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Abstract: High-energy lepton scattering constitutes the focus of this study. Developments are
provided to motivate the basic choices of kinematic variables for the particular case of semi-inclusive
electron scattering where these variables are devised to match well with the underlying dynamics to
be expected for the general “nuclear landscape”. Various nuclear structure issues and other issues
related to the nature of the electroweak currents at high energies are then discussed, as are some of
the issues related to the different conditions occurring for electron scattering versus what is typically
the case for charge-changing neutrino reactions.
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1. Introduction

The present discussions center around high-energy lepton scattering, in particular,
inclusive scattering where only the scattered lepton is assumed to be detected and semi-
inclusive reactions where additionally some particle “x” (typically a hadron and frequently
a proton) is assumed to be detected in coincidence with the scattered lepton. The goal
for studies of this type is to address the reaction dynamics for electroweak processes,
both electromagnetic (specifically electron scattering) and weak interaction (specifically
charge-changing neutrino reactions) at GeV-energy scales. Material from previous studies
form the basis for these discussions and, in particular, the reader is directed to very recent
work on semi-inclusive electron scattering of polarized electrons from polarized spin-1/2
targets [1]. Both electron scattering and neutrino reactions may be treated in closely related
ways although in the present work only the former will be discussed in detail (see also [2]).

Before discussing the implications for nuclear structure studies it is important to under-
stand the relevant variables for the reactions of interest. Hence, in Section 2 the kinematics
for semi-inclusive electron scattering are treated in some detail. The basic concepts of
missing energy and missing momentum together with the energy and momentum transfers
employed in treatments of electron scattering are discussed in depth in that section (subsec-
tion Section 2.1). Importantly, these developments show in complete generality where the
physical region lies and what constitutes the boundaries of that region; moreover, one can
see how a scaling variable can be introduced as the lowest point in the missing-momentum,
missing-energy plane (see Section 2.2).

As will be clear in Section 3 where nuclear structure issues are discussed, although
there are alternative choices for the variables introduced in Section 2, it should be clear
that the ones made here match the dynamics of the nuclear response in an important
way. This section begins with a subsection, Section 3.1, where the basic landscape of the
nuclear response is discussed, largely without reference to details of nuclear modeling;
there the problem is cast in terms of the (asymptotic) physical states that define the open
channels to be found for various choices of the kinematic variables introduced in Section 2.
Following this, in subsection Section 3.2 the constraints from inclusive scattering are briefly
summarized, and then in subsection Section 3.3 further comments are collected, including
on various nuclear structure issues including the potential importance of meson-exchange
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currents (MEC), on the difficulties of dealing with the low missing-energy region lying
above the two-particle emission threshold, and on the interplay between semi-inclusive
electron scattering and semi-inclusive neutrino reactions at relatively high energies.

Finally, in Section 4 some observations and a summary are presented.

2. Kinematics for Semi-Inclusive Scattering
2.1. Basic Variables for Semi-Inclusive Electron Scattering

We begin with some discussion of the kinematics for semi-inclusive electron scattering1.
We assume that the incident electron with mass me has 4-momentum Kµ = (ε, k), namely,
with 3-momentum k and energy ε = (k2 + m2

e )
1/2. The scattered electron is assumed

to have 4-momentum K′µ = (ε′, k′) where ε′ = (k′2 + m2
e )

1/2, and we assume that the
scattering takes place with scattering angle θe. The 4-momentum transferred is then
Qµ = (ω, q) where ω = ε− ε′ and q = k− k′, and one has that

−Q2 = 2
[
εε′ − kk′ cos θe −m2

e

]
≥ 0. (1)

It is usually a good approximation to invoke the extreme relativistic limit where me � k
and me � k′, in which case

−Q2 = 4kk′ sin2 θe/2. (2)

For the target (of mass M) following [1] we start by assuming that it is moving with
general 4-momentum Pµ =

(
Ep, p

)
, with 3-momentum p and energy Ep = (p2 + M2)1/2;

later we will specialize to the target rest frame, although, for the present, we shall keep the
developments completely general. Conservation of 4-momentum requires that the final
hadronic state has 4-momentum

P′µ =
(

Ep′ , p′
)

(3)

= Qµ + Pµ (4)

=
(
ω + Ep, q + p

)
(5)

and has invariant mass

W =
√

E2
p′ − p′2 =

√(
ω + Ep

)2 − (q + p)2. (6)

So far, these developments do not specify the nature of the reaction. One may have
inclusive scattering where no further information about the final state is assumed, or semi-
inclusive scattering where the final state is assumed to be divided into two pieces (see
Figure 1), one a specific particle “x” that is assumed to be detected, having 4-momentum
Pµ

x = (Ex, px), where Ex = (p2
x + M2

x)
1/2, together with the undetected (“missing”) parts

of the final state having 4-momentum Pµ
m =

(
Etot

m , pm
)

with missing energy Etot
m , missing

momentum pm, and invariant mass Wm = (
(
Etot

m
)2 − p2

m)
1/2. Note: for the total missing

energy we use Etot
m , since we reserve the notation Em to denote a different, but related

quantity (see below). Of course even more complicated reactions having more than two
particles detected can be studied; however, for the present discussions we shall restrict our
attention to inclusive and semi-inclusive reactions. Moreover, note that particle x has been
left unspecified: often for nuclear physics this is a nucleon and for semi-inclusive scattering
we mean reactions of the sort (e, e′p) or (e, e′n). However, other cases are also of interest
such as (e, e′α) (see [4]) or (e, e′π).
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Figure 1. Feynman diagram for semi-inclusive electron scattering; figure from [1]. The 4-momenta
here are discussed in the text. In particular, particle x is assumed to be detected in coincidence with
the scattered electron and thus Pµ

x is assumed to be known. Since the total final-state momentum
P′µ is known (see text) this implies that the missing 4-momentum is also known via the relationship
Pµ

m = P′µ − Pµ
x .

Conservation of 4-momentum requires that

P′µ = Pµ
x + Pµ

m (7)

and thus

Etot
m = Ep′ − Ex (8)

pm = p′ − px. (9)

From above we have that
Pµ

m = Qµ + Pµ − Pµ
x (10)

and therefore that

Etot
m = ω + Ep − Ex =

√
W2

m + p2
m (11)

pm = p′ − px. (12)

Following the procedures adopted in studies of scaling, ref. [5] let us employ as
independent kinematic variables the missing momentum pm and, rather than the missing
energy Etot

m , the following energy

Em(pm) ≡ Etot
m −

(
Etot

m
)

T ≥ 0 (13)

=
√

W2
m + p2

m −
√
(WT

m)
2
+ p2

m, (14)

where the threshold value of the invariant mass of the missing momentum is denoted WT
m.

This quantity has the merit of taking on the value Em = 0 at threshold. When used in the
context of nuclear physics the missing 3-momentum is typically much smaller than the
invariant masses of either the daughter threshold value (the daughter ground-state mass)
or any higher-energy daughter state and thus Equation (14) may be written

Em(pm) = Wm

√
1 +

(
pm

Wm

)2
−WT

m

√
1 +

(
pm

WT
m

)2
(15)

=
(

Wm −WT
m

)
[1− δm + · · · ]. (16)
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Typically, but not always, we can assume that

δm ≡
p2

m
2WmWT

m
� 1, (17)

and thus setting δm to zero is often an excellent approximation; this correction involves
only the difference between the kinetic energy of recoil when the daughter system is at
threshold and when it is in some excited state. However, it is not necessary ever to make
these approximations and the exact expressions can always be employed.

In studies of nuclear physics it is common to define a different quantity, Em, (confus-
ingly also called the missing energy) where kinetic energies are employed. Defining the
kinetic energies

T ≡ Ep −M (18)

Tx ≡ Ex −Mx (19)

Tm ≡ Etot
m −Wm, (20)

one has

Em ≡ ω− (Tx + Tm) (21)

=
(

Wm −WT
m

)
+ Es − T (22)

' Em(pm) + Es − T, (23)

where the so-called separation energy

Es ≡ Mx + WT
m −M ≥ 0 (24)

has been introduced and the approximation in Equation (23) corresponds to neglecting the
correction involving δm discussed above.

2.2. Physical Region and Scaling Variables

Using the energy conservation condition in Equation (11), we have

Em(pm) =
(
Ep + ω

)
−
(
Etot

m
)

T −
√

M2
x + p′2 + p2

m − 2pm p′ cos θm, (25)

where θm is the angle between p′ and pm and pm = |pm|. By setting Em to zero and
solving the above equation for pm under the limiting conditions where cos θm = ±1 it is
straightforward to show that the above equation at Em = 0 has two solutions

p+m ≡ Y =
1

W2

[(
Ep + ω

)√
Λ2 −W2(WT

m)
2
+ p′Λ

]
(26)

−p−m ≡ y =
1

W2

[(
Ep + ω

)√
Λ2 −W2(WT

m)
2 − p′Λ

]
, (27)

where, following the notation of [5] we have introduced the quantity

Λ ≡ 1
2

[
W2 +

(
WT

m

)2
−M2

x

]
. (28)

The quantity y in Equation (27) has been used as a scaling variable for reasons that will be
discussed in the following section. Note that the quantity in the square root may be written
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Λ2 −W2
(

WT
m

)2
=

1
4

[
W2 −

(
WT

m + Mx

)2
][

W2 −
(

WT
m −Mx

)2
]

(29)

and, since the argument of the square root must be non-negative, that

W ≥WT = WT
m + Mx. (30)

Upon setting y = 0 one finds that

ω = ω0 ≡
√

M2
x + q2 + WT

m −M. (31)

Given these relationships, it is then straightforward to determine the physically al-
lowed regions in the pm–Em plane: for y ≥ 0 corresponding to ω ≥ ω0 one has

E0
m(−pm) ≤ E(pm) ≤ E0

m(pm) for 0 ≤ pm ≤ y
0 ≤ E(pm) ≤ E0

m(pm) for y ≤ pm ≤ Y,
(32)

whereas for y ≤ 0 corresponding to ω ≤ ω0 one has

0 ≤ E(pm) ≤ E0
m(pm) for −y ≤ pm ≤ Y, (33)

where
E0

m(pm) ≡
(
Ep + ω

)
−
(
Etot

m
)

T −
√

M2
x + (p′ − pm)

2, (34)

namely, the value of Em(pm) when cos θm = +1. These regions are shown in Figures 2 and 3.
The region in Figure 3 is seen to be bounded from below by the curve E0

m(−pm) which
occurs when θm = π and above by the curve E0

m(pm) which occurs when θm = 0 for
0 ≤ pm ≤ y, whereas the other regions are all bounded by zero from below and by the
curve E0

m(pm) from above. When Em(pm) = 0 one has from Equation (25) that

cos θm =
1

2pm p′
{

M2
x + p′2 + p2

m −
[(

Ep + ω
)
−
(
Etot

m
)

T

]2}, (35)

which determines θm for this boundary.

Figure 2. Physically allowed region for the situation where y < 0. The upper boundary labelled
E0

m(pm) has cos θm = 0. (The variables employed here are discussed in the text; figure from [1]).
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Figure 3. Physically allowed region for the situation where y > 0. The upper boundary labeled
E0

m(pm) has cos θm = 0 whereas that labeled E0
m(−pm) has cos θm = π. (The variables employed here

are discussed in the text; figure from [1]).

Thus we have the allowed regions of kinematics in the pm–Em plane for given values
of q and ω or, equivalently, of q and y, where y = y(q, ω) is given above; note that −y > 0
in Figure 2 is the lowest-pm, lowest-Em point allowed and as such is often used as a scaling
variable to replace ω in scaling analyses (see below and also [5]). In turn, these impose
limits on the allowed values of the energy, 3-momentum, and polar angle for the detected
particle x: first, taking the scalar and cross product of p′ with px = p′ − pm yields

px cos θx = p′ − pm cos θm (36)

px sin θx = pm sin θm (37)

and thus

Ex =
(
Ep + ω

)
−
((

Etot
m
)

T + Em(pm)
)

(38)

px =
√

p′2 + p2
m − 2pm p′ cos θm (39)

tan θx =
pm sin θm

p′ − pm cos θm
. (40)

By evaluating these expressions on the above boundaries, one can then determine the
physically allowed regions for Pµ

x . The above equations define the kinematic boundaries
within which all values of (px, θx) are allowed and outside of which no physically allowed
values exist.

The developments to this point have been kept general in that the target has been
assumed to have a general 4-momentum Pµ. Various specific choices of frame are typically
made, depending on the experimental situation or based on special aspects of the theory.
In particular, for many experiments in nuclear physics the target rest frame is the relevant
one (see below), although in the future one anticipates experiments being performed
at a collider—say involving colliding beams of electrons with 3He nuclei—in collider
kinematics where then p 6= 0. Moreover, it is well known that for some reactions where
exclusive final states are reached the virtual-photon/target center-of-momentum frame
plays a special role; see, for instance, studies of pion electroproduction for kinematics where
simply a pion and a nucleon define the final state. Or, finally, sometimes the Breit frame is
advantageous to use.

Using the developments presented in [1] the kinematics and dynamics of semi-
inclusive electron scattering including polarization degrees of freedom can be handled
in any frame of reference, and results in different frames can be inter-related via their
representations in terms of invariant response functions. This full discussion goes beyond
the scope of the present paper and so we shall not expand on the issues of dynamics in
different frames, but only employ the above results for the kinematics, since they are essen-



Universe 2023, 9, 196 7 of 13

tial for understanding which variables are most useful for treatments of nuclear physics,
together with some discussion of dynamics specifically in the rest frame for the nuclear
case. In that case, where p = 0 and thus from Equation (18) T = 0, one has the following
replacements: the energy E and the 3-momentum p′ are replaced by M and q, respectively,
and θm becomes the angle between q and pm; W and Λ are Lorentz invariants and so do not
change. The results obtained are then the ones that are familiar from analyses of scaling [5].

Before turning to nuclear structure issues, let us make a few comments. First, although
the above developments are for electron scattering it is straightforward to extend the
discussion to include neutrino reactions both for inclusive and semi-inclusive scattering.
The essential changes there are to allow for different lepton masses and to understand
that potentially different final states are reached for the weak interaction cases. Second,
although the following discussions are oriented to nuclear physics, it should be noted that
all of these developments are completely general and therefore also valid for studies of
particle physics at any energy scale.

3. Nuclear Physics Issues

Having discussed the general kinematic variables involved in treating semi-inclusive
electron scattering reactions, namely (q, y, pm, Em), we now turn to some general remarks
about the underlying dynamics involved in studies of nuclear physics. We have seen that
for given values of q and y two characteristic situations occur, namely, those with y < 0 (see
Figure 2) where the upper boundary that defines the physical region has θm = 0 whereas
the lower boundary has Em = 0, and those with y > 0 (see Figure 3) where again the upper
boundary that defines the physical region has θm = 0 whereas the lower boundary is split
into two regions, one when 0 ≤ pm ≤ y where the boundary occurs at θm = π and the
other for y ≤ pm ≤ Y where Em = 0. At given (q, y) nothing can occur outside of these
boundaries. The next question is what do we expect for the nuclear dynamics in typical
nuclei for the semi-inclusive and hence inclusive responses across this “nuclear landscape”.

3.1. General Shape of the “Nuclear Landscape”

Clearly, the nuclear response is limited to the space where pm ≥ 0 and Em ≥ 0, the
latter by construction—in fact, this is a reason to employ Em rather than the missing energy
since its lower limit is simply defined. The line Em = 0 corresponds to threshold. So,
for example, if one were studying the semi-inclusive reaction 12C(e, e′p)11B the threshold
value would be attained when the reaction proceeded to the ground state of 11B. In typical
nuclei there are discrete excited states, i.e., there are very narrow excitations which lie
below the thresholds for emission of protons or neutrons and have finite widths only
because they decay via gamma de-excitation. Such decays are much slower than typical
hadronic processes where the strong interaction enters, the latter having a characteristic
timescale which is on the order of 10−23 s (see Section 3.3). Accordingly, when the focus is
on hadronic processes, as it is here, it is an excellent approximation to take the discrete states
as being stationary, namely, treat them as δ-functions. This means that in typical nuclei
one should expect lines in the pm–Em plane that follow Equation (14) or, upon making the
approximation of Equation (17), are essentially straight lines (independent of pm) at

Em = Wm −WT
m. (41)

For very light nuclei there are only a few such lines; for light- to medium-weight nuclei
such as 12C, 16O or sd-shell nuclei there are typically 10s of lines of this type; for heavy
nuclei there are many. For each line (each value of Wm) in high-resolution semi-inclusive
electron scattering, usually (e, e′p) studies, the experimental results (see, for instance, [6,7])
show very sharp features with particular pm-dependencies yielding what are called the
momentum distributions of the individual excitations—this interpretation supposes a
simplified reaction mechanism where the detected proton may be treated approximately,
typically in the plane-wave impulse approximation (PWIA) or distorted-wave impulse
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approximation (DWIA) (see for instance chapter 16 of [7] or the detailed studies in [8]),
although the actual dynamics of the process can be much more complicated.

Of course, typical modeling of the discrete-state region for high-energy lepton scatter-
ing is not performed at such a microscopic level. Usually some relatively crude approx-
imation is made where the detailed structure discussed above is approximated by a few
contributions that reflect the basic missing-momentum dependence of the shells expected
to be most relevant (for instance, 1p momentum distributions for light to medium-weight
nuclei such as 12C or 16O) and these are assigned widths (spreads in Em) to account for the
fact that the actual discrete-state response involves many excitations. As discussed in the
following subsection, this may be adequate for treatments of charge-changing neutrino
reactions where line integrals in the pm–Em plane are usually required.

As the focus shifts to higher excitation energies, i.e., larger values of Em, a threshold
is reached where the daughter nucleus breaks up, which typically leads to the emission
of a second nucleon. Namely, for missing energies larger than this threshold one has two
nucleons in the final state, the high-energy one that is presumed to be detected plus a second
one. Note this is not optional: there are no states above the nucleon emission threshold
where only the high-energy nucleon is present. Moreover, note that there is no requirement
that two-body meson-exchange currents are required for these two-nucleon excitations to
occur—they occur naturally via one-body currents and only when extreme approximations
are made for the excitations (for instance, the extreme independent-particle model) is the
situation more restricted. In contrast to the discrete-state region discussed above where
typically the excitations contain large contributions from promotion of nucleons in the
valence region, this slightly higher missing-energy region is potentially much more difficult
to model. In the latter case (at least in typical modeling) one expects promotion of a
nucleon from deep-lying shells such as the 1s-shell in 12C or 16O to occur together with the
two-nucleon configurations; this situation will be discussed more later.

Clearly, as Em is increased more and more complicated multi-particle excitations are
encountered as successively one passes higher missing-energy thresholds. Eventually,
one reaches a large enough value of Em that the threshold for pion production is attained,
whereas for lower missing energies this is forbidden (see also below for some discussion of
the role that “virtual pion production” may play at these lower missing energies).

3.2. Constraints from Inclusive Scattering

One constraint on the semi-inclusive electron scattering cross section is the inclusive
(e, e′) cross section which is more extensively known than the former. The latter is a total
cross section and, as such, is less dependent on the details that are inevitable when one
attempts to model the semi-inclusive reactions. For instance, what is called the quasielastic
(QE) cross section arises from the sum of the integrals over the allowed regions in the pm–Em
plane (see Figures 2 and 3) of the (e, e′p) and (e, e′n) cross-sections corrected for double-
counting. For this part of the cross section one expects various sum rules to be reasonably
satisfied and, as long as relativistic kinematics are enforced in the modeling, the peak of the
QE cross section occurs reasonably close to where it is found experimentally. Accordingly,
since each model typically has some scale that may come from other modeling or may be
adjusted phenomenologically as in the relativistic Fermi gas (RFG) model, one finds that
most models of this part of the inclusive electron scattering cross section agree reasonably
well with what is found experimentally. At high excitation energies (larger values of ω than
the peak value) the problem becomes less clear, since there pion production and eventually
other inelastic processes become important. Additionally, although the QE cross section is
typically modeled using one-body current operators, clearly two-body meson-exchange
currents also play a role. Studies of scaling (see, for example, [9] and references therein)
show that a reasonably clear picture emerges for the various contributions to the (e, e′)
inclusive cross section, and, accordingly, one should expect the underlying semi-inclusive
cross sections to integrate properly to reproduce the inclusive (total hadronic) cross section.
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That said, it should also be obvious that obtaining a reasonably good description for
the inclusive cross section, although necessary, is not sufficient to have confidence in the
modeling of the semi-inclusive processes. For example, the RFG model is not too bad for
treatments of the inclusive QE response, but is not at all good for the semi-inclusive (e, e′p)
and (e, e′n) cross sections [8]. Said another way: knowing the integral of some function
does not mean one knows the integrand that underlies that integral. This is typically seen
in modeling nuclei such as 12C and 16O when one dissects the contributions (say for (e, e′p))
using better models than the RFG—see [8] for discussions of the limitations of the RFG
for semi-inclusive reactions and for comparisons with models that employ more realistic
spectral functions than that of the RFG. Such better models have the ability to represent the
various regions in the pm–Em plane discussed above, and when q and y lie in the vicinity of
the QE peak one finds that the integrals required to yield the inclusive cross section amount
to the following: the discrete-state region yields ∼50–60% of the total; the region lying at
moderate missing energy, but lying above the threshold to two-nucleon emission yields
perhaps 20% of the total; and the high missing-energy region amounts to ∼20–25% of the
total (these percentages are not exact and depend on the chosen kinematics).

As noted above, these estimates are borne out in studies of scaling, and so let us see
why that type of behavior is to be expected, at least roughly, given our understanding of
where the strength lies in the pm–Em plane. When y < 0 (the so-called “scaling region”)
and in the extreme circumstance that all of that strength were to lie at Em = 0 one can
see from Figure 2 that the integrals over the pm–Em plane would now entail an integral
over the missing momentum spanning the interval −y ≤ pm ≤ Y. To the extent that the
strength is also concentrated at relatively modest values of pm, this implies that the most
important region determining the integrals that constitute the inclusive cross section should
be expected to arise from the vicinity of the (pm = −y, Em = 0) point, and this, together
with the assumption that factorization is reasonably good, motivates the choice of y as a
scaling variable (see [5] for more discussion). So, for example, these rough arguments lead
one to expect the quasielastic peak to occur near y = 0, which is found to be reasonably
the case. Of course, as we have seen, the strength is not quite so simply concentrated
and so deviations should be expected from such a zero-order view of scaling—indeed,
although scaling is reasonably good it is not found to be perfect. Moreover, note that
these arguments are only approximately valid in the scaling region and one knows that
effects from two-body MEC, potentially from the high-pm, high-Em region and from pion
electroproduction can play significant or dominant roles when y > 0.

3.3. Further Comments

However, even the statements above should be taken only as rough indications of the
dynamical content in the problem. They are based on observations of the scaling behavior
of the inclusive cross section together with model assumptions. Moreover, it should be clear
that one must make severe assumptions for said modeling, since the kinematic regions of
greatest interest in the field lie at high energies and momenta where relativistic modeling
is essential. Two approaches are commonly pursued: (1) One frequently assumes that
the high-energy interaction of the virtual photon in electron scattering or the W boson in
charge-changing neutrino reactions with a nucleon in the nucleus, producing a high-energy
final-state outgoing nucleon, factorizes from the low-energy knowledge of the energy-
momentum distribution of that struck nucleon, namely, the so-called spectral function
traditionally used in PWIA or DWIA studies; or (2) one invokes relativistic mean field
theory where the nucleons in the nucleus (whether bound or scattering states) are taken
to be solutions of the Dirac equation with appropriate potentials. In some cases one can
glean some insights into the importance of having relativistic modeling, and clearly for the
GeV energy region it is essential to have such modeling. Both approaches are of course
approximations and at present one cannot be fully confident that the nuclear structure
content is under control. Nevertheless, one does have varying degrees of confidence in
what can be learned from existing modeling.
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Some of the contributions are likely to be more robustly understood than others:
for instance, the discrete-state region is relatively well understood from PWIA/DWIA
analyses, whereas the low-Em, two-nucleon emission region is likely not, as discussed
below. The high-Em region is often attributed to short-range correlations; however, these
are representation-dependent contributions and not observables. In the absence of a
complete, consistent, relativistic model of the reaction one should take any statement
concerning what dynamical ingredients cause what to be observed experimentally with
some caution. For instance, largely lacking in modeling of the entire pm–Em plane is a
consistent treatment of two-body MEC contributions despite the fact that there is reason
to expect these effects to constitute typically ∼15–20% of the inclusive response under
typical conditions. One can have both one- and two-nucleon ejection via one-body currents
or via two-body MEC and, as with assumptions about the role played by short-range
correlations, these are representation dependent: only when a consistent, relativistic model
becomes available will one be able to state what roles should be expected for the various
contributions (and then only within the context of a specific, chosen representation). Note
that two-body MEC contributions are not optional; they are required by gauge invariance
and in typical non-relativistic nuclear modeling the Heisenberg equation of motion for the
current manifestly leads to two-body current operators.

With regard to the interplay of potential short-range correlations with MEC let us note
that studies of inclusive electron scaling in the high-q, low-y region were initially attributed
to the former, whereas studies of the latter [10] indicated that they are expected to play a
very important, perhaps dominant role in this region.

Above it is stated that the low-Em, two-nucleon emission region is harder to model
successfully than is the discrete-state region. Let us expand on this a bit. Suppose
we assume that we are modeling 12C(e, e′p) and detect a proton with 3-momentum
pN = 250 MeV/c. The usual relativistic variables are then βN = pN/EN = vN/c = 0.26
and γN = EN/MN = 1.03. Using the familiar formula for the radius of a nucleus, R = 1.07A1/3

one finds that R12 = 2.45 fm and thus that the detected nucleon takes roughly 3 × 10−23 s
to exit the nucleus. The same small calculation for a proton with pN = 1 GeV/c yields an
exit time of roughly 1 × 10−23 s. For comparison, from semi-inclusive electron scattering
in this region one finds a “bump” (frequently called the 1s-shell peak) which is 5–10 MeV
wide. This can serve as a measure of the complicated processes at play, specifically the
interplay of the configuration where a proton has been removed from the lowest shell with
that where two nucleons have been ejected from the valence shell. Using the uncertainty
principle one finds experimentally that the relaxation timescale is somewhat larger than
7 × 10−23 s and, since these two time scales are on the same decade, i.e., are very similar,
this provides a clear indication that this is a complicated coupled-channel problem. Even in
the case of electrodisintegration of 3He this is a very difficult issue involving the continuum
three-body problem, and for heavier nuclei is expected to be a severe challenge, especially
with relativistic modeling.

Another statement made earlier is that in semi-inclusive (e, e′N) reactions below the
missing energy at which pion electroproduction is physically allowed, viz, where a pion is
produced and “escapes to infinity”, one has only “virtual pion production”. This is really
a matter of semantics: the latter process occurs when the virtual photon interacts with
the nucleons in the nucleus, produces a pion ( i.e., introduces a pion propagator which is
off-shell), and where that pion is absorbed typically on another nucleon ( i.e., where the
pion propagator terminates on another nucleon). That is what others call a meson-exchange
current. Modeling such effects as the MEC community does is not a trivial task, since it
is essential that the pion be treated as a propagator. If one were to attempt to use pion
electroproduction and pion absorption cross sections to model these effects one would find
that the answers would be quite different, and quite wrong. What is important is to connect
real pion electroproduction and pionic MEC via a common Lagrangian; and this is typically
performed by the MEC community.



Universe 2023, 9, 196 11 of 13

Above it was stated that neutrino reactions can be treated in much the same way as
electron scattering, that is, both for charge-changing neutrino and anti-neutrino reactions.
Certainly this has been the approach taken in scaling analyses for inclusive reactions [9],
and it may be possible to extend these scaling ideas to semi-inclusive reactions as well.
Although an in-depth analysis of this more extended electroweak problem is beyond the
scope of the present paper, a few comments are called for here. We have seen that inclusive
scattering involves and may be dominated by a total cross section formed from the integrals
over the open channels of the various underlying semi-inclusive reaction, of course, paying
attention to potential issues of double-counting. Semi-inclusive (e, e′N) electron scattering
determines the response at given values of (q, y, pm, Em) and the inclusive cross section
involves the appropriate integrals over the missing energy and missing momentum. Or,
alternatively, one can assume the incident electron energy ε, the final scattered electron
energy ε′, and the scattering angle θe to be given, which will determine q and y. And as
well one can assume that an outgoing nucleon is detected which determines pN , θN and
φN , the last being the azimuthal angle of that nucleon (see [1]), and which then fixes pm
and Em. As we have discussed above, this allows one to probe the nuclear response in all
four dimensions. In contrast, most neutrino beams are not monoenergetic, but rather are
broadly spread in energy, and accordingly the situation is different from electron scattering
where the incident electron’s energy is typically very well known. If one assumes that the
scattered lepton’s energy and scattering angle are measured (a scattered electron in the
electron scattering case; a final-state lepton, say a muon, in the charge-changing neutrino
reaction case) and that a final-state nucleon is also detected (energy and angles) then for
each incident lepton energy a point for the nuclear response in the pm–Em plane is given.
For electron scattering that is the end of the story, whereas for neutrino reactions for each
incident neutrino energy one has such a point and therefore for the entire spread of neutrino
energies a curve in the pm–Em plane, in other words, a “trajectory” [8]. The neutrino cross
section will then involve an integral along this trajectory weighted by the distribution of
neutrino energies in the incident beam—of course, with finite energy and angle resolutions
this line integral will actually be an integral over a “band”. To be useful as new information
beyond the inclusive cross section discussed above this region of integration should be
relatively limited (see below).

There are several important observations to make about this situation. Depending
on the specific values of the kinematic variables that are measured the trajectories may
follow quite different paths. For instance, on the one hand if one focuses on the family
of trajectories that pass through the peak of the discrete-state region (i.e., in shell-model
language, the region dominated by emission of nucleons from the valence region) then,
relatively speaking, a large cross section is found. On the other hand, if this is not the
case, then relatively speaking a much smaller cross section is obtained. Moreover, for some
choices of kinematics the trajectories curve to smaller values of pm for increasing values of
Em and may therefore encounter the low-Em region discussed earlier, but then, being at low
pm at increasing Em do not encounter the region where short-range correlations are thought
to play a role. Alternatively, other kinematical situations produce the opposite and the
high-pm, high-Em region can be emphasized. Such selectivity—even when integrals over
the trajectories are involved—can be very important in disentangling the inevitable uncer-
tainties of the nuclear modeling [8,11,12]. Moreover, what is clearly very important here is
to realize that understanding gained from inclusive and semi-inclusive electron scattering
underlies our hope to be able to represent the closely related charge-changing neutrino
reactions (both for inclusive and semi-inclusive reactions) for similar kinematics—if model-
ing cannot account for the electron scattering reactions one should have no confidence that
it will be useful for the neutrino reaction cases.

Another comment is in order: when comparing the weighting of the discrete-state
region with the effects from higher values of Em and comparing inclusive scattering to
semi-inclusive scattering rather different pictures emerge. Inclusive scattering involves
broad integrals over the response in the pm–Em plane and there one finds the typical
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breakdown from the discrete-state region, the low-pm, low-Em region and the region where
both pm and Em are large discussed above. In contrast, semi-inclusive scattering typically
obtains contributions from the first two regions (with relative weighting depending on the
kinematics, as mentioned above), whereas the high-pm, high-Em region typically is much
less important for semi-inclusive scattering than for inclusive scattering as it is expected to
be rather broadly spread over the pm–Em plane and thus de-emphasized when line integrals
are involved rather than inclusive cross section integrals over a large part of the region.

All of this focus on semi-inclusive scattering for neutrino reaction studies is important
because of the wish to determine the most relevant range of neutrino energies involved—namely,
those where the underlying nuclear structure leads to peaking of the trajectory integrals—as
this is critical for reasonable-resolution measurements of neutrino oscillations. Moreover, as
emphasized in this work, the choice of the variables (q, y, pm, Em) is dictated by this wish.

4. Summary

This study has focused on high-energy lepton scattering and various issues that relate
to the underlying nuclear structure. The emphasis has been placed on semi-inclusive
electron scattering, particularly on kinematics where (e, e′p) and/or (e, e′n) reactions are
dominant. As in typical analyses of electron scattering whatever the actual open channel
of interest, the energy transfer ω and 3-momentum transfer q enter naturally given the
electron scattering kinematics; of course, the 4-momentum transfer squared Q2 may replace,
say q, and some choice of scaling variable such as Bjorken x or the y-scaling variable that is
well-suited to treatments of nuclear physics may replace, say, ω. These are familiar concepts.
For semi-inclusive scattering one needs two more independent variables and the present
discussions revolve around the choices of missing momentum pm and of missing energy,
actually of a variable Em that is closely related to the total missing energy Etot

m . The “nuclear
landscape” is appropriately represented through its dependence on these last two kinematic
variables. Here some general discussions have been presented to explain, without detailed
treatments of specific nuclear modeling, why much of the strength in typical semi-inclusive
electron scattering is rather localized as functions of (pm, Em), especially coming from the
discrete-state region and somewhat less so from the low-Em two-nucleon knockout region,
with less strength arising from the high-pm, high-Em region.

Inclusive scattering involves integrating over the open channels involved in semi-
inclusive scattering, avoiding double counting, and, when the focus is on where the
inclusive cross section is large (this is always practically the case for neutrino reactions
since the cross sections are so small), accordingly tends to magnify the effects coming from
the high-pm, high-Em region, since these effects are believed to be spread rather broadly
over the nuclear landscape. In other words, for inclusive scattering one has an integral that
picks up what lies in this broad region, whereas semi-inclusive electron scattering can focus
on specific regions in the pm–Em plane. Even charge-changing semi-inclusive neutrino
reactions, which as discussed in the text involve limited line-integrals over “trajectories” in
the pm–Em plane and therefore typically are much less sensitive to contributions from the
high-pm, high-Em region.

In all cases there are important issues of nuclear structure and nuclear currents that are
not fully resolved at present. In particular, two-body meson-exchange currents are likely
to play a non-trivial role and, although some high-energy modeling has been performed
for inclusive scattering, much more remains to be considered for semi-inclusive scattering.
Moreover, of course, the emphasis in this work has been placed on high-energy lepton
scattering where relativistic effects are important and many aspects of nuclear modeling can
only be undertaken in specific relativistic models that, despite the importance of employing
such models, do not have all of the desired ingredients one might like to have.
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Note
1 We use the conventions of [3] in this work. We also employ the conventions previously used by us and others in many previous

studies. Namely, we denote 4-vectors by capital letters and 3-vectors by lower case letters, Aµ = (A0, a), Bµ = (B0, b), etc.
The scalar product of two 4-vectors is then A · B = A0B0 − a · b and, therefore, the scalar product of a 4-vector with itself is
A2 = (A0)2 − a2 where a ≡ |a|. One potential point of confusion can occur with these conventions, viz. for the momentum
transfer 4-vector Qµ = (Q0, q) = (ω, q) we have Q2 = ω2 − q2 which for electron scattering is space-like, and accordingly
Q2 < 0. One should be careful not to confuse our sign convention for this quantity with the so-called SLAC convention which
has the opposite sign Q2

SLAC = −Q2 > 0.
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