ε2 − uεεp +
7u− 5− 3 ln(u)

4
ε2

p

]
. (14)

In the case of ε = 0, considered in [6], it agrees with the sum of Equations (6)–(9) from
that work. For ε 6= 0, the optimal cluster-deformation parameter, given by the solution of
Equation (12), is

εp =
2u

7u− 5− 3 ln(u)
ε. (15)

Substituting (15) into (14) and using (4) we come to the final expression for the elastic
constant for the transverse shear:

C =
πρ2

pr2
pu

4

(
1− 2u2

7u− 5− 3 ln(u)

)
. (16)

It is worth stressing that the ∂2δw/∂ε2
p, calculated at the optimal value of εp, is pos-

itive for an arbitrary filling factor. Therefore, the clusters can indeed adjust their shape
and become stable with respect to additional infinitesimal deformations. The stability of
cylinders in an undeformed lattice (ε = 0) was proven in Ref. [6]. A similar result was
obtained by the authors in [54], according to which the spherical nuclei in the crust are
stable with respect to infinitesimal quadrupole deformations, and thus transition from the
crust to the mantle is not associated with the absolute instability of spherical nuclei.

To compare our approach with the results of the authors in [38]; we also consider the
approximation of the enforced circular shape of cluster cross-section (εp = 0, not adjusted
to the deformation). It leads to a simplified estimate of transverse shear modulus

Csp =
πρ2

pr2
pu

4
. (17)

3. Results

In Figure 2, we demonstrate the ratio εp/ε, given by Equation (15), as a function of
filling factor u (solid line). For a typical filling factor of the cylindrical phases, u ≈ 0.2÷ 0.3
(e.g., [2,13]), the cluster deformation evolves from εp ≈ 0.3ε to the value, which is close to ε
(εp ≈ 0.85ε). For comparison, the dotted line indicates a similar ratio for spherical clusters,
which was obtained by the authors in [47]. One can see that this ratio depends on the shape
of the clusters. In particular, for u ≈ 0.2, which is typical for the transition from spherical
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to cylindrical clusters (e.g., [13]), the shape of spherical clusters is approximately two times
more sensitive to the shear deformations than the shape of cylindrical clusters.

ε p
/
ε

u

Figure 2. The ratio of cluster-deformation parameter εp to the shear parameter ε as a function of the
filling factor u. The solid line is for cylindrical clusters (this work); the dotted line is for spherical
clusters (Ref. [47]).

To compare our results with previous works, in Figure 3, we demonstrate the trans-
verse shear modulus, normalized to the Coulomb energy density in the non-deformed
state w0

C (see Equation (11) for ε = εp = 0) as a function of filling factor u. The solid
line represents our final expression (16), while the long-dashed line is for Equation (17)
ignoring the change in the cross-section shape. The latter agrees well with the fit provided
in Ref. [38] (see short dashes), which was based on calculations with the accurate treatment
of hexagonal (honeycomb) lattice, but with fixed circular cross-section of the cylindrical
clusters. Please note that the authors of [38] fitted their numerical results for reasonable
filling factor u ∼ 0.2÷ 0.3 (e.g., [2,13]).

Recently, the authors of [45] analyzed the elastic properties of nuclear pasta in a full
three-dimensional geometry. Their calculations were performed within the Thomas–Fermi
approach based on the relativistic-mean-field model, and thus should include a change
in the cluster cross-section shape with increasing deformation. The fit for the transversal
shear modulus suggested in [45] is shown by a dotted line in Figure 3. It predicts a much
smaller suppression of C than our result (16).

However, we should note that rather large deformations (from a hexagonal to a simple
lattice) were applied to extract C in [45]. Specifically, the authors of [45] performed numeri-
cal simulations for a wide set of deformation parameters at a fixed baryon number density
and fitted the results by their Equation (13). As a result, their Equation (13) reproduces well
the deformation energy for the whole deformation path from one hexagonal to another
hexagonal lattice via simple lattice (see Figure 3 in [45]). However, it has only one fitted
parameter (elastic constant, which we denote as C13). It seems to be most affected by the
energy difference between hexagonal and simple lattices (which is indeed perfectly repro-
duced, according to Figure 3 in Ref. [45]), but not to the details of infinitesimal deformations
of a hexagonal lattice.

Let us note that there should be no elliptical deformation of the cluster cross-sections
for both simple and hexagonal lattices due to symmetry. Therefore, the energy difference
between these lattices can be reasonably estimated assuming a circular cluster shape. As a
result, the effects of the elliptical deformation of a cluster cross-section can be suppressed
in C13, overestimating the elastic constant C. Indeed, our attempt to directly fit numerical
data, shown in Figure 3 of [45] for small transversal shearing, leads to C ∼ 0.8C13, i.e., 20%
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smaller than the estimate of the shear modulus suggested in Ref. [45] (the red line at the
same plot). Thus, we expect that the actual transversal shear modulus for infinitesimal
deformation of a hexagonal lattice can be smaller than that given by the final fit presented
in [45] being closer to our Equation (16).

C
/
ǫ0 C

u

Figure 3. Transversal shear modulus C for the “spaghetti” phase of a neutron star mantle as a function
of filling factor. The solid and long-dashed lines are our results, with optimized (Equation (16)) and
circular (Equation (17)) shapes of cluster cross-section, respectively. Short dashes represent the fit
from the authors in [38], while the dotted line corresponds to the fit from the authors in [45].

Unfortunately, we cannot check this hypothesis directly because the filling factor for
the baryon number density nb = 0.06 fm−3, analyzed in their Figure 3, is not quoted
in Ref. [45]. However, we can estimate the filling factor using figures in Ref. [13]. Indeed,
Figure 3 in [45] is plotted for the slope of the symmetry energy L = 41.34 MeV. Therefore,
according to Figure 4 of [13], nb = 0.06 fm−3 should be close to the transition from spherical
to cylindrical clusters, and, according to Figure 3 of the same work it should correspond to
u ≈ 0.2. In this case, our Equation (16) predicts C to be suppressed by ∼ 6.5% with respect
to results for a fixed (circular) cluster cross-section, which almost coincides with C13 for
u ≈ 0.2. Formally, it disagrees with the estimate C ∼ 0.8C13 mentioned above, and suggests
that our Equation (16), in fact, overestimates C. However, due to the qualitative nature of
estimates in this passage, we prefer to treat this conclusion as very tentative.

As discussed in [19], the actual shape of nuclear clusters at a given number density
is rather model-dependent, even if the nucleon interaction model is fixed. For example,
for Skyrme Lyon nucleon interaction model SLy4 [55], which was analyzed by the authors
in [19], the cylindrical clusters are the most energetically favorable at baryon number density
0.056 fm−3 . nb . 0.075 fm−3, if energy density is calculated within ETF approach, and
CLDM predicts it to be favorable only in a narrow region 0.074 fm−3 . nb . 0.076 fm−3.
Thus, to illustrate our results in physical units (see Figure 4), we use a rather wide nb region;
following [19], we applied the SLy4 nucleon interaction model for numerical estimates.
As in Figure 3, the solid line represents our final expression (16), while the long-dashed
line is for Equation (17), which ignores the change in the cross-section shape. Short dashes
correspond to the fit provided in Ref. [38], while the dotted line is for the fit provided in
Ref. [45]. Please note that both fits present the ratio of C to the Coulomb energy density,
and, in our calculations, we apply CLDM [48] to calculate the latter. The upper panel
demonstrates the cluster volume fraction u. As discussed in [50], the latter quantity can be
estimated in so-called bulk approximation, being weakly dependent on the shape of the
clusters and the applied approach (ETF or CLDM).



Universe 2023, 9, 220 8 of 11

For the whole indicated density region, our results predict the transversal shear
modulus C to be lower than according to fits from the authors in [38,45]. For low baryon
number density nb . 0.065 fm−3, it is associated with low volume fraction u . 0.15,
where the fit provided in Ref. [45] almost coincides with that of [38]. However, the latter
overestimates the original numerical calculations of that work for u . 0.15 (see Figure
2 in [38]). Thus, we expect that our Equation (16) is, in fact, more accurate than the fits
provided in Refs. [38,45], at least for low-density regions. The larger the density, the larger
the effect of the relaxation of the cluster cross-section. For nb & 0.07 fm−3, it leads to a
decrease of C with an increase of nb, despite the fact that Csp, calculated neglecting this
effect, increases with an increase of nb.

For comparison, in Figure 4 we also plotted the effective shear modulus µ for inner
crust matter, assuming a spherical shape of the clusters [47]. A thin solid line was calculated,
taking into account the relaxation of the cluster shape, while a dashed line neglects this
effect. One can see that the effective shear modulus µ is lower than the transversal shear
modulus C for the same baryon number density. According to this principle, it can lead to
a jump in elastic properties at the inner crust/mantle boundary. However, one should take
in mind that it is rather tricky to estimate the effective shear modulus of “polycrystalline”
pasta phases (see [46] for discussion). In particular, it can vanish if pasta elements are
spatially uniform (because the elastic constant, responsible for deformation along the pasta
structure, is zero in a strictly uniform case). Therefore, we refrain from speculation on
possible observational consequences of the difference between C and µ.

C
,
µ
[k
eV

fm
−
3
]

nb [fm−3]

}

u

Figure 4. Transversal shear modulus C for the ’spaghetti’ phase of the neutron star mantle in physical
units as a function of baryon number density nb. As in figure 3, the solid and long-dashed lines are
our results, calculated with optimized (Equation (16)) and circular (Equation (17)) shapes of cluster
cross-section, respectively. Short dashes represent the fit [38]; the dotted line corresponds to the
fit [45]. In addition, thin lines represent the effective shear modulus for spherical nuclear clusters,
as calculated by the authors in [47]. Specifically, a thin solid line accounts for nuclei deformation
(Equation (9) in [47]), while a thin dashed line neglects this effect (Equation (6) in [47]). The upper
panel represents the cluster volume fraction u. The SLy4 nucleon interaction model [55] was used
to calculate bulk energy contribution; the surface tension was calculated according to the fit of the
fourth-order ETF calculations for the SLy4 model, provided by N.N. Shchechilin (the same fit was
used in [19]).
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4. Summary and Discussion

We analytically derived the transversal shear modulus C for the spaghetti phase of
nuclear pasta (see Equation (16); the result for the inverted phase can be obtained using
note 1). Following the predictions of the authors in [38], we demonstrated that shear
deformation affects the shape of nuclear clusters (the transversal cluster cross-section
becomes elliptical) and we took this effect into account. It is worth noting that our final
expression for C is explicitly independent of the parameters of inter-nucleon interaction.

Our results agree with the well-known fit [38], if one neglects cluster deformation, as
was carried out in Ref. [38]. Accounting for cluster deformation reduces C (for example,
C is reduced by 25% at the filling factor u ∼ 0.3). However, the practical fit, suggested
in a recent paper [45] on the base of numerical simulations in fully three-dimensional
geometry, predicts a much smaller reduction of C than in [38]. As we argued in Section 3,
this difference can be associated with the numerical procedure in [45]. Specifically, the
practical expression in [45], suggests a parameter for their Equation (13), which allows the
description of deformation energy for strong transversal deformations, but is not, however,
very precise for smaller deformations.

Finally, we should remind the reader that our approach is not exact by construc-
tion, being based on two simplifications: (1) we neglect curvature corrections to surface
tension; (2) we apply ellipsoidal approximation for the cell cross-section. Both of these
approximations can affect C, and we plan to check their importance in subsequent studies.
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The following abbreviations are used in this manuscript:

CLDM Compressible liquid drop model
ETF Extended Thomas–Fermi

Notes
1 Derivations for the inverted phase can be performed straightforwardly by substituting u→ 1− u, and treating rp as the linear

radius of the neutron phase, located in the center.
2 Note that terms up to k4 should be included to obtain this expression.
3 Thanks to the minimization procedure over internal variables, corrections in the order of ε2 contribute to the energy at the order

of ε4, and thus can be neglected
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