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Abstract: We demonstrate that the celebrated Stückelberg formalism is modified in the case of a massive
four (3 + 1)-dimensional (4D) Abelian 2-form theory due to the presence of a self-duality discrete
symmetry in the theory. The latter symmetry entails upon the modified 4D massive Abelian 2-form
gauge theory to become a massive model of Hodge theory within the framework of Becchi–Rouet–
Stora–Tyutin (BRST) formalism where there is the existence of a set of (anti-)co-BRST transformations
corresponding to the usual nilpotent (anti-)BRST transformations. The latter exist in any arbitrary
dimension of spacetime for the usual Stückelberg-modified massive Abelian 2-form gauge theory.
The modification in the Stückelberg technique is backed by the precise mathematical arguments
from the differential geometry where the exterior derivative and Hodge duality operator play the
decisive roles. The modified version of the Stückelberg technique remains invariant under the discrete
duality transformations which also establish a precise and deep connection between the off-shell
nilpotent (anti-)BRST and (anti-)co-BRST transformations. We have clarified a simple trick of using
the equations of motion to remove the higher derivative terms in the appropriate Lagrangian densities
so that our 4D theory can become consistent.

Keywords: modified Stückelberg technique; (anti-)BRST symmetries; (anti-)co-BRST symmetries;
discrete duality symmetry transformations; fields with negative kinetic terms
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1. Introduction

The basic concepts and ideas behind the subject of pure mathematics and their appli-
cations in the progress of theoretical physics have been intertwined together in a meaningful
manner since the advent of physics as a specific branch of (the all-encompassing broad field
of modern-day) science which incorporates, into its ever-widening folds, other branches,
as well. In particular, the recent developments in the domain of theoretical high-energy
physics owe a great deal to some of the key ideas and concepts behind pure mathematics.
For instance, we know that the concepts of differential geometry have found decisive
applications in the realm of theoretical research activities related to the specific topics of
gauge theories, gravitational theories, (super)string theories, topological field theories,
higher-spin gauge theories, etc. In this context, it is pertinent to point out that the cele-
brated Stückelberg technique of compensating field(s) [1], responsible for the massive field
theories (e.g., the Proca theory) to acquire the beautiful gauge symmetry invariance, is also
based on the ideas of the differential geometry (see, e.g., [2–5]). In particular, the exterior
derivative (d = d xµ ∂µ, d2 = 0) plays a key role (see, e.g., Equation (6) below) in the
replacement/modification of the gauge field due to the presence of some compensating
field(s) (e.g., a pure scalar field in the context of the Proca theory) which converts the
second-class constraints of the original massive field theory into the first-class constraints
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(see, e.g., [6,7]). The latter appear in the expression for the generator of the gauge symmetry
transformations (existing in the case of the Stückelberg-modified theory where the mass
and gauge symmetry co-exist together).

One of the central purposes of our present endeavor is to demonstrate that the standard
Stückelberg-technique is modified in the context of massive Abelian p-form (p = 1, 2, 3, . . . )
gauge theories in D = 2p dimensions of spacetime because such kinds of massive theories
respect, in addition to the gauge symmetry transformations (that are generated by the
first-class constraints in the terminology of Dirac’s prescription for the classification of the
constraints [6,7]), the dual-gauge symmetry transformations which exist for the gauge-fixed
Lagrangian densities of the above kinds of theories. In a very recent work [8], we have been
able to corroborate the above claim in the context of a 2D Proca (i.e., a massive 2D Abelian
1-form) theory. In fact, we have been able to demonstrate that, due to the modified version
of the Stückelberg formalism (SF), we obtain the (anti-)BRST and (anti-)co-BRST symmetries
for the gauge-fixed Lagrangian density of the Stückelberg-modified 2D Proca theory within
the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism (cf. Appendix A below).
It is worthwhile to mention that the massless Abelian p-form (p = 1, 2, 3) gauge theories,
in D = 2p dimensions of spacetime, have already been proven to be the field-theoretic
models of Hodge theory (see, e.g., [9] and reference therein). Further, we have been able to
show that the Stückelberg-modified massive 2D Abelian 1-form (i.e., Proca theory) [8] (see,
e.g., Appendix A) and 4D massive Abelian 2-form theory (see, e.g., [10]) are, once again,
very interesting examples of the massive models of Hodge theory within the framework of
BRST formalism (see, e.g., [10–12]).

The central theme of our present investigation is to show that the Stückelberg-modified
Lagrangian density of the massive 4D Abelian 2-form theory respects the (anti-)BRST
symmetry transformations in any arbitrary dimension of spacetime. However, in the
physical four (3 + 1)-dimensions of spacetime, it respects the (anti-)BRST as well as the (anti-
co-)BRST symmetry transformations due to (i) the modification in the standard Stückelberg
technique [cf. Equation (2)] where an axial-vector field (φ̃µ) also appears explicitly (cf.
Equation (7)) backed by the precise mathematical arguments, and (ii) the existence of
a set of discrete duality symmetry transformations under which the modified Stückelberg
technique (cf. Equation (9)) as well as the 4D Lagrangian density L (cf. Equation (29)) both
remain invariant. The generalization of these discrete duality symmetry transformations,
within the realm of BRST formalism (cf. Equations (48) and (54)), also establish a precise
connection between the (anti-)BRST and (anti-)co-BRST symmetry transformations [9].
We provide proper arguments, however, to demonstrate that the nilpotent (anti-)co-BRST
and (anti-)BRST transformations have their own identities as they provide the physical
realizations [10] of the (co-)exterior derivatives of the differential geometry [2–5], which are
also independent of each-other.

In our present endeavor, for the sake of brevity, we consider only the (co-)BRST invari-
ant Lagrangian density (cf. Section 6) that is the generalization of L(b1)

(cf. Equation (43))
and establish a direct connection between the BRST and co-BRST symmetry transformations
due to the existence of a couple of discrete duality symmetry transformations (48) and (54).
In an exactly similar fashion, the generalization of the Lagrangian density L(b2)

(cf. Equa-
tion (45)) can be obtained at the quantum level (within the framework of BRST formalism) as
LB̄ . The latter will be anti-BRST as well as anti-co-BRST invariant [10]. Once again, we shall
be able to establish the interconnection between the anti-BRST and anti-co-BRST symmetry
transformations by exploiting the theoretical potential and power of the discrete duality
symmetry transformation (48) plus (54) at the quantum level (see, e.g., [9,10] for details).
In addition to this direct connection (which is a novel observation), there exists another
relationship between the co-BRST and BRST transformations (cf. Equation (60)) which
provide the physical realization of the relationship between the co-exterior and exterior
derivatives of the differential geometry [2–5]. In this context, it is worthwhile to mention
that that the discrete duality symmetry transformations (48) plus (54) provide the physical
realization of the Hodge duality operator of the differential geometry (cf. Equation (60)).
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The following key factors have been at the heart of our present investigation. First and
foremost, in a very recent work [8], we have discussed the modification of the standard
Stückelberg formalism in the context of a massive Abelian 1-form (i.e., Proca) theory in
two (1 + 1)-dimensions of spacetime. Hence, we have been curious to find its analogue
in the context of a massive Abelian 2-form theory in the physical four (3 + 1)-dimensions
of spacetime. Second, we envisage to find out the existence of fields with negative kinetic
terms on the basis of symmetry properties (as has happened in the case of a modified 2D
Proca theory) because such kinds of exotic fields are the possible candidates for dark matter
and dark energy, and they play an important role in the context of the cyclic, bouncing,
and self-accelerated cosmological models of the Universe (see, e.g., [13–15] and references
therein). Third, we desire to establish a direct connection between the nilpotent (anti-)BRST
and (anti-)co-BRST transformations on the basis of a set of discrete duality symmetry
transformations (cf. Equations (48) and (54)) alone which has not been accomplished in
our earlier works [9,10]. Fourth, we have developed a simple theoretical trick of using
the EL-EoMs to remove the higher derivative terms so that our 4D theory can become
renormalizable (cf. Section 3 for details). Fifth, the higher p-form (p = 2, 3, . . . ) gauge
theories of massless and massive varieties are interesting from the point of view of the
(super)string theories as they appear in their quantum excitations. Finally, we wish to find
the physical realizations of the Hodge duality operator of differential geometry [2–5] in terms
of the discrete duality symmetry transformations within the framework of BRST formalism.

The theoretical material of our present endeavor is organized as follows. In Sec-
tion 2, we discuss the bare essentials of the gauge symmetry transformations for the
standard Stückelberg-modified Lagrangian density in any arbitrary D-dimension of space-
time. Section 3 deals with the modification of the Stückelberg formalism where the exterior
derivative and the Hodge duality operator of differential geometry play decisive roles.
The subject matter of Section 4 concerns itself with the derivation of the 4D Lagrangian
densities that respect the (dual-)gauge symmetry transformations together for the gauge-
fixed Lagrangian densities, provided exactly similar kinds of restrictions are imposed on
the (dual-)gauge transformation parameters from the outside. Section 5 contains the theo-
retical discussion on the linearized versions of the gauge-fixed Lagrangian densities and
Curci–Ferrari (CF)-type restrictions. In Section 6, we establish a relationship between the
BRST and co-BRST symmetry transformations due to the discrete duality symmetry trans-
formations (cf. Equations (48) and (54)) in our BRST-invariant theory. Finally, in Section 7,
we make some concluding remarks and point out a few future theoretical directions for
further investigation(s).

In Appendix A, we very briefly recapitulate the bare essentials of our earlier work [8]
on the Stückelberg-modified 2D Proca theory (where the modified SF has been used). The
theoretical content of Appendix B is devoted to the generalization of the classical symme-
try transformations (37) and (35) to their quantum counterparts and (co-)BRST symmetry
transformations for the appropriate (co-)BRST invariant Lagrangian density. It turns out,
however, that the Lagrangian density (49) is appropriate and unique as it satisfies all the
essential requirements of a properly gauge-fixed and (anti-)BRST invariant theory.

Convention and Notations: We follow the convention of the left-derivative w.r.t. all the
fermionic (i.e., C̄µ, Cµ, C̄, C, ρ, λ,) fields of our theory in the context of the derivation of
the equations of motions, definition of the conjugate momenta, deduction of the Noether
conserved currents and charges, etc. The 4D Levi–Civita tensor is denoted by εµνλξ with
conventions: ε0123 = + 1 = − ε0123 and εµνλξ εµνλξ = − 4!, εµνλξ εµνλρ = − 3! δ

ρ
ξ ,

εµνλξ εµνρσ = − 2! (δρ
λ δσ

ξ − δ
ρ
ξ δσ

λ), etc., where the Greek indices µ, ν, λ, . . . = 0, 1, 2, 3
stand for the time and space directions, and the Latin indices i, j, k . . . = 1, 2, 3 corre-
spond to the space directions only. Hence, the 3D Levi–Civita tensor is εijk = ε0ijk. The
background flat 4D Minkowskian spacetime manifold is endowed with a flat metric tensor
ηµν = diag (+1,−1,−1,−1) so that the dot product between two non-null 4-vectors Pµ

and Qµ is represented by: P · Q = ηµν Pµ Qν = P0 Q0 − Pi Qi. We denote the nilpotent
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(anti-)BRST symmetry transformations by s(a)b, and the notations s(a)d stand for the nilpo-
tent (anti-) dual (i.e., (anti-)co)-BRST symmetry transformations.

Standard Definition: On a compact manifold without a boundary, we have a set of three
operators (d, δ, ∆) which are known as the de Rham cohomological operators of differential
geometry. The operators (δ) d are called the (co-)exterior derivatives that are connected with
each other by the algebraic relationship: δ = ± ∗ d ∗where ∗ is the Hodge duality operator
on the above manifold. These operators satisfy the algebra: d2 = δ2 = 0, ∆ = (d + δ)2 =
{d, δ}, [∆, d] = [∆, δ] = 0, where ∆ is the Laplacian operator [2–5]. This algebra (which
is not a Lie algebra) is popularly known as the Hodge algebra and ∆ behaves similar to
a Casimir operator for the whole algebra (but not in the Lie algebraic sense). We shall be
frequently using the names of these cohomological operators (see, e.g., [2–5]) of differential
geometry in our present endeavor in appropriate places.

2. Preliminaries: Stückelberg Formalism in Any Arbitrary Dimension of Spacetime

We begin with any arbitrary D-dimensional Lagrangian density (L0) for the mas-
sive Abelian 2-form (B(2) = [(d xµ ∧ d xν)/2!] Bµν) theory with the anti-symmetric ten-
sor (Bµν = − Bνµ) field (carrying the rest mass m) as follows (see, e.g., [16] and
references therein)

L0 =
1

12
Hµνλ Hµνλ −

m2

4
Bµν Bµν, (1)

where H(3) = d B(2) ≡ [(d xµ ∧ d xν ∧ d xλ)/3!] Hµνλ defines the kinetic term (with the
field-strength tensor Hµνλ = ∂µ Bνλ + ∂ν Bλµ + ∂λ Bµν for the anti-symmetric tensor field
Bµν where the Greek indices µ, ν, λ . . . = 0, 1, . . . , D− 1). It is straightforward to check
that the Euler–Lagrange (EL) equation of motion (EoM): ∂µ Hµνλ + m2 Bνλ = 0 implies the
subsidiary conditions: ∂ν Bνλ = ∂λ Bνλ = 0, which emerge out from it for m2 6= 0. As a
consequence, we observe that Bµν field obeys the Klein–Gordon equation (�+m2) Bµν = 0
with a definite rest mass m. We note that the massive Lagrangian density (1) does not respect
the gauge transformation due to the fact that it is endowed with the second-class constraints
in the terminology of Dirac’s prescription for the classification scheme of constraints (because
the gauge symmetries are generated by the first-class constraints [6,7]).

The gauge symmetry transformations can be restored for the modified version of the
standard Lagrangian density (1) if we exploit the basic theoretical methodology of the
Stückelberg formalism (SF) related to the compensating field(s). In other words, due to SF,
we replace the basic antisymmetric Abelian 2-form field Bµν as follows [16,17]:

Bµν −→ Bµν ∓
1
m

(∂µ φν − ∂ν φµ), (2)

where the Abelian 1-form Φ(1) = d xµ φµ defines the vector field φµ. It is straightforward to
check that Hµνλ = ∂µ Bνλ + ∂ν Bλµ + ∂λ Bµν remains invariant under (2). We note that the
mass dimension of Bµν and φµ fields are the same in the D-dimensional Minkowskian flat
spacetime when we use the natural units: h̄ = c = 1. Hence, the rest mass m should be
present in the denominator of Equation (2) to balance the mass dimension on the l.h.s and
r.h.s. of Equation (2). The mass term in Equation (1) changes as follows, due to (2), namely;

− m2

4
Bµν Bµν −→ − m2

4
[
Bµν ∓

1
m

(∂µ φν − ∂ν φµ)
] [

Bµν ∓ 1
m

(∂µ φν − ∂ν φµ)
]
. (3)
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Let us define an Abelian 2-form F(2) = d Φ(1) = [(d xµ ∧ d xν)/2!]Φµν where
Φµν = ∂µ φν − ∂ν φµ is the antisymmetric field strength tensor for the vector field φµ. With
all these inputs, we obtain the Stückelberg-modified Lagrangian density LS from L0 as

L0 −→ LS =
1
12

Hµνλ Hµνλ −
m2

4
Bµν Bµν ± m

2
Bµν Φµν − 1

4
Φµν Φµν, (4)

which respects the following local, continuous and infinitesimal classical gauge symmetry
transformations δg, namely

δg Hµνλ = 0, δg φµ = ± (∂µ Λ−m Λµ),

δg Bµν = − (∂µ Λν − ∂ν Λµ), δg Φµν = ∓ m (∂µ Λν − ∂ν Λµ), (5)

where the Lorentz scalar Λ(x) and Lorentz vector Λµ(x) are the infinitesimal local gauge
symmetry transformation parameters. It is important to point out that there is a stage-one
reducibility in the theory because the transformation φµ → φµ± ∂µ Λ can be accommodated
in the standard Stückelberg technique (considered in Equation (2)) without changing it in
any way. This is why, in the gauge transformation of φµ field (cf. Equation (5)), we have
the local Lorentz scalar transformation parameter Λ(x). It is straightforward to check that
δg LS = 0, implying that the Stückelberg-modified Lagrangian density LS respects the
infinitesimal and continuous local gauge symmetry transformations (5) in a perfect manner.
We mention, in passing, that the second-class constraints of L0 have been converted into
the first-class constraints (due to the introduction of the Stückelberg polar vector field φµ

in (2)). The ensuing first-class constraints are the generator for the infinitesimal gauge
symmetry transformations (δg) in (5). These statements are true for our theory in any
arbitrary D-dimension of Minkowskian flat spacetime [17].

3. Massive 4D Abelian 2-Form Theory: Modified SF

In the differential form terminology, the standard Stückelbergtechnique (2), defined
for any arbitrary D-dimension of spacetime, can be re-expressed as follows [17]:

B(2) −→ B(2) ∓ 1
m

F(2) ≡ B(2) ∓ 1
m

d Φ(1). (6)

This also establishes the invariance of H(3) = d B(2) under (2) because of the nilpo-
tency (d2 = 0) of the exterior derivative (d). In the physical four (3 + 1)-dimensional (4D)
flat spacetime, the theoretical technique (6) of the standard Stückelberg formalism can be
modified in the following manner (in the language of differential forms), namely;

B(2) −→ B(2) ∓ 1
m

d Φ(1) ∓ 1
m
∗ d Φ̃(1), (7)

where the first two terms of the r.h.s. have already been explained. In the third term, on the
r.h.s., we have taken the axial-vector 1-form Φ̃(1) = d xµ φ̃µ with the axial-vector field φ̃µ.
A pseudo 2-form F̃(2) = d Φ̃(1) = [(d xµ ∧ d xν)/2!] Φ̃µν has been constructed from Φ̃(1)

by applying an exterior derivative on it so that we obtain Φ̃µν = ∂µ φ̃ν − ∂ν φ̃µ. To bring
the parity of B(2), F(2) = d Φ(1) and the pseudo 2-form F̃(2) on equal footing1, it is essential
to obtain an ordinary 2-form from the pseudo 2-form F̃(2) by operating a single Hodge duality
operator ∗ on it. This mathematical technique (on the 4D spacetime manifold) leads to

∗ F̃(2) = ∗
(d xµ ∧ d xν

2!

)
Φ̃µν ≡

1
2 !

(d xµ ∧ d xν) f̃µν, (8)
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where f̃µν = 1
2 εµνλξ Φ̃λξ ≡ εµνλξ ∂λ φ̃ξ . Thus, in the language of a set of antisymmetric

tensors (Bµν, Φµν, f̃µν), we have obtained the following from the modified version of the 4D
Stückelberg technique (7), namely;

Bµν −→ Bµν ∓
1
m

(∂µ φν − ∂ν φµ)∓
1
m

εµνλξ ∂λ φ̃ξ

≡ Bµν ∓
1
m

Φµν ∓
1
m

f̃µν ≡ Bµν ∓
1
m

(
Φµν +

1
2

εµνλξ Φ̃λξ
)

. (9)

It is very interesting to state that the above modified 4D Stückelberg technique remains
form-invariant under the following discrete duality symmetry transformations:

Bµν → ∓i B̃µν ≡ ∓
i

2!
εµνλξ Bλξ , φµ → ±i φ̃µ, φ̃µ → ∓i φµ, (10)

where B̃µν = 1
2 ! εµνλξ Bλξ emerges out from the self-duality condition: ∗ B(2) = [(d xµ ∧

d xν)/2!] Bµν, which leads to the derivation of the dual Abelian 2-form (in 4D) as follows:

B̃(2) =
(d xµ ∧ d xν

2!

) [ 1
2!

εµνλξ Bλξ
]
≡
(d xµ ∧ d xν

2!

)
B̃µν. (11)

We shall see that the discrete duality symmetry transformations in (10) will play a very
important role, later on, as its generalization (within the framework of BRST formalism)
will provide the analogue of the Hodge duality ∗ operator of differential geometry. We
would like to lay emphasis on the fact that the root cause behind the existence of the discrete
duality symmetry transformations in (10) is the self-duality condition on the Abelian 2-form
(B(2) = [(d xµ ∧ d xν)/2!] Bµν) in the physical four (3 + 1)-dimensions of spacetime.

It is an elementary exercise to note that the mass term of Equation (1) transforms, under
the modified Stückelberg technique (cf. Equation (9)), as

− m2

4
Bµν Bµν −→ − m2

4
Bµν Bµν ± m

2
Bµν (Φµν +

1
2

εµνρσ Φ̃ρσ)

− 1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν, (12)

modulo a total spacetime derivative ∂µ [− εµνλξ φν ∂λ φ̃ξ ] which emerges out from a term
(− 1

2 f̃µν Φµν) that appears in Equation (12) due to the substitution (9) for the modi-
fied version of the antisymmetric field Bµν. We also point out that the kinetic term
((1/12) Hµνλ Hµνλ) also transforms under (9) because it is straightforward to note that
we have the following

Hµνλ −→ Hµνλ ∓
1
m

(∂µ Φνλ + ∂ν Φλµ + ∂λ Φµν)

∓ 1
m

(∂µ f̃νλ + ∂ν f̃λµ + ∂λ f̃µν), (13)

where Φµν = ∂µ φν − ∂ν φµ and f̃µν = εµνλξ ∂λ φ̃ξ . We note that the second term on the
r.h.s. of the above equation turns out to be zero. However, the third term exists as:

∓ 1
m

Σµνλ = ∓ 1
m

(∂µ f̃νλ + ∂ν f̃λµ + ∂λ f̃µν)

≡ ∓ 1
m

(εµνρσ ∂λ + ενλρσ ∂µ + ελµρσ ∂ν) (∂
ρ φ̃σ). (14)

Thus, we have to find the exact value of the following (for the changes in the kinetic
term due to the modified version of 4D Stückelberg technique (cf. Equation (9))), namely;

1
12

Hµνλ Hµνλ =⇒ 1
12

Hµνλ Hµνλ ∓ 1
6 m

Hµνλ Σµνλ +
1

12 m2 Σµνλ Σµνλ, (15)
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where we have taken into account Hµνλ −→ Hµνλ ∓ 1
m Σµνλ (cf. Equations (13) and (14)).

We focus on the second term [∓(1/6 m) Hµνλ Σµνλ], which can be explicitly written as:

∓ 1
6 m

Hµνλ
[
εµνρσ ∂λ + ενλρσ ∂µ + ελµρσ ∂ν

]
(∂ρφ̃σ). (16)

The first term on the r.h.s. of the above equation contributes the following (modulo a
total spacetime derivative), namely;

± 1
6 m

(∂λ Hλµν) εµνρσ (∂
ρφ̃σ). (17)

It is self-evident that there are three derivatives in the above expression because Hµνλ

contains one derivative. Thus, the expression in (17) belongs to a higher derivative term
for our 4D theory. It is worthwhile to mention here that in our earlier work [10], the
higher derivative terms have been ignored. This is why relevant terms in the Lagrangian
density have been obtained by the trial and error method. However, we note, in our
present endeavor, that one can remove a single derivative by using the on-shell condition:
∂λ Hλµν + m2 Bµν = 0, which is equivalent to the EL-EoM: (�+ m2) Bµν = 0. It is due to
the presence of the higher derivative term that the substitution of the on-shell condition
does not make this term (in the Lagrangian density) equal to zero. This should be contrasted
against the use of the on-shell conditions in the context of the simple cases of (i) the Dirac
Lagrangian density and (ii) the pure (Klein–Gorden) scalar field Lagrangian density (where
there are no higher order derivatives). All the three terms, on the r.h.s. of (16), individually
contribute to the same result, which can be added together to yield

∓m
2

εµνλξ Bµν (∂λ φ̃ξ) ≡ ∓m
4

εµνλξ Bµν Φ̃λξ , (18)

where Φ̃λξ = ∂λ φ̃ξ − ∂ξ φ̃λ. It is interesting to point out that the above term has been
incorporated into the BRST invariant Lagrangian density of our earlier work [10] on the
basis of the trial and error method. However, as is self-evident, we have derived this
term correctly in our present endeavor, which is motivated by our earlier work on the
Stückelberg-modified 2D Proca theory [8], where we have exploited a similar kind of trick
to remove the higher derivative terms. The mass term in Equation (18) is similar to the
topological mass term of the B ∧ F theory. In the latter theory, the 4D Abelian 2-form
theory also incorporates the Maxwell Abelian 1-form (A(1) = d xµ Aµ) gauge field with the
curvature 2-form F(2) = d A(1). There are many ways to derive (18) from (16). However,
we have chosen one of the simplest methods to derive Equation (18), which is not a higher
derivative culprit term for our 4D Abelian 2-form massive theory.

We now focus on the exact and explicit computation of the third term on the r.h.s. of (15).
It is evident that, for a 4D Abelian 2-form theory, this third term is a higher derivative term
because it contains four derivatives in it. A close look at (14) shows that there will be a total
of nine terms when we take into account ((1/12 m2)Σµνλ Σµνλ) and write the expression
for Σµνλ from Equation (16). However, it turns out that only three of them contribute to the
Lagrangian density, and the rest of the six terms are found to be total spacetime derivatives.
Hence, they can be ignored as the dynamics of the theory does not depend on them. Let us
focus on the first existing term, which is equal to the following:

1
12 m2 εµνρσ ∂λ (∂ρ φ̃σ) εµναβ ∂λ (∂

α φ̃β)

= − 1
6 m2 [∂λ (∂α φ̃β − ∂β φ̃α)] [∂λ (∂

α φ̃β)]

≡ 1
6 m2 ∂λ (∂α Φ̃αβ) (∂λ φ̃β), (19)
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where we have dropped a total spacetime derivative term, as it will not affect the dynamics
At this stage, to remove the derivatives, we use the EoM: ∂α Φ̃αβ + m2 φ̃β = 0. Thus, the
final expression on the r.h.s. of Equation (19) is

− 1
6
(∂λ φ̃β) (∂λ φ̃β) ≡ 1

6
φ̃β � φ̃β, (20)

where we have dropped a total spacetime derivative term. Using the Klein–Gordon
equation2: (�+ m2) φ̃µ = 0, we obtain the following (from the first contribution), namely;

1
12 m2 εµνρσ ∂λ (∂ρ φ̃σ) εµναβ ∂λ (∂

α φ̃β) ≡ − m2

6
φ̃β φ̃β. (21)

It is obvious that there are three such contributions in the total evaluation of the third
term ((1/12 m2)Σµνλ Σµνλ) on the r.h.s. of Equation (15). Thus, ultimately, we obtain the
following exact and explicit expression from all three existing terms, namely;

1
12 m2 Σµνλ Σµνλ = − m2

2
φ̃µ φ̃µ. (22)

Going from Equation (20) to Equation (22) is essential and interesting for our purpose.
It is clear that the above term is not a culprit term, and it is useful to us for our further
discussions. The total terms on the r.h.s. of Equation (15) can be re-expressed as follows:

1
12

Hµνλ Hµνλ ∓
m
2

εµνλξ Bµν (∂λ φ̃ξ)− m2

2
φ̃µ φ̃µ

≡ − 1
8

εµνλξ (∂ν Bλξ) εµαβγ (∂αBβγ)

±m
2

εµνλξ (∂
µ Bνλ) φ̃ξ − m2

2
φ̃µ φ̃µ, (23)

where we have dropped a total spacetime derivative term and used the following exact
equality, namely;

1
12

Hµνλ Hµνλ = − 1
8

εµνλξ (∂ν Bλξ) εµαβγ (∂α Bβγ). (24)

The correctness of the above equality can be checked explicitly by using the well-
known property of the 4D Levi–Civita tensor, where one index (i.e., µ) is contracted. It is
straightforward to observe that the final expression for (23) can be written as

− 1
2

[1
4

εµνλξ (∂ν Bλξ) εµαβγ (∂α Bβγ)±m φ̃µ εµνλξ (∂ν Bλξ) + m2 φ̃µ φ̃µ
]
, (25)

where we have used the following

±m
2

εµνλξ (∂
µ Bνλ) φ̃ξ = ∓ m

2
φ̃µ εµνλξ (∂ν Bλξ), (26)

to express (15) (and/or (23) and/or (25)) as a squared term, namely;

1
12

Hµνλ Hµνλ ∓ 1
6 m

Hµνλ Σµνλ +
1

12 m2 Σµνλ Σµνλ

= − 1
2

[1
2

εµνλξ ∂ν Bλξ ±m φ̃µ

]2
, (27)
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which is nothing but the explicit expression for Equation (25). Thus, we note that the final
version of the Lagrangian density (with the modified SF (cf. Equation (9))) is as follows3

L(m)
S = − 1

2

[1
2

εµνλξ∂ν Bλξ ±m φ̃µ

]2
− m2

4
Bµν Bµν

± m
2

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
Bµν −

1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν, (28)

where we have taken the inputs from Equations (12) and (27), and the superscript (m) on
this Lagrangian density denotes that we have taken into account the help of the modified SF
(cf. Equation (9)) in the modified version of the Lagrangian density (28).

We end this section with the final remark that we can add a gauge-fixing term for the
Abelian 2-form field (Bµν), the axial-vector field (φ̃µ), and the polar vector field (φµ) so
that we can quantize the theory (described by the Lagrangian density (28)). At this stage,
the role of the co-exterior derivative (δ = ± ∗ d ∗, δ2 = 0) becomes quite essential as we
note that δ B(2) = (∂ν Bνµ) d xµ, δ Φ(1) = (∂ · φ), δ Φ̃(1) = (∂ · φ̃) where δ = − ∗ d ∗
is the co-exterior derivative defined on the 4D spacetime (which is an even dimensional
Minkowskian spacetime manifold). The full Lagrangian density, with the gauge-fixing
terms, is

L = L(m)
S + Lg f ≡ − 1

2

[1
2

εµνλξ∂ν Bλξ ±m φ̃µ

]2
− m2

4
Bµν Bµν

± m
2

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
Bµν −

1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν

+
1
2

[
∂ν Bνµ ±m φµ

]2
+

1
2
(∂ · φ̃)2 − 1

2
(∂ · φ)2, (29)

where the gauge-fixing term ( 1
2 (∂

ν Bνµ ± m φµ)2) is similar to the t’Hooft gauge in the
context of the Stückelberg-modified Proca theory [8,17]. We point out that the above gauge-
fixed Lagrangian density respects the duality symmetry transformations (10). The latter,
it goes without saying, are also respected by the modified SF that has been defined in
Equation (9). The equations of motion, satisfied by the basic fields (Bµν, φµ, φ̃µ), are the
Klein–Gordon equations: (�+ m2) Bµν = 0, (�+ m2) φµ = 0, (�+ m2) φ̃µ = 0, which
emerge out from the Lagrangian density (29). This observation establishes that (i) all the
fields have the rest mass m and our gauge-fixing procedure is correct, where the fields
(φµ, φ̃µ) have been incorporated into (29) on the basis of the consideration of the proper
mass dimension in 4D, and (ii) the EL-EoMs used, in this section, to remove the higher
derivative terms are not far-fetched.

4. Final Forms of the Gauge-Fixed Lagrangian Densities: Massive Free 4D Abelian
2-Form Theory

The gauge-fixing term and the kinetic term that have been obtained in (29) can be
further generalized. It is a textbook4 material that one can incorporate a pure scalar field
(φ) with mass dimension one (i.e., [M]) in the massless case of Abelian 2-form gauge theory
in the following explicit manner:

Bµ (∂ν Bνµ − ∂µ φ)− 1
2

Bµ Bµ ≡
1
2
(∂ν Bνµ − ∂µ φ)2, (30)

where, in the 4D Minkowskian spacetime, the mass dimensions of the Nakanishi–Lautrup
type auxiliary field Bµ and (∂ν Bνµ− ∂µ φ) are two (i.e., [M]2) in the natural units (h̄ = c = 1).
In the case of our massive 4D Abelian 2-form theory, we can choose the analogue of (30) by
generalizing the gauge-fixing term of (29). However, since our theory is duality-invariant,
we have to generalize the kinetic term, too, by incorporating a pseudo-scalar field (φ̃) with
a mass dimension of one (i.e., [M]). To be consistent with the Curci-Ferrari restriction that
has been derived by the superfield approach to BRST formalism in the context of Abelian
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2-form theory (see, e.g., [18] for details), we choose the pure scalar and pseudo-scalar
fields with a factor of (±1/2) to begin with. However, only one sign will be taken into
consideration for a specific Lagrangian density of our theory (later on).

As a consequence of the above arguments, we have the following modifications of the
gauge-fixed Lagrangian density (29), namely;

L −→ L(1) = − 1
2

[1
2

εµνλξ∂ν Bλξ ±m φ̃µ ∓
1
2

∂µ φ̃
]2
− m2

4
Bµν Bµν

± m
2

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
Bµν −

1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν

+
1
2

[
∂ν Bνµ ±m φµ ∓

1
2

∂µ φ
]2

+
1
2

(
∂ · φ̃ +

m
2

φ̃
)2

− 1
2

(
∂ · φ +

m
2

φ
)2

, (31)

L −→ L(2) = − 1
2

[1
2

εµνλξ∂ν Bλξ ±m φ̃µ ±
1
2

∂µ φ̃
]2
− m2

4
Bµν Bµν

± m
2

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
Bµν −

1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν

+
1
2

[
∂ν Bνµ ±m φµ ±

1
2

∂µ φ
]2

+
1
2

(
∂ · φ̃− m

2
φ̃
)2

− 1
2

(
∂ · φ− m

2
φ
)2

, (32)

where the mass dimensions of the fields have been taken into account, and we have taken
into consideration both the signs that are present in (30) and chosen the constant numerical
factor to be 1/2. We shall corroborate the logic behind the choice of the terms containing φ
and φ̃ in the modified Lagrangian densities (31) and (32). We shall also dwell a bit on our
choice of the factor (1/2) in the kinetic and gauge-fixing terms that contain fields φ̃ and
φ, respectively. The latter have been incorporated into L(1) and L(2) at appropriate places
(e.g., the kinetic and gauge-fixing terms) with proper mass dimensions. It is worthwhile
to mention that the signs of the last two terms, corresponding to the gauge-fixing of the
axial-vector and polar-vector fields φ̃µ and φµ, respectively, are fixed, which leads to the
EL-EoMs5: (�+ m2) φµ = 0, (�+ m2) φ̃µ = 0, (�+ m2) φ = 0, (�+ m2) φ̃ = 0.

At this juncture, we would like to point out that the generalization of the discrete
duality symmetry transformations (10), namely:

Bµν −→ ∓i B̃µν ≡ ∓
i
2

εµνλξ Bλξ , φµ −→ ± i φ̃µ, φ̃µ −→ ∓ i φµ,

φ −→ ± i φ̃, φ̃ −→ ∓ i φ, Bµν Bµν −→ Bµν Bµν, (33)

is respected by the completely gauge-fixed Lagrangian densities L(1) and L(2), and all the

fields (i.e., Bµν, φµ, φ̃µ, φ, φ̃) satisfy the following Klein–Gordon equation6

(�+ m2) Bµν = 0, (�+ m2) φµ = 0, (�+ m2) φ̃µ = 0,

(�+ m2) φ = 0, (�+ m2) φ̃ = 0, (34)

which is the signature of the completely (and correctly) gauge-fixed Lagrangian density.
It should be noted that the mass term for the Bµν field (i.e.,− (m2/4)Bµν Bµν) remains
invariant under the transformation [Bµν −→ ∓(i/2) εµνλξ Bλξ ]. The latter has its origin in
the self-duality condition (cf. Equation (11)). This observation is crucial because it forces
the whole theory to have a single mass parameter m. We point out that both the signs,
chosen in the kinetic and gauge-fixing terms as well as in the third term of (31) and (32), are
allowed, and they do not violate the Klein–Gordon equations in (34). It is very interesting to
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highlight the following infinitesimal and continuous gauge transformations (δg) for the
basic fields of the Lagrangian density L(1), namely

δg Bµν = − (∂µ Λν − ∂ν Λµ), δg φµ = ± (∂µ Λ−m Λµ),

δg Φµν = ∓m (∂µ Λν − ∂ν Λµ), δg φ = ± 2 [(∂ ·Λ) + m Λ],

δg [Hµνλ, φ̃µ, φ̃, Φ̃µν] = 0, (35)

which are nothing but the generalization of the gauge symmetry transformations (5). Under
these transformations, we observe that the Lagrangian density L(1) transforms as follows:

δg L(1) = ∂µ

[
∓ m εµνλξ Λν∂λ φ̃ξ

]
∓
(

∂ · φ +
m
2

φ
) [

�+ m2]Λ

−
[
∂ν Bνµ ±m φµ ∓ 1

2
∂µ φ

] [
�+ m2]Λµ. (36)

Thus, it is crystal clear that if we impose the restrictions on the gauge transformation
parameters as: (�+ m2)Λ = 0, (�+ m2)Λµ = 0 from outside, the transformations (35)
will become the symmetry transformations for the Lagrangian density L(1). We shall see
that, within the framework of the BRST approach to this theory, there will be no imposition
of any kind of restriction from outside on the theory. We christen the infinitesimal and
continuous transformations (35) as the gauge transformations because we observe that the
total kinetic terms (i.e., δg Hµνλ = 0, δg φ̃µ = 0, δg φ̃ = 0, δg Φ̃µν = 0), owing their origin
basically to the exterior derivative d = d xµ ∂µ (with d2 = 0) of differential geometry [2–5],
remain invariant. In addition to the gauge transformations (35), we have another set of
infinitesimal and continuous transformations (δdg) in the theory, namely;

δdg Bµν = − εµνλξ ∂λ Σξ , δdg φ̃µ = ± (∂µΩ−m Σµ),

δdg φ̃ = ± 2 [∂ · Σ + m Ω], δdg Φ̃µν = ∓ m (∂µ Σν − ∂ν Σµ),

δdg [∂
ν Bνµ, φµ, φ, Φµν] = 0, (37)

which imply that the total gauge-fixing term (i.e., 1
2 (∂ν Bνµ ± m φµ ∓ 1

2 ∂µ φ)), owing its
origin primarily to the co-exterior derivative: δ = ± ∗ d ∗, remains invariant. Here,
the infinitesimal transformation parameters Σµ and Ω are the Lorentz axial vector and
pseudo-scalar, respectively. We observe that the Lagrangian density L(1) transforms under
the infinitesimal and continuous transformations (37) as follows:

δdg L(1) = ∂µ

[
∓ m εµνλξ Σν ∂λ φξ

]
±
(

∂ · φ̃ +
m
2

φ̃
) [

�+ m2]Ω

+
[1

2
εµνλξ ∂ν Bλξ ±m φ̃µ ∓ 1

2
∂µφ̃

] [
�+ m2]Σµ, (38)

which shows that, if we impose the conditions: (�+ m2)Σµ = 0 and (�+ m2)Ω = 0
from outside, the infinitesimal and continuous transformations (37) will become the symme-
try transformations for the completely gauge-fixed Lagrangian density L(1). We christen the
infinitesimal transformations in (37) as the dual-gauge transformations (δdg) because the
gauge-fixing term for the Bµν (and associated fields φµ and φ) remain invariant.

Before we end this section, we very concisely highlight a few key points connected
with the continuous symmetries of the Lagrangian density L(2) (cf. Equation (32)). In
this context, it is very illuminating to point out that the following local, infinitesimal and
continuous (dual-)gauge symmetry transformations [δ(d)g], namely;

δdg Bµν = − εµνλξ ∂λ Σξ , δdg φ̃µ = ± (∂µΩ−m Σµ),

δdg φ̃ = ∓ 2 [∂ · Σ + m Ω], δdg Φ̃µν = ∓ m (∂µ Σν − ∂ν Σµ),

δdg [∂
ν Bνµ, φµ, φ, Φµν] = 0, (39)
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δg Bµν = − (∂µ Λν − ∂ν Λµ), δg φµ = ± (∂µ Λ−m Λµ),

δg Φµν = ∓m (∂µ Λν − ∂ν Λµ), δg φ = ∓ 2 [(∂ ·Λ) + m Λ],

δg [Hµνλ, φ̃µ, φ̃, Φ̃µν] = 0, (40)

transform the Lagrangian density L(2) as follows:

δdg L(2) = ∂µ

[
∓ m εµνλξ Σν ∂λ φξ

]
±
(

∂ · φ̃− m
2

φ̃
) [

�+ m2]Ω,

+
[1

2
εµνλξ ∂ν Bλξ ±m φ̃µ ±

1
2

∂µφ̃
] [

�+ m2]Σµ

δg L(2) = ∂µ

[
∓ m εµνλξ Λν ∂λ φ̃ξ

]
∓
(

∂ · φ− m
2

φ
) [

�+ m2]Λ

−
[
∂ν Bνµ ±m φµ ± 1

2
∂µ φ

] [
�+ m2]Λµ. (41)

It is evident that if we impose the restrictions

(�+ m2)Σµ = 0, (�+ m2)Λµ = 0,

(�+ m2)Ω = 0, (�+ m2)Λ = 0, (42)

on the dual-gauge transformation parameters (Σµ, Ω) and the gauge transformation pa-
rameters (Λµ, Λ) from outside, we obtain the (dual-)gauge symmetry transformations (39)
and (40) for the Lagrangian density L(2). We note that the outside restrictions (36), (38),
and (42) are exactly the same on the (dual-)gauge transformation parameters of our theory.
Hence, when we elevate the Lagrangian densities L(1) and L(2) to their counterparts at
the quantum level (within the framework of BRST formalism), we shall observe that the
Faddeev–Popov ghost terms will be the same for the coupled (but equivalent) (anti-)BRST
and (anti-)co-BRST invariant Lagrangian densities. The (anti-)ghost fields will not be
restricted from outside for the quantum version of our theory within the ambit of BRST
formalism (as the EoMs for the (anti-)ghost fields will take care of them).

5. Linearized Versions of the Lagrangian Densities: Auxiliary Fields and
CF-Type Restrictions

We linearize the kinetic term for the Bµν (and associated fields) and all the gauge-fixing
terms by invoking the Nakanishi–Lautrup-type auxiliary fields. In this context, first of all,
let us focus on the Lagrangian density L(1), which can be written as:

L(1) −→ L(b1)
=

1
2
Bµ Bµ −Bµ

[1
2

εµνλξ ∂ν Bλξ ±m φ̃µ ∓
1
2

∂µφ̃
]

− 1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν ± m
2

Bµν

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
+ Bµ

[
∂ν Bνµ ±m φµ ∓

1
2

∂µ φ
]
− 1

2
Bµ Bµ −

m2

4
Bµν Bµν

+ B (∂ · φ +
m
2

φ) +
1
2

B2 −B (∂ · φ̃ +
m
2

φ̃)− 1
2
B2. (43)

The above Lagrangian density leads to the following equations of motion:

Bµ =
1
2

εµνλξ ∂ν Bλξ ±m φ̃µ ∓
1
2

∂µφ̃, B = − (∂ · φ̃ +
m
2

φ̃),

Bµ = ∂ν Bνµ ±m φµ ∓
1
2

∂µ φ, B = − (∂ · φ +
m
2

φ). (44)

where the auxiliary fields (Bµ, Bµ, B, B) are the Nakanishi–Lautrup auxiliary fields,
which have been invoked for linearization purposes. For instance, the auxiliary field Bµ
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has been invoked for the linearization of the kinetic term for the 2-form field Bµν and
associated fields. On the other hand, the auxiliary fields (Bµ, B, B) have been introduced
to linearize the gauge-fixing terms for the Bµν, φµ and φ̃µ fields, respectively. In an exactly
similar fashion, we can linearize the Lagrangian density L(2) by invoking a different set of
Nakanishi–Lautrup-type auxiliary fields (B̄µ, B̄µ, B̄, B̄) as follows:

L(2) −→ L(b2)
=

1
2
B̄µ B̄µ + B̄µ

[1
2

εµνλξ ∂ν Bλξ ±m φ̃µ ±
1
2

∂µφ̃
]

− 1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν ± m
2

Bµν

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
− B̄µ

[
∂ν Bνµ ±m φµ ±

1
2

∂µ φ
]
− 1

2
B̄µ B̄µ − B̄ (∂ · φ− m

2
φ)

+
1
2

B̄2 + B̄ (∂ · φ̃− m
2

φ̃)− 1
2
B̄2 − m2

4
Bµν Bµν. (45)

The above Lagrangian density leads to the following equations of motion w.r.t. the
Nakanishi–Lautrup-type auxiliary fields, namely;

B̄µ = −
[1

2
εµνλξ ∂ν Bλξ ±m φ̃µ ±

1
2

∂µφ̃
]
, B̄ = (∂ · φ̃− m

2
φ̃),

B̄µ = −
[
∂ν Bνµ ±m φµ ±

1
2

∂µ φ
]
, B̄ = (∂ · φ− m

2
φ). (46)

It is crystal clear that we can derive the following very useful and interesting relation-
ships amongst the Nakanishi–Lautrup-type auxiliary fields and (pseudo-)scalar fields from
the above equations of motion (44) and (46), namely;

Bµ + B̄µ ± ∂µ φ̃ = 0, B + B̄ + m φ = 0,

Bµ + B̄µ ± ∂µ φ = 0, B + B̄ + m φ̃ = 0, (47)

which are nothing but the (anti-)BRST and (anti-)co-BRST invariant CF-type restrictions on
our theory (see, e.g., [10,21] for details).

We end this section with the following remarks. First of all, the Lagrangian densities
L(b1)

and L(b2)
have been derived in a completely different manner in our present endeavor

if we compare our present method of derivation against the derivation in our earlier
work [10], where we have exploited the method of trial and error. Second, the CF-type
restrictions B + B̄ + m φ = 0 and B + B̄ + m φ̃ = 0 are the same as in our earlier
work [10,21], but the other two restrictions in (47) are different. Third, if we stick with the
CF-type restrictions that have been derived from the superfield approach to BRST formalism
in the context of 4D Abelian 2-form massless and massive gauge theories [18,21], we find
that the other two restrictions of (47) are: Bµ + B̄µ + ∂µ φ̃ = 0 and Bµ + B̄µ + ∂µ φ = 0.
Hence, the (±) signs associated with the (pseudo-)scalar fields (e.g., ± 1

2 ∂µ φ, ± 1
2 ∂µ φ̃) are

fixed. As a consequence, we find that, in the Lagrangian density L(b1)
, we have only the

minus signs for the scalar and pseudo-scalar fields (i.e., − 1
2 ∂µ φ, − 1

2 ∂µ φ̃) and the plus
signs ( 1

2 ∂µ φ, 1
2 ∂µ φ̃) for the exact expression for the Lagrangian density L(b2)

. Fourth, it
is straightforward to note that the duality transformations (33) are now generalized in the
following form:

Bµν −→ ∓
i
2

εµνλξ Bλξ , φµ −→ ±i φ̃µ, φ̃µ −→ ∓ i φµ φ −→ ±i φ̃,

φ̃ −→ ∓i φ, Bµ −→ ∓i Bµ, Bµ −→ ±iBµ, B −→ ±iB, B −→ ∓i B,

B̄µ −→ ∓i B̄µ, B̄µ −→ ±i B̄µ, B̄ −→ ±iB̄, B̄ −→ ∓i B̄. (48)

Under the above discrete duality symmetry transformations, the coupled Lagrangian
densities L(b1)

and L(b2)
are found to remain invariant even with the fixed choice of signs

for the (pseudo-)scalar fields φ̃ and φ. Finally, in the next section, we shall take only the
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simplest choices of the signs for the (pseudo-)scalar fields within the framework of BRST
formalism where the Lagrangian density L(b1)

will be generalized to incorporate into it the
Faddeev–Popov ghost terms by following the standard technique [10,18,21].

6. Nilpotent (co-)BRST Invariant Lagrangian Density

We have generalized the Lagrangian densities L(b1)
and L(b2)

to their counterpart
nilpotent (anti-)BRST and (anti-)co-BRST invariant Lagrangian densities LB and LB̄ that
incorporate the Faddeev–Popov ghost terms. Such a set of coupled (but equivalent) La-
grangian densities have been written in our earlier works [10,21]. However, we shall focus
on only one Lagrangian density and discuss the importance of discrete duality symmetry
transformations (48) (and (54) below) which will connect the BRST transformations with the
co-BRST transformations and vice versa. This kind of connection exists for the anti-BRST
and anti-co-BRST symmetries, as well. However, we shall not dwell on the latter as it will
be only an academic exercise. We would like to emphasize that, in our earlier works [10,21],
such kinds of relationships have not been established where only the analogue of the Hodge
duality operator (i.e., the set of discrete duality symmetry transformations) play a decisive
role (along with the replacements: sb ⇔ sd). This observation is totally different from (60).

Towards the above goal in mind, we begin with the following (co-)BRST invariant
Lagrangian density7 (where L(b1)

−→ LB) (see, e.g., [9,10,21])

LB =
1
2
Bµ Bµ −Bµ

[1
2

εµνλξ ∂ν Bλξ + m φ̃µ −
1
2

∂µφ̃
]
− m2

4
Bµν Bµν

− 1
4

Φµν Φµν +
1
4

Φ̃µν Φ̃µν +
m
2

Bµν

[
Φµν +

1
2

εµνρσ Φ̃ρσ

]
+ Bµ

[
∂ν Bνµ + m φµ −

1
2

∂µ φ
]
− 1

2
Bµ Bµ + B

(
∂ · φ +

m
2

φ
)

+
1
2

B2 −B
(

∂ · φ̃ +
m
2

φ̃
)
− 1

2
B2 − 1

2
∂µ β̄ ∂µ β +

m2

2
β̄ β

− (∂µ C̄ν − ∂ν C̄µ) (∂
µ Cν) + (∂µ C̄−m C̄µ) (∂

µ C−m Cµ)

− 1
2

(
∂ · C̄ + m C̄ +

ρ

4

)
λ− 1

2

(
∂ · C + m C− λ

4

)
ρ, (49)

where (β̄) β are the bosonic (anti-)ghost fields with ghost numbers (− 2) + 2, respectively,
and (C̄µ)Cµ are the fermionic (C̄µ Cν + Cν C̄µ = 0, C̄µ C̄ν + C̄ν C̄µ = 0, C2

µ = C̄2
µ = 0,

etc.) (anti-)ghost fields with ghost numbers (− 1) + 1, respectively. In addition, we have
Lorentz scalar fermionic (C C̄ + C̄ C = 0, C2 = C̄2 = 0, etc.) (anti-)ghost fields with
ghost numbers (− 1) + 1, respectively. Our theory also contains the auxiliary fermionic
(ρ2 = λ2 = 0, ρ λ + λ ρ = 0) fields (ρ) λ that carry the ghost numbers (− 1) + 1,
respectively.

The above Lagrangian density respects the following off-shell nilpotent (s2
b = 0)

BRST symmetry transformations (sb), namely;

sb Bµν = − (∂µ Cν − ∂ν Cµ), sb Cµ = − ∂µ β, sbC̄µ = Bµ,

sb β̄ = − ρ, sb φµ = + (∂µC−m Cµ), sb C̄ = B, sb φ = + λ,

sb C = − m β, sb [Hµνλ, B, λ, ρ, Bµ, Bµ, β, B, φ̃µ, φ̃µν, φ̃] = 0, (50)

because the Lagrangian density LB transforms as [10]

sb LB = ∂µ

[
−m εµνλξ φ̃ν ∂λ Cξ − (∂µ Cν − ∂ν Cµ) Bν −

1
2

λ Bµ

+ B (∂µ C−m Cµ) +
1
2

ρ (∂µ β)
]
, (51)

which implies that the action integral S =
∫

d4 xLB remains invariant (i.e., sb S = 0)
under the infinitesimal, continuous, and nilpotent BRST transformations (50). This happens
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because of Gauss’s divergence theorem, due to which all the physical fields vanish off as
x −→ ±∞. In addition to sb, the Lagrangian density LB also respects the infinitesimal,
continuous, and nilpotent [s2

d = 0] co-BRST (i.e., dual-BRST) transformations (sd) [10]:

sd Bµν = − εµνλξ ∂λ C̄ξ , sd C̄µ = − ∂µ β̄, sd Cµ = Bµ,

sd β = − λ, sd φ̃µ = + (∂µ C̄−m C̄µ), sd C = B, sd C̄ = −m β̄,

sd φ̃ = − ρ, sd [∂
ν Bνµ, Bµ, Bµ, B, φµ, Φµν, φ, β̄, λ, ρ] = 0. (52)

It is straightforward to check that LB transforms, under (sd), as the total spacetime
derivative in the four (3 + 1)-dimensional (4D) spacetime, namely;

sd LB = ∂µ

[
−m εµνλξ φν ∂λ C̄ξ + (∂µ C̄ν − ∂ν C̄µ)Bν −

1
2

ρBµ

− (∂µ C̄−m C̄µ)B +
1
2

λ (∂µ β̄)
]
. (53)

As a consequence of the above observation, we find that the action integral S =
∫

d4 xLB
remains invariant (i.e., sd S = 0) under the co-BRST symmetry transformation sd for all the
physical fields that vanish off as x −→ ±∞.

In addition to discrete duality symmetry transformations (48) in the bosonic (i.e.,
non-ghost) sector of the Lagrangian density LB , we have the following discrete symmetry
transformations in the ghost-sector8:

Cµ −→ ±i C̄µ, C̄µ −→ ±i Cµ, C −→ ±i C̄, C̄ −→ ±i C,

ρ −→ ∓i λ, λ −→ ∓i ρ, β −→ ±i β̄, β̄ −→ ∓i β. (54)

Under the full discrete duality symmetry transformations (48) and (54), it can be
checked that the (co-)BRST symmetry transformations (32) and (50) are interconnected.
To corroborate this claim, let us begin with sb Bµν = − (∂µ Cν − ∂ν Cµ). If we apply the
discrete symmetry transformations (48) and (54) on it and take the replacement: sb −→ sd,
we obtain the following explicit relationship:

sb (∗ Bµν) = − ∗ (∂µ Cν − ∂ν Cµ) =⇒ sd Bµν = − εµνλξ ∂λ C̄ξ , (55)

where ∗ is nothing but the full discrete duality symmetry transformations (48) plus (54). In
other words, we have obtained the co-BRST symmetry transformation sd operating on Bµν

field from the operation of sb on Bµν. In an exactly similar fashion, we note the following
(with the replacement: sd −→ sb), for the transformations sd Bµν = − εµνλξ ∂ν C̄ξ , namely;

sd (∗ Bµν) = − ∗ εµνλξ (∂
λ C̄ξ) −→ sb Bµν = − (∂µ Cν − ∂ν Cµ), (56)

where, once again, the ∗ operation is nothing but the total discrete duality symmetry trans-
formations (48) plus (54). This observation is not limited only to the bosonic antisymmetric
tensor gauge field. To corroborate this assertion, let us focus on the symmetry transforma-
tion: sb φµ = + (∂µ C−m Cµ) on a bosonic vector field (φµ). By exploiting the strength of
the full discrete duality symmetry transformations (48) plus (54), we observe the following
transformations on the axial-vector field (with input: sb −→ sd), namely;

sb (∗ φµ) = + ∗ (∂µ C−m Cµ) =⇒ sd φ̃µ = + (∂µ C̄−m C̄µ). (57)

This happens because, under discrete duality symmetry transformations (48), we
have: φµ → ± i φ̃µ and φ̃µ → ∓ i φµ. In an exactly,similar fashion, we obtain the reciprocal
symmetry transformations as follows (with inputs: sd −→ sb and use of the discrete duality
symmetry transformations), namely;

sd (∗ φ̃µ) = + ∗ (∂µ C̄−m C̄µ) =⇒ sb φµ = + (∂µ C−m Cµ). (58)
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The above kind of exercise can be repeated with all the fields of our theory. We observe
that the discrete duality symmetry transformations (48) and (54) are the generalization of
our basic discrete duality symmetry transformations (Bµν −→ ∓ (i/2) εµνλξ Bλξ , φµ −→
± i φ̃µ, φ̃µ −→ ∓ i φµ) of the modified Stückelberg formalism (cf. Equations (9) and (10)).
To complete our present discussion, let us focus on a transformation on a fermionic field
sd C̄ = − m β̄. Using the strength of the discrete duality symmetry transformations (54),
we obtain the following (with the input: sd −→ sb), namely;

sd [∗ (C̄)] = − m ∗ β̄ =⇒ sb C = − m β. (59)

Thus, we are able to obtain the BRST symmetry transformation: sb C = − m β from
the co-BRST symmetry transformation: sd C̄ = − m β̄ by exploiting the strength of the
discrete duality symmetry transformations (54). Hence, our observation is true for fermionic
field, as well. It goes without saying that, repeating the same procedure, we can obtain:
sd C̄ = − m β̄ from the given BRST symmetry transformation: sb C = − m β. Thus, the
discrete duality symmetry transformations (48) plus (54) connect the BRST and co-BRST
transformations for the bosonic as well as the fermionic fields of our theory.

We end this section with the following remarks. First, the discrete duality symmetry
transformations (48) and (54) are able to provide a connection between the symmetry
transformations sb and sd. Second, it can be seen that the interplay of the discrete and
continuous symmetry transformations provides [10] the physical realization of δ = ±∗ d ∗
that exist [2–5] between the (co-)exterior derivatives ((δ)d) of differential geometry. This
interesting and beautiful relationship between sd and sb is9

sd = ± ∗ sb ∗, (60)

where ∗ is nothing but the complete set of discrete duality symmetry transformations (48)
and (54). Third, despite the above connections between the BRST and co-BRST symmetry
transformations in the language of the symmetry properties of our theory, these symmetries
are independent of each-other in the same manner as do the exterior (d) and co-exterior (δ)
derivatives of differential geometry [2–5] even though these derivatives are connected with
each other by the relationship: δ = ± ∗ d ∗. Finally, it can be seen that the exactly similar
kinds of relationships exist between the nilpotent anti-co-BRST symmetry and anti-BRST
symmetry transformations that exist for the Lagrangian density LB̄ (which turns out to be
the generalization of the Lagrangian density Lb2 (see e.g., [9,10] for details)).

7. Conclusions

The Stückelberg-modified massive 4D free Abelian 2-form theory has already been
proven to be a massive model of Hodge theory [10], where its discrete and continuous
symmetry transformations (and corresponding conserved charges) have been shown to
provide the physical realizations of the de Rham cohomological operators [2–5] of the
differential geometry at the algebraic level within the framework of BRST formalism [10].
However, the full coupled (but equivalent) Lagrangian densities of this theory have been
obtained by the trial and error method. In our present investigation, we have theoretically
derived the correct forms of the coupled (but equivalent) Lagrangian densities. To be precise,
we have concentrated only on the (co-)BRST invariant Lagrangian density (cf. Section 6)
for the sake of brevity but indicated the theoretical methodology for the derivation of the
coupled (but equivalent) Lagrangian densities that respect six continuous and a couple of
useful discrete duality symmetry transformations (see, e.g., [10]) within the framework of
BRST formalism. The above set of symmetries entail upon this model (i.e., the 4D massive
Abelian 2-form theory) to become a massive field-theoretic example of Hodge theory.

One of the key results of our present investigation is the modification (cf. Equations
(7) and (9)) of the Stückelberg formalism on the 4D flat Minkowskian spacetime manifold
where the ideas from the differential geometry have played very important roles. It has
been demonstrated that the modified SF remains form-invariant under the discrete duality
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symmetry transformations (cf. Equation (10)), whose generalizations (cf. Equations (48)
and (54)), within the realm of BRST formalism, provide the physical realizations of the
Hodge duality ∗ operator of the differential geometry. As the gauge-fixed Lagrangian
density (29) remains invariant under the discrete duality symmetry transformations (10),
in an exactly similar fashion, the (co-)BRST invariant Lagrangian density (49) remains
invariant under the generalization of the discrete duality symmetry transformations (cf.
Equation (10)): (i) to Equation (48) in the non-ghost sector and (ii) to Equation (54) in the
ghost-sector of the Lagrangian density (49). In addition, we have been able to establish a
direct connection between the BRST and co-BRST symmetry transformations (i.e., sb ↔ sd)
due to the existence of the discrete duality symmetry transformations (48) and (54), which
is a novel result in our present investigation. The latter symmetry transformations (sb and
sd) also play an important role [10] in providing the analogue of relationship: δ = ± ∗ d ∗
in the terminology of nilpotent symmetry transformations of our present massive 4D theory
(cf. Equation (60)).

It is worthwhile to mention that the modified SF (cf. Equation (9)) is invariant under
the discrete duality symmetry transformations (10), and they lead to the combination of
the polar vector and axial-vector fields (φµ and φ̃µ) in the form: ∂µ φν − ∂ν φµ + εµνλξ ∂λ φ̃ξ .
Exactly the same combination has been taken by Zwanziger [22] in the description of the
(electromagnetic global duality invariant) 4D Maxwell theory of electrodynamics with
double potentials with the field strength tensor as: Fµν = ∂µ Vν − ∂ν Vµ + εµνλξ ∂λ Aξ ,
where Vµ and Aµ are the polar vector and axial-vector potentials, respectively. We have
discussed the local duality invariance [23] of the Maxwell theory with these potentials and
shown the existence of an axial photon which mediates the spin-spin universal long-range
interaction (see, e.g., [23,24] for details). However, we have not discussed the applications
of the axial-vector potential Aµ in the context of dark energy/dark matter. On the contrary,
a close and careful look at the Lagrangian densities (31) and (32) demonstrates that the
fields φ̃µ and φ̃ turn up with negative kinetic terms in our theory, which are interesting
in the sense that they belong to a class of exotic fields that are supposed to be one of
the possible set of candidates for the dark matter/dark energy [19,20] and the “phantom”
and/or “ghost” fields in the context of the modern developments in the cyclic, bouncing
and self-accelerated cosmological models of the Universe [13–15], which take care of the
modern experimental observation of the accelerated expansion of the Universe.

In a set of very nice works [25–27], the Stückelberg-modified (SUSY) quantum elec-
trodynamics and other aspects of the (non-)interacting Abelian gauge theories have been
considered, where an ultralight dark matter candidate has been proposed (and the Stückel-
berg boson has been able to cure the infrared problem in QED). It will be an interesting idea
to apply our BRST approach to the examples that have been considered in [25–27]. Further-
more, we have already established that the 6D Abelian 3-form gauge theory is a model of
Hodge theory within the ambit of BRST formalism [9]. It will be a nice future endeavor to
extend our understandings of the 2D Stückelberg-modified Proca (i.e., the massive Abelian
1-form) theory [8] as well as our present work (on the Stückelberg-modified massive 4D
free Abelian 2-form theory) to study the Stückelberg-modified massive 6D Abelian 3-form
theory within the framework of BRST formalism. In a very recent work [28], a prototype
system of first-class constraints and various kinds of BRST-type symmetries and their
relationships have been established. It will be interesting to see weather the brand-new
BRST-type symmetries (that have been pointed out in [28]) can be accommodated within
the framework of field-theoretic models of Hodge theory. We are involved with these ideas
at present, and we shall report on our progress elsewhere in our future publication(s).
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Appendix A. On Modified 2D Proca Theory

For our present paper to be self-contained, we dwell a bit on the free massive 2D
Abelian 1-form (i.e., Proca) theory, which has been at the heart of our present investigation
on the free massive 4D Abelian 2-form theory. We start off with the Proca Lagrangian density
[L(P)] for a vector boson (Aµ) with rest mass m as follows (see, e.g., [17])

L(P) = − 1
4

Fµν Fµν +
m2

2
Aµ Aµ, (A1)

where the 2-form F(2) = d A(1) = [(d xµ ∧ d xν)/2!] Fµν defines the field strength tensor:
Fµν = ∂µ Aν − ∂ν Aµ for the vector field Aµ that is defined through an Abelian 1-form
(A(1) = d xµ Aµ). Here the symbol d = d xµ ∂µ (with d2 = 0) stands for the exterior
derivative of differential geometry [2–5]. The standard Stückelberg formalism (valid in any
arbitrary D-dimensional spacetime) is modified in the 2D case as (see, e.g., [8] for details)

Aµ −→ Aµ ∓
1
m

(∂µφ + εµν ∂ν φ̃), (A2)

where φ is a pure-scalar field, and φ̃ is a pseudo-scalar field in 2D spacetime, which is
endowed with the Levi–Civita tensor εµν (with ε01 = ε10 = + 1, εµν εµν = − 2!, εµν εµρ =

− 1! δ
ρ
ν , E = − εµν ∂µ Aν = F01, etc.). It can be readily checked that the modified 2D

Stückelberg formalism is invariant under the discrete symmetry transformations: Aµ →
∓ i εµν Aν, φ → ∓ i φ̃, φ̃ → ∓ i φ which play a very important role in establishing a
relationship with the Hodge duality ∗ operator of the differential geometry (see, e.g., [8]).

We observe that, under the modified Stückelberg formalism (A2), the field-strength
tensor transforms as (see, e.g., [8])

Fµν −→ Fµν ∓
1
m

(ενρ ∂µ − εµρ ∂ν) (∂
ρ φ̃). (A3)

We can introduce a notation Σµν = (εµρ ∂ν − ενρ ∂µ) (∂ρ φ̃) to re-express the above
transformation for the field strength tensor as follows

Fµν −→ Fµν ±
1
m

Σµν, (A4)

which leads to the following transformation for the kinetic term (− (1/4) Fµν Fµν) of the
Proca (i.e., massive Abelian 1-form) theory, namely;

− 1
4

Fµν Fµν −→ −
1
4

Fµν Fµν ∓
1

2 m
Fµν Σµν −

1
4 m2 Σµν Σµν. (A5)

It is straightforward to note that the second and third terms, on the r.h.s. of (A5), are
higher order derivative terms for a 2D theory of a vector boson. This is due to the fact that
there are three and four derivatives in the second and third terms, respectively. This is clear
from the transformation for the field strength tensor (cf. Equation (A5)) under (A2) .
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We can remove the higher derivative terms by exploiting the on-shell conditions:
∂µ Fµν + m2 Aν = 0 and (�+ m2) φ̃ = 0. The latter implies that the on-shell condition
(�+ m2) ∂µ φ̃ = 0 is also true. The second term, on the r.h.s. of (A5), can be explicitly
expressed as follows:

∓ 1
2 m

Fµν (εµρ ∂ν − ενρ ∂µ) (∂
ρ φ̃). (A6)

Dropping the total spacetime derivative terms, we note that we have the following
explicit form of (A6), namely;

± 1
2 m

(∂ν Fµν) εµρ (∂
ρ φ̃)∓ 1

2 m
(∂µ Fµν) ενρ (∂

ρ φ̃), (A7)

where both the terms are equal, and they lead to the following (due to the use of E =
− εµν ∂µ Aν and on-shell condition: ∂µ Fµν = − m2 Aν), namely;

± m Aν ενρ ∂ρ φ̃ ≡ ± ερν (∂ρ Aν) φ̃ ≡ ∓m E φ̃. (A8)

In the above, we have dropped a total spacetime derivative term (as it is a part of the
Lagrangian density , and its presence does not change the dynamics of our 2D Stückelberg-
modified Proca theory with φ and φ̃ as the compensating fields).

We concentrate now on the third term (with four derivatives) on the r.h.s. of Equation (A5),
which is explicitly expressed as:

− 1
4 m2 Σµν Σµν = − 1

4 m2 [(εµρ ∂ν − ενρ ∂µ) (∂ρ φ̃)] [(εµσ ∂ν − ενσ ∂µ) (∂
σ φ̃). (A9)

The above expression, belonging to the Lagrangian density, leads to the following
expression (modulo the total spacetime derivatives), namely;

− 2
4 m2 [εµρ ∂ν (∂ρ φ̃) εµσ ∂ν (∂

σ φ̃)] ≡ 1
2 m2 ∂ν (∂σ φ̃)∂ν (∂

σ φ̃), (A10)

where we have used εµρ εµσ = − δ
ρ
σ. Dropping, once again, the total spacetime derivative

term, we obtain the following:

1
2

∂µ φ̃ ∂µ φ̃ ≡ +
1
2

m2 φ̃2, (A11)

where we have used the on-shell conditions: (�+ m2) ∂σ φ̃ = 0, (�+ m2) φ̃ = 0. Since
the field-strength tensor Fµν has only one non-vanishing component in 2D (which is nothing
but the pseudo-scalar electric field E = F01 = − εµν ∂µ Aν), we note that the explicit
form of (A5), with the help of (A8) and (A11), is as follows:

− 1
4

Fµν Fµν −→ 1
2

E2 ∓ m E φ̃ +
1
2

m2 φ̃2 ≡ 1
2
(E ∓ m φ̃)2, (A12)

which has been derived in a different manner in our earlier work [8]. It is straightforward
to note that the mass term of (A1) transforms, under the redefinition (A2), as follows

m2

2 Aµ Aµ −→ m2

2 Aµ Aµ ∓m Aµ ∂µ φ + 1
2 ∂µ φ ∂µ φ

− 1
2 ∂µ φ̃ ∂µ φ̃±m E φ̃,

(A13)

modulo some total spacetime derivative terms. Here, we have used E = − εµν ∂µ Aν.
Thus, the total Lagrangian density for the modified version of 2D Proca theory is

L(2D)
(P) = 1

2 (E∓m φ̃)
2 ±m E φ̃− 1

2 ∂µ φ̃ ∂µ φ̃ + m2

2 Aµ Aµ

∓m Aµ ∂µ φ + 1
2 ∂µ φ ∂µ φ,

(A14)
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which has been taken into account in our earlier works [8,11]. It is important to point out
that the kinetic terms of the pure-scalar and pseudo-scalar fields have positive and negative
signs, respectively. The latter (i.e., the pseudo-scalar) field is interesting from the point
of view of the fact that it provides a possible candidate for the dark matter/dark energy.
Such exotic fields are also useful in the context of cyclic, bouncing and self-accelerated
cosmological models of the Universe [13–15], where these (i.e., fields with negative kinetic
terms) have been called “phantom” and/or “ghost” fields.

We end this Appendix with the final comment that one can add the gauge-fixing term
(Lg f ) to the above Lagrangian density (A14) in the ’t Hooft gauge as follows [17]:

L(2D)
(S) + L(g f ) = 1

2 (E∓m φ̃)
2 ±m E φ̃− 1

2 ∂µ φ̃ ∂µ φ̃ + m2

2 Aµ Aµ

∓ Aµ ∂µ φ + 1
2 ∂µ φ ∂µ φ− 1

2 (∂ · A±m φ)2,
(A15)

which respects the discrete duality symmetry transformations on the basic fields of the
theory as: Aµ → ∓ i εµν Aν, φ→ ∓ i φ̃, φ̃→ ∓ i φ. The Lagrangian density (A15) has been
taken into account for the BRST analysis in our earlier works [8,11], where we have proven
that the modified 2D Proca theory is a field-theoretic example for the Hodge theory.

Appendix B. On the Generalized Nilpotent (co-)BRST Symmetries and Uniqueness of
the Lagrangian Density

The central purpose of our present Appendix is to generalize the classical (dual-)gauge
symmetry transformations (37) and (35), respectively, to their counterpart quantum (co-)
BRST symmetry transformations for the appropriate generalized form of the (co-)BRST
invariant Lagrangian density (which is more general than the Lagrangian density (49)).
First of all, we generalize the classical gauge symmetry transformations (35) to the following
off-shell nilpotent (s2

b = 0) quantum BRST symmetry transformations, namely;

sb Bµν = − (∂µ Cν − ∂ν Cµ), sb Cµ = − ∂µ β, sb C̄µ = Bµ,
sb φµ = ± (∂µC−m Cµ), sb C = − m β, sb C̄ = B,

sb Φµν = ∓ m (∂µ Cν − ∂ν Cµ) sb φ = ± λ, sb β̄ = ∓ ρ,
sb [Hµνλ, ρ, λ, β, Bµ, Bµ, B, φ̃, φ̃µ, Φ̃µν] = 0,

(A16)

which transform the following generalized (co-)BRST invariant Lagrangian density (L(g)
B ),

with appropriate (±) signs, namely;

L(g)
B = 1

2 Bµ Bµ −Bµ
[

1
2 εµνλξ (∂

ν Bλξ) + m φ̃µ − 1
2 ∂µφ̃

]
− m2

4 Bµν Bµν

− 1
4 Φµν Φµν + 1

4 Φ̃µν Φ̃µν ± m
2 Bµν

[
Φµν + 1

2 εµνλξ Φ̃λξ

]
+Bµ

[
(∂ν Bνµ) + m φµ − 1

2 ∂µ φ
]
− 1

2 Bµ Bµ + B
(

∂ · φ + m
2 φ
)

+ 1
2 B2 −B

(
∂ · φ̃ + m

2 φ̃
)
− 1

2 B2 − 1
2 ∂µ β̄ ∂µ β + m2

2 β̄ β

−(∂µ C̄ν − ∂ν C̄µ) (∂µ Cν)± (∂µ C̄−m C̄µ) (∂µ C−m Cµ)

∓ 1
2

(
∂ · C̄ + m C̄ + ρ

4

)
λ∓ 1

2

(
∂ · C + m C− λ

4

)
ρ,

(A17)

to the total spacetime derivative on the 4D Minkowskian spacetime manifold, as:

sb L
(g)
B = ∂µ

[
∓m εµνλξ φ̃ν ∂λ Cξ − (∂µ Cν − ∂ν Cµ) Bν ∓ 1

2 λ Bµ

± B (∂µ C−m Cµ)± 1
2 ρ (∂µ β)

]
.

(A18)

Here, the superscript (g) on the Lagrangian density [L(g)
B ] denotes the generalized

form of the Lagrangian density (49), where (±) signs are present at appropriate places.
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However, we shall see that it is the latter Lagrangian density that satisfies all the essential
features.

As a consequence of the above observation in (A18), it is clear that the action integral
S =

∫
d4xL(g)

B remains invariant (sb S = 0) under the infinitesimal, continuous, and
off-shell nilpotent (s2

b = 0) BRST transformations (A16). A noteworthy point, at this
juncture, is the observation that (±) signs, associated with (±m φ̃µ, ±m φµ) in the kinetic
term and gauge-fixing term, respectively, have been changed to (+m φ̃µ, +m φµ) because
only this choice of sign is allowed by the (co-)BRST transformations (A19) (see below)
and (A16), respectively. This generalized Lagrangian density (L(g)

B ) also respects a set of
off-shell nilpotent (s2

d = 0) dual-BRST (i.e., co-BRST) symmetry transformations (sd), as
follows

sd Bµν = − εµνλξ ∂λ C̄ξ , sd C̄µ = − ∂µ β̄, sd Cµ = Bµ,
sd φ̃ = ∓ ρ, sd φ̃µ = ± (∂µ C̄−m C̄µ),

sd β = ∓ λ, sd C = B, sd C̄ = −m β̄,
sd [(∂

ν Bνµ), Bµ, Bµ, B, φ, φµ, Φµν, β̄, λ, ρ] = 0,

(A19)

because L(g)
B transforms to a total spacetime derivative in 4D as follows:

sd L
(g)
B = ∂µ

[
∓m εµνλξ φν ∂λ C̄ξ + (∂µ C̄ν − ∂ν C̄µ)Bν ∓ 1

2 ρBµ

∓B(∂µ C̄−m C̄µ)± 1
2 λ (∂µ β̄)

]
.

(A20)

As a consequence, it is crystal clear that the infinitesimal, continuous and off-shell
nilpotent (s2

d = 0) co-BRST transformations (A19) are the symmetry transformations for the

action integral S =
∫

d4xL(g)
B due to the validity of the Gauss divergence theorem.

We comment on the fact that the modified SF (cf. Equation (9)) and Lagrangian density
(cf. Equations (49) and (A17)) remain invariant under the discrete duality symmetry
transformations (cf. Equations (48) and (54)) at the quantum level. Furthermore, these
latter discrete symmetry transformations provide a connection between the BRST symmetry
transformations (A16) and the co-BRST symmetry transformations (A19) in exactly the same
manner as we have discussed such kind of relationship in the simpler case of Lagrangian
density (49) in Section 6. To take a simple example, let us focus on sb φ = ± λ. If we
take the input sb → sd and the discrete symmetry transformations: φ −→ ± i φ̃, λ −→ ∓ i ρ
(cf. Equations (48) and (54)), we obtain sd φ̃ = ∓ ρ from sb φ = ± λ. This reciprocal
relationship, it can be readily checked, is also true where we obtain sb φ = ± λ from
sd φ̃ = ∓ ρ if we take into account: sd → sb and the discrete symmetry transformations
(48) and (54) together. In addition, we find that the algebraic relationship (cf. Equation (60))
is also satisfied by the (co-)BRST symmetry transformations (A19) and (A16), respectively.
Corresponding to this observations, there is also an existence of the reciprocal relationship:
sb = − [± ∗ sd∗] where the symbols carry their standard meanings. Thus, we find that,
as far as symmetry properties are concerned, we have obtained a generalized versions in
(A16) and (A19), which are the symmetry transformations for the generalized version of
the Lagrangian density L(g)

B [cf. Equation (A17)].
Despite the fact that we have the existence of (i) the generalized form of the Lagrangian

density (L(g)
B ) and (ii) the generalized versions of the (co-)BRST symmetry transformations

(A19) and (A16), respectively, we find that the equations of motion for the fermionic Lorentz
vector (anti-)ghost fields do not obey the normal Klein–Gordon equations: (�+m2) C̄µ = 0
and (�+ m2)Cµ = 0. However, it is interesting and gratifying to state that the Lagrangian
density (49) respects (i) the (co-)BRST symmetry transformations (52) and (50), and (ii) the
existence of the EL-EoMs: (�+ m2) C̄µ = 0 and (�+ m2)Cµ = 0 is also true provided we
also use the EoMs w.r.t. the auxiliary fermionic fields λ and ρ. Thus, the Lagrangian density
(49) is unique in the sense that all its terms carry a definite sign which cannot be altered in any
manner [10]. As a consequence, the form of the (co-)BRST symmetry transformations (52)
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and (50) will also not change. It also respects the discrete duality symmetry transformations
(48) plus (54). Similarly, one can have a Lagrangian density (cf. e.g., [10] for details)
which respects the anti-BRST and anti-co-BRST symmetry transformations along with
the discrete duality symmetry transformations (48) plus (54). Thus, we conclude that the
Lagrangian density (49), which respects a set of six continuous and a couple of discrete
duality symmetry transformations, is unique, and its symmetries and conserved charges
provide the physical realizations of the de Rham cohomological operators of differential
geometry at the algebraic level. Hence, as it turns out, the Stückelberg-modified massive
4D Abelian 2-form free theory becomes a tractable field-theoretic example for Hodge
theory [10], which requires the incorporation of a set of exotic new fields with negative
kinetic terms (but with a well-defined rest mass). The latter fields are found to be a set of
possible candidates for the dark matter [19,20], and they also play crucial roles in explaining
some of the theoretical issues connected with the cyclic, bouncing, and self-accelerated
cosmological models of the Universe (see, e.g., [13–15]).

Notes
1 We assume that the parity symmetry is respected in our discussion on the massive 4D Abelian 2-form theory (unlike the parity

violation in the context of theoretical description of the weak interactions).
2 It can be seen that the equation of motion ∂α Φ̃αβ + m2φ̃β = 0 implies that ∂ · φ̃ = 0 for m2 6= 0 due to the antisymmetric

(Φ̃αβ = − Φ̃βα) property of the Φ̃αβ. As a consequence, we obtain (�+ m2) φ̃β = 0. We shall see that this EL-EoM emerges
out from the properly gauge-fixed final Lagrangian density (29). It is interesting to point out the EL-EoMs: (�+ m2) φ̃µ = 0 and
∂ν Φ̃νµ + m2φ̃µ = 0 are equivalent to each other as are the EL-EoMs for the antisymmetric tensor field Bµν: (�+ m2) Bµν = 0
and ∂λ Hλµν + m2 Bµν = 0.

3 It is worthwhile to mention here that the kinetic terms for the φµ and φ̃µ fields have a relative sign difference. In other words, one
of the above fields has a negative kinetic ter,m which is interesting.

4 The gauge-fixing term of our Equation (30), with a pure scalar field φ, can be found in the book by: M. Henneaux, C. Teitelboim,
Quantization of Gauge Systems, Princeton University Press, Princeton, 1992. However, the nilpotent (anti-)BRST symmetries,
discussed in this book, are not absolutely anticommuting in nature (see, e.g., [18] for details). The anticommuting property (i.e.,
one of the crucial requirements of the BRST formalism) is satisfied only up to a U(1) gauge symmetry transformation.

5 We lay emphases on the fact that the axial-vector field (φ̃µ) and pseudo-scalar field (φ̃) possess negative kinetic terms. However,
they satisfy the proper Klein–Gordon equation. Hence, these fields correspond to the exotic relativistic particles with well-defined
rest mass. As a consequence, they are the possible candidates of dark matter [19,20] and they are also similar to the “phantom”
and/or “ghost” fields in the realm of cosmology [13–15].

6 We stress the fact that the discrete duality symmetry transformations (33) and the Euler–Lagrange equations of motion (34) are
true for both the Lagrangian densities L(1) and L(2) (cf. Equations (31) and (32)).

7 For the sake of brevity, we have taken only one specific sign in the kinetic energy and gauge-fixing terms for the Bµν and associated
fields. This is true for the (anti-)ghost fields, as well. In our Appendix B, we take the most general form of the (co-)BRST invariant
Lagrangian density, which respects the generalized forms of (co-)BRST symmetry transformations corresponding to classical
transformations (37) and (35).

8 It can be readily checked that the Faddeev–Popov ghost part of the Lagrangian density LB remains invariant under a couple of
discrete symmetry transformations hidden in Equation (54).

9 The (±) signs on the r.h.s. of (60) are dictated by the successive operations of the discrete duality symmetry transformations (48)
and (54) on the generic field: Φ = Bµν, φµ, φ̃µ, Cµ, C̄µ, φ, φ̃,, etc. In other words, the signs on the r.h.s. of ∗ (∗Φ) = ± Φ
dictate the signs of Equation (60) (see, e.g., [5,10]).
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