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Abstract: A new dynamical paradigm merging quantum dynamics with cosmology is discussed. We
distinguish between a universe and its background space-time. The universe here is the subset of
space-time defined by Ψτ(x) 6= 0, where Ψτ(x) is a solution of a Schrödinger equation, x is a point in
n-dimensional Minkowski space, and τ ≥ 0 is a dimensionless ‘cosmic-time’ evolution parameter. We
derive the form of the Schrödinger equation and show that an empty universe is described by a Ψτ(x)
that propagates towards the future inside some future-cone V+. The resulting dynamical semigroup
is unitary, i.e.,

∫
V+

d4x|Ψτ(x)|2 = 1 for τ ≥ 0. The initial condition Ψ0(x) is not localized at x = 0.
Rather, it satisfies the boundary condition Ψ0(x) = 0 for x 6∈ V+. For n = 1 + 3 the support of Ψτ(x)
is bounded from the past by the ‘gap hyperboloid’ `2√τ = c2t2− x2, where ` is a fundamental length.
Consequently, the points located between the hyperboloid and the light cone c2t2 − x2 = 0 satisfy
Ψτ(x) = 0, and thus do not belong to the universe. As τ grows, the gap between the support of
Ψτ(x) and the light cone increases. The past thus literally disappears. Unitarity of the dynamical
semigroup implies that the universe becomes localized in a finite-thickness future-neighbourhood
of `2√τ = c2t2 − x2, simultaneously spreading along the hyperboloid. Effectively, for large τ the
subset occupied by the universe resembles a part of the gap hyperboloid itself, but its thickness ∆τ is
non-zero for finite τ. Finite ∆τ implies that the three-dimensional volume of the universe is finite
as well. An approximate radius of the universe, rτ , grows with τ due to ∆τr3

τ = ∆0r3
0 and ∆τ → 0.

The propagation of Ψτ(x) through space-time matches an intuitive picture of the passage of time.
What we regard as the Minkowski-space classical time can be identified with ctτ =

∫
d4x x0|Ψτ(x)|2,

so tτ grows with τ as a consequence of the Ehrenfest theorem, and its present uncertainty can be
identified with the Planck time. Assuming that at present values of τ (corresponding to 13–14 billion
years) ∆τ and rτ are of the order of the Planck length and the Hubble radius, we estimate that the
analogous thickness ∆0 of the support of Ψ0(x) is of the order of 1 AU, and r3

0 ∼ (ctH)3 × 10−44.
The estimates imply that the initial volume of the universe was finite and its uncertainty in time
was several minutes. Next, we generalize the formalism in a way that incorporates interactions with
matter. We are guided by the correspondence principle with quantum mechanics, which should be
asymptotically reconstructed for the present values of τ. We argue that Hamiltonians corresponding
to the present values of τ approximately describe quantum mechanics in a conformally Minkowskian
space-time. The conformal factor is directly related to |Ψτ(x)|2. As a by-product of the construction,
we arrive at a new formulation of conformal invariance of m 6= 0 fields.

Keywords: time; cosmology; Milne universe; wave function; quantum dynamics

1. Passage of Time as a Physical Problem

We are taught very early in our education that dynamics in space is equivalent to
statics in space-time. As children, we generally have no difficulty with the idea that a
one-dimensional motion can be represented by a motionless graph (t, xt). The paradigm is
easily explainable by the metaphor of a filmstrip, where each moment of time t corresponds
to a still frame xt. In a sense, dynamics is not needed in physics.
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On the other hand, it would be difficult to find a physical phenomenon whose nature
would be experienced by us as directly, as suggestively, and often as dramatically as the
passage of time.

The formalism of invariant-time quantum mechanics partly addresses this issue [1–9].
Here, one begins with the family of wave functions, Ψτ(x), defined on (1+3)-dimensional
Minkowski space (or its generalizations [10,11] ), and satisfying a Schrödinger-type equation

iΨ̇τ = H Ψτ , Ψτ = Uτ−τ0 Ψτ0 . (1)

The normalization is
∫

d4x|Ψτ(x)|2 = 1. The resulting dynamics is no longer an
equivalent of statics in four dimensions. However, does it really match our intuition of the
passage of time, where the past is disappearing and the future has not yet happened?

Therefore, consider the following sequence of syllogisms:
An event cannot happen if its probability is zero. The probability of x is zero if

|Ψτ(x)|2 = 0. An event that could happen at τ1 disappears at τ2 if Ψτ1(x) 6= 0 evolves into
Ψτ2(x) = 0. Ψτ(x) describes the passage of time if its support is restricted from the past by
a space-like hypersurface propagating towards the future.

The above postulates should be supplemented by the asymptotic one: For times of the
order of 13–14 billion years since the origin of the cosmic evolution the support of Ψτ(x)
should be ‘practically’ indistinguishable from a space-like hyperplane, at least locally (say,
at the galaxy scale).

We will therefore define a universe as a collection of those events x in Minkowski space
M that satisfy Ψτ(x) 6= 0 for a certain solution to (1), for some H . We will determine H by
the condition that for very large τ the probability density |Ψτ(x)|2 will be concentrated in a
neighbourhood of a hyperbolic subspace ofM. This subspace will propagate inM towards
the future. For smaller τ, instead of a space-like hyperboloid, what we find is a finite-
thickness n-dimensional quantum membrane propagating through the Minkowski space
of the same dimension. The membrane simultaneously spreads along space-like directions
and shrinks along the time-like ones. The two processes balance each other, making the
dynamics unitary. Asymptotically, for large cosmic times, the dynamics becomes similar to
Dirac’s point form [12].

Notice that we speak here of a neighbourhood of the hyperbolic subspace, and not just
the hyperbolic subspace itself. What it means is that the asymptotic (empty) universe is an n-
dimensional subset of the n-dimensionalM, and not its (n− 1)-dimensional submanifold.
Our membrane resembles a true material membrane of finite thickness, and not just its
idealized (n− 1)-dimensional mathematical representation.

The choice of hyperbolic geometry is motivated by reasons of symmetry, isotropy, un-
boundedness, and homogeneity of the asymptotic universe. Regarded as (n− 1)-dimensional
manifolds, hyperbolic spaces are isotropic homogeneous spaces of constant negative
curvature [13]. For n = 4 they are examples of spatial sections of a Robertson–Walker
space-time [14]. Alternatively, they are spatial sections of a Milne universe [15–25]. Hyper-
bolic spaces are natural candidates for universes that are either completely empty, or filled
with test matter (identified by Milne with galaxies). In particular, a universe filled with
several interacting atoms could be described by a hyperbolic space.

The classical Kepler problem was solved in three-dimensional hyperbolic space in [26].
Kepler’s problem is apparently also the first quantum problem solved in hyperbolic
space [27,28]. A quantum mechanical harmonic oscillator on various spaces of constant
curvature is another example [29]. Eigenfunction expansions on hyperboloids and cones
of various metric signatures can be found in [30], whereas the special case of n = 1 + 3
appeared in [31], and in more complete forms in [32,33]. A more recent study can be found
in [34,35].

It is known that the Milne model fits observational data for Type Ia supernovae just
as well as the ΛCDM model [36,37], at least when one considers the Hubble diagram for
distance modulus vs. redshift [21,22]. The differences between ΛCDM and Milne’s models
become visible if one switches to a ‘model-independent’ scale factor vs. cosmological time
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plots [22,38], but one should bear in mind that the notion of ‘model-independence’ is
referred to here as specific class of models which do not include the formalism discussed in
the present paper. Therefore, we withhold for the time being a final opinion on the possible
agreement or disagreement of our model with the observational data.

A more technical and detailed outline of the construction is given in the next Section.
An example of n = 1 + 1 illustrates our main intuitions. Section 3 is central to the paper.
The construction of Uτ = e−iτH0 is given there step by step. Section 4 plays a role of cross-
checking the construction from Section 3. Section 5 is devoted to the spectral properties of
H0. Sections 6–8 deal with various properties of the universe which we identify with the
support of Ψτ(x), a solution of the Schrödinger equation.

A very preliminary analysis of such dynamics for n = 1 + 1 can be found in [39].
A disadvantage of the approach from [39] was that it crucially depended on the properties
of (1 + 1)-dimensional Minkowski space, treated as a toy model. The new formalism is
independent of the background space dimension.

In Section 9, we begin discussion of matter fields and justify the form of the total
Schrödinger-picture Hamiltonian. In particular, we point out that what we regard as a
matter-field total Hamiltonian in our present-day universe is essentially an interaction
Hamiltonian. In Section 10, we discuss the link between the averaged-over-reservoir in-
teraction Hamiltonian and the resulting effective geometry of the universe. The geometry
depends on the initial condition for Ψτ(x) and is encoded in the structure of the spinor
covariant derivative. We argue in Section 11 that the most natural choice of the derivative
is the one with non-vanishing torsion. We compare our construction with the classic results
of Penrose on torsion and complex conformal transformations. As a by-product we arrive
at a connection that leads to a new perspective on the old problem of conformal invariance
of massive fields. These ideas are explicitly checked on the example of the Dirac equation
in Section 12.

In Section 13, we conclude the paper by a simple toy-model analysis performed in
1 + 1 dimensions. All the essential elements of the construction can be followed once again
step by step.

The last section summarizes our assumptions and intuitions, both physical and mathe-
matical, and outlines possibilities of further generalizations of the formalism.

2. Outline of the Construction

Consider the Minkowski space M in n dimensions with the metric of signature
(+,−, . . . ,−). We are basically interested in the physical case n = 1 + 3, but n = 1 + 1 is
often needed for graphical illustrations of the construction. Consider an arbitrary Xµ ∈ M
and its future-cone V̄+ ⊂ M, i.e., xµ ∈ V̄+ if xµ − Xµ is future-pointing and time-like or
null. The interior of V̄+ is denoted by V+, so ∂V+ = V̄+ \V+ is the future light-cone of Xµ.
In what follows, we simplify notation by setting Xµ = 0, but bear in mind that the origin is
in fact arbitrary and subject to a Poincaré transformation. Therefore, the Poincaré group
(as well as its unitary representations) is implicitly present as a symmetry group of the
background Minkowski space.

We will concentrate on the Hilbert space of square-integrable functionsM 3 xµ 7→
Ψ(x) ∈ C, which are assumed to vanish if x0 → ∞, and if xµ ∈ M \ V+. Notice that the
wave functions vanish on the boundary ∂V+, so the arguments of Ψ(x) are effectively
future-time-like. The scalar product is

〈 f |g〉 =
∫
M

dnx f (x)g(x) =
∫

V+

dnx f (x)g(x). (2)

For xµ ∈ V̄+ we denote x2 = xµxµ = (x0)
2 − (x1)

2 − · · · − (xn−1)
2. The boundary

condition means that we consider wave functions that vanish for xµxµ ≤ 0, and for
xµxµ > 0 but belonging to the past cone x0 < 0.

Our goal is to construct a unitary dynamics Ψτ(x) = Uτ−τ0 Ψτ0(x), fulfilling the
following two requirements:
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(1) Z = maxx{|Ψτ(x)|2} = maxx{|Ψτ0(x)|2} for any τ, τ0. The condition means that
Z is the maximal value of |Ψτ(x)|2, which is both relativistically and dynamically
invariant. In a wider perspective, such a Z will play a role of a renormalization
constant, while |Ψτ(x)|2/Z will be a cutoff function whose support defines the
region of space-time that will be identified with the universe itself. So, the universe is
a τ-dependent subset of the background Minkowski space.

(2) For τ → ∞ the support of |Ψτ(x)|2 becomes concentrated in a neighbourhood of a
proper-time hyperboloid a2

τ = xµxµ, for some aτ , limτ→∞ aτ = ∞. We will make the
condition mathematically precise later; the basic intuition behind it is that, for large
times, the probability density on space-time is concentrated in a neighbourhood of
a space-like surface propagating towards the future. The propagating support of
|Ψτ(x)|2 behaves as if it scanned V+ by a space-like effective foliation of a finite but
decreasing in τ time-like thickness ∆τ , limτ→∞ ∆τ = 0. The latter, when combined
with Z = constant, implies that |Ψτ(x)|2 spreads along space-like directions, a prop-
erty we interpret as expansion of our universe. More precisely, this will be one of
the manifestations of the expansion, not necessarily the observable one. In effect,
the asymptotic dynamics becomes analogous to Dirac’s point-form one [12].

The assumptions will lead to the semigroup [40]

Ψτ(x) = Ψτ0

((
xn − (aτ)n + (aτ0)

n

xn

)1/n

x

)
(3)

= e−i((aτ)n−(aτ0 )
n)H0/`n

Ψτ0(x), (4)

for (aτ)n − (aτ0)
n < xn, and

Ψτ(x) = 0, (5)

for 0 ≤ xn ≤ (aτ)n − (aτ0)
n,

H0 = − `n

nxn xµ i∂µ = −i`n ∂

∂(xn)
, (6)

where ` is a constant (the Planck length, say). Formula (4) shows that the parameter that
plays a role of ‘quantum time’ is here given by (aτ)n. It is most natural (and simplest) to
work with

(aτ)
n = `nτ, (7)

H0 = VµPµ, (8)

Vµ =
`n−1

nxn xµ, ∂µVµ(x) = 0, (9)

Pµ = −i`∂µ, (10)

Ψτ(x) = Ψτ0

((
xn − `nτ + `nτ0

xn

)1/n
x

)
(11)

= e−i(τ−τ0)H0 Ψτ0(x), (12)

The parameter τ is then dimensionless and non-negative. The Hamiltonian H0 is
dimensionless as well.

Hamiltonian H0 is, up to the denominator, a dilatation operator, which is not that
surprising in the context of cosmology [41]. It is clear that, due to the distinguished role
played by dilatations, the resulting formalism has formal similarities to Klauder’s affine
quantization [42–44]. More importantly, H0 generates translations in the nth power of x,
a fact explaining why the dynamics involves a unitary representation of a semigroup of
translations in R+.
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As opposed to algebraic quantization paradigms (canonical, affine, etc.) we do not
begin with a classical theory, find its Poisson-bracket Lie algebra, and then look for its
representations. Our procedure concentrates on the very process of the ‘flow of time’ that we
envisage as a propagation of a wave packet of the universe through background space-time.
There is, though, a classical element that relates our quantum dynamics to more standard
Milne-type cosmology: The support of the propagating wave packet is bounded from below
(that is, from the past) by a typical Milnean hyperboloid propagating towards the future.
As τ tends to plus-infinity, the wave function concentrates in a future-neighbourhood of
the propagating hyperboloid.

As we can see, our dynamics is not just statics in space-time. We indeed have a flow of
time, with the past disappearing in the deepest ontological sense, and the future not yet
existing. The notion of ‘now’ is smeared out, but becomes more and more concrete as the
cosmic time flows towards the future.

Continuity equation ∂µVµ(x) = 0 implies thatH0 is symmetric,

〈 f |H0g〉 = 〈H0 f |g〉. (13)

Let us note that the support of Ψτ consists of those x ∈ V̄+ that satisfy

(aτ)
n − (aτ0)

n ≤ xn. (14)

With growing aτ the support of Ψτ shrinks, creating a space-time gap between the
region of non-zero probability density |Ψτ(x)|2 and the boundary ∂V+. Figure 1 illustrates
the effect in n = 1 + 1, for (7) and Ψτ(x) given by (3), (5), with the initial condition

Ψ0(x) =
{

1 for |x1| < 1, (x0)2 − (x1)2 < 1 , x0 > 0
0 otherwise

(15)

We tacitly assume that the jumps in (15) approximate some smooth function, so that (4)
is applicable as well.

Figure 1. Plot of (4) with the initial condition (15) at τ = τ0 = 0 (left), and its evolved version for
τ = 1 (right) in a two-dimensional Minkowski space, in units where ` = 1. Ψτ(x) at τ = 1 is thinner
and wider than Ψτ(x) at τ = 0. A space-time gap occurs between the support of Ψ1(x) and the light
cone. In 1 + 3 dimensions the hyperboloid that determines the gap is given by `2√τ = c2t2 − x2, in
contrast with c2t2 − x2 ∼ τ2 as one might naively expect.
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3. Justification of the Form of UτUτUτ for the Empty Universe

Let uµ = xµ/x, u0 > 0 be a future-pointing world-velocity. Assume 〈Ψτ |Ψτ〉 =
〈Ψτ0 |Ψτ0〉 for any 0 ≤ τ0 ≤ τ. Explicitly,

〈Ψτ |Ψτ〉 =
∫

V+

dnx|Ψτ(x)|2 =
∫ ∞

0
dx xn−1ρτ(x)

=
∫ ∞

0
dx xn−1ρτ0(x). (16)

We have introduced the probability density

ρτ(x) =
∫

u2=1
du|Ψτ(xu)|2, (17)

where du is a measure on the world-velocity hyperboloid.
Assuming the support of ρτ(x) is contained in [aτ , bτ ] ⊂ R+ (as in Figure 1), we arrive

at the condition that has to be satisfied by both Ψτ(x) and Ψτ0(x),

∫ bτ

aτ

dx xn−1ρτ(x) =
∫ bτ0

aτ0

dx xn−1ρτ0(x). (18)

Changing variables, t = xn, and denoting $τ(t) = ρτ(t1/n), we find an equivalent form,

∫ bn
τ

an
τ

dt$τ(t) =
∫ bn

τ0

an
τ0

dt$τ0(t). (19)

Now, it is enough to find another change of variables, t 7→ t0, in a way that an
τ ≤ t ≤ bn

τ

implies an
τ0
≤ t0 ≤ bn

τ0
. Assuming the affine relation,

t = At0 + B, (20)

an
τ = Aan

τ0
+ B, (21)

bn
τ = Abn

τ0
+ B, (22)

we obtain

t =
bn

τ − an
τ

bn
τ0 − an

τ0

t0 +
−an

τbn
τ0
+ bn

τ an
τ0

an
τ0 − bn

τ0

. (23)

Applying the new variables to the left side of (19), dt = bn
τ−an

τ
bn

τ0−an
τ0

dt0, we arrive at

∫ bn
τ0

an
τ0

dt0
bn

τ − an
τ

bn
τ0 − an

τ0

$τ(At0 + B) =
∫ bn

τ0

an
τ0

dt0$τ0(t0) (24)

and

bn
τ − an

τ

bn
τ0 − an

τ0

$τ(t) = $τ0(t0) = $τ0

(
A−1(t− B)

)
(25)

In order to guarantee the dynamical invariance of Z = maxx{|Ψτ(x)|2}, we demand

bn
τ − an

τ

bn
τ0 − an

τ0

= 1. (26)

The latter implies that

bn
τ − an

τ = bn
τ0
− an

τ0
= C (27)
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is a constant, and thus bτ = (an
τ + C)1/n. Then

$τ(t) = $τ0(t0) = $τ0(t− B), (28)

where

t = t0 + B = t0 + an
τ − an

τ0
. (29)

It is clear that an
τ ≤ t ≤ an

τ + C is equivalent to an
τ0
≤ t0 ≤ an

τ0
+ C.

As the final step we note that

ρτ(x) = $τ(x
n) = $τ0(x

n − B)

= $τ0

(
[(xn − B)1/n]n

)
= ρτ0

(
(xn − B)1/n) (30)

is equivalent to ∫
u2=1

du|Ψτ(xu)|2

=
∫

u2=1
du
∣∣∣Ψτ0

((
xn − an

τ + an
τ0

)1/nu
)∣∣∣2. (31)

We will now show that

Ψτ(xu) = Ψτ0

((
xn − an

τ + an
τ0

)1/nu
)

(32)

satisfies all our desiderata.
Firstly, for xµ = xuµ we obtain

Ψτ(x) = Ψτ0

((
xn − an

τ + an
τ0

)1/nx/x
)

(33)

= Ψτ0

((
xn − an

τ + an
τ0

xn

)1/n

x

)
(34)

which coincides with (3). For an
τ = `nτ, τ ≥ 0, and τ0 = 0:

Ψτ(x) = Ψ0

((
xn − `nτ

xn

)1/n
x

)
= Ψ0

(
x(τ)

)
, (35)

xµ(τ) =

(
xn − `nτ

xn

)1/n
xµ. (36)

It is enough if we show that for any analytic function Ψ0(x) we can write

Ψ0
(
x(τ)

)
= e−iτH0 Ψ0(x). (37)

We begin with the monomial

Ψ0(x) = xN1
µ1 . . . xNk

µk , N1 + · · ·+ Nk = N. (38)

It is clear that

xµ1(τ)
N1 . . . xµk (τ)

Nk = e−iτH0 xN1
µ1 . . . xNk

µk , (39)

holds true if and only if

dm

dτm xµ1(τ)
N1 . . . xµk (τ)

Nk
∣∣∣
τ=0

= (−iH0)
mxN1

µ1 . . . xNk
µk , (40)
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for any m ∈ N. We begin with

xµ1(τ)
N1 . . . xµk (τ)

Nk =

(
xn − `nτ

xn

)N/n
xN1

µ1 . . . xNk
µk (41)

=
(xn − `nτ)N/n

(x2)N/2 xN1
µ1 . . . xNk

µk , (42)

dm

dτm xµ1(τ)
N1 . . . xµk (τ)

Nk
∣∣∣
τ=0

= (−`n)m N
n

(
N
n
− 1
)

. . .
(

N
n
−m + 1

)
(xn − `nτ)N/n−m

(x2)N/2 xN1
µ1 . . . xNk

µk

∣∣∣
τ=0

(43)

= (−`n)m N
n

(
N
n
− 1
)

. . .
(

N
n
−m + 1

)
(x2)

n
2

N
n −

n
2 m− N

2 xN1
µ1 . . . xNk

µk (44)

= (−`n)m N
n

(
N
n
− 1
)

. . .
(

N
n
−m + 1

)
(x2)−nm/2xN1

µ1 . . . xNk
µk . (45)

On the other hand, by Euler’s homogeneity theorem,

(−iH0)
mxN1

µ1 . . . xNk
µk =

(
− `n

nxn xµ∂µ

)m
xN1

µ1 . . . xNk
µk (46)

=
(−`n)m

nm

(
1
xn xµ∂µ

)m−1 N
xn xN1

µ1 . . . xNk
µk (47)

=
(−`n)m

nm

(
1
xn xµ∂µ

)m−2 N(N − n)
(x2)2n/2 xN1

µ1 . . . xNk
µk (48)

=
(−`n)m

nm

(
1
xn xµ∂µ

)m−3 N(N − n)(N − 2n)
(x2)3n/2 xN1

µ1 . . . xNk
µk (49)

...

= (−`n)m N
n

(
N
n
− 1
)

. . .
(

N
n
−m + 1

)
(x2)−nm/2xN1

µ1 . . . xNk
µk , (50)

which coincides with (45). So, this step is proven. The Maclaurin expansion ends the proof
for the monomial,

xµ1(τ)
N1 . . . xµk (τ)

Nk =
∞

∑
m=0

τm

m!
dm

dτm xµ1(τ)
N1 . . . xµk (τ)

Nk
∣∣∣
τ=0

(51)

=
∞

∑
m=0

τm

m!
(−iH0)

mxN1
µ1 . . . xNk

µk = e−iτH0 xN1
µ1 . . . xNk

µk . (52)

By linearity the proof is extended to any analytic

Ψ0(x) = ∑
N1 ...Nk

Ψµ1 ...µk
N1 ...Nk

xN1
µ1 . . . xNk

µk . (53)

For 0 ≤ τ0 ≤ τ, we can write

Ψτ(x) = e−iτH0 Ψ0(x) = e−i(τ−τ0+τ0)H0 Ψ0(x)

= e−i(τ−τ0)H0 Ψτ0(x) = Uτ−τ0 Ψτ0(x). (54)

Being linear and norm-preserving, Uτ−τ0 is unitary.

4. Direct Proof of Unitarity of UτUτUτ

To remain on a safe side we have assumed 0 ≤ τ0 ≤ τ, or more generally 0 ≤ aτ0 ≤ aτ .
However, do we really need aτ0 ≤ aτ? Let us investigate this point in more detail.
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It is instructive to directly verify d
dτ 〈Ψτ |Φτ〉 = 0 for functions Ψτ(x) and Φτ(x) that

vanish outside [aτ , (an
τ + C)1/n]. Denote

ρτ(x) =
∫

u2=1
du Ψτ(xu)Φτ(xu). (55)

Then

d
dτ

∫
d4xΨτ(x)Φτ(x)

=
d

dτ

∫ (an
τ+C)1/n

aτ

dx xn−1ρτ0

((
xn − an

τ + an
τ0

)1/n
)

=
1
n

d(an
τ)

dτ

d
d(an

τ)

∫ an
τ+C

an
τ

dt ρτ0

((
t− an

τ + an
τ0

)1/n
)

.

Employing

d
dx

∫ x+c

x
dy f (x, y)

=
∫ x+c

x
dy

∂ f (x, y)
∂x

+ f (x, x + c)− f (x, x)

we find

d
dτ
〈Ψτ |Φτ〉 =

1
n

d(an
τ)

dτ

[
−
∫ an

τ+C

an
τ

dt
d
dt

ρτ0

((
t− an

τ + an
τ0

)1/n
)
+ ρτ0

((
C + an

τ0

)1/n
)
− ρτ0(|aτ0 |)

]
= 0. (56)

Both C + an
τ and an

τ have to be non-negative for any τ, but (aτ)n − (aτ0)
n can be of

either sign.
One can prove d

dτ 〈Ψτ |Φτ〉 = 0 also under a slightly different condition. Namely,
assume (5),

Ψτ(x) = 0, (57)

for 0 ≤ xn ≤ (aτ)n − (aτ0)
n. Then

d
dτ
〈Ψτ |Φτ〉 =

d
dτ

∫ ∞

(an
τ−an

τ0)
1/n dx xn−1ρτ0

((
xn − an

τ + an
τ0

)1/n
)

(58)

=
1
n

d(an
τ − an

τ0
)

dτ

d
d(an

τ − an
τ0)

∫ ∞

an
τ−an

τ0

dt ρτ0

((
t− (an

τ − an
τ0
)
)1/n

)
(59)

=
1
n

d(an
τ − an

τ0
)

dτ

[
−ρτ0(0)−

∫ ∞

an
τ−an

τ0

dt
d
dt

ρτ0

((
t− (an

τ − an
τ0
)
)1/n

)]
(60)

=
1
n

d(an
τ − an

τ0
)

dτ

(
− ρτ0(0)− ρτ0(∞) + ρτ0(0)

)
= − 1

n
d(an

τ − an
τ0
)

dτ
ρτ0(∞) = 0, (61)

if

lim
x→∞

ρτ0(x) = 0. (62)

Here, aτ0 cannot be greater than aτ . It is simplest to work with aτ0 = 0.

5. Further Properties of H0H0H0

In formalisms of a Klauder-type one usually works with coherent states and their
resolutions of unity. We begin with eigenvectors of H0 and prove their completeness. Next,
we rewriteH0 in terms of positions and canonical momenta. The latter form will be needed
when it comes to matter fields and Hamiltonians of the formH = H0 +H1.
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5.1. Eigenvectors

The Hamiltonian

H0 = − 1
n
`n

xn xµ i∂µ (63)

is symmetric. Its eigenvectors are given by

fE(x) = fE(0)eiExn/`n
, (64)

for any E (real or complex). Note that for x2 = 0 we find fE(x) = fE(0), so a non-trivial fE
cannot vanish on the boundary ∂V+. fE(x) does not belong to our Hilbert space, which is
not surprising.

5.2. Completeness of the Eigenvectors for Real E

In this subsection we set ` = 1. Let xµ = x uµ, uµuµ = 1. Both xµ and uµ are time-like
and future-pointing. The formula

dnx = dx xn−1du = d(xn)
dn−1u

n
√

1 + u2
(65)

defines an SO(1, n− 1)-invariant measure du, a natural curved-space generalization of dn−1x.
Our well-known quantum mechanics corresponds to n = 4 and d3x√

1+x2/x2 ≈ d3x, an ap-
proximation valid for x of the order of the size of the observable universe and x achievable
in present-day quantum measurements. The scalar product

〈 f |g〉 =
∫

V+

dnx f (x0, x)g(x0, x) (66)

=
∫ ∞

0
dx xn−1

∫
u2=1

du f (x u0, xu)g(x u0, xu),

can be split by means of the usual separation of variables into two scalar products:

〈A|A′〉1 =
∫ ∞

0
dx xn−1 A(x)A′(x) (67)

and

〈B|B′〉2 =
∫

u2=1
du B(u)B′(u) (68)

=
∫
Rn−1

dn−1u√
1 + u2

B(u)B′(u) (69)

Let us thus consider some basis Bj of special functions, orthonormal with respect to
〈Bj|Bj′〉2 = δjj′ , and define

〈x| fE,j〉 = fE,j(x) = eiExn
Bj(u), E ∈ R. (70)

Wave functions g(x) can be non-zero only for x ∈ V+, a condition preserved by Uτ. Therefore,

〈 fE,j|g〉 =
∫

V+

dnx fE,j(x)g(x) =
∫

V+

dnxe−iExn
Bj(u)g(xu) (71)

=
∫ ∞

0
dx xn−1e−iExn

∫
u2=1

duBj(u)g(xu) (72)

=
1
n

∫ ∞

0
dte−iEt

∫
u2=1

duBj(u)g(t1/nu) (here t = xn) (73)

=
1
n

∫ ∞

−∞
dte−iEt

∫
u2=1

duBj(u)g
(

sgn(t)|t|1/nu
)

. (74)
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The inverse Fourier transform,

1
2π

∫ ∞

−∞
dEeiEt〈 fE,j|g〉 =

1
n

∫
u2=1

du Bj(u)g
(

sgn(t)|t|1/nu
)

, (75)

implies

n ∑
j

Bj(u)
1

2π

∫ ∞

−∞
dEeiExn〈 fE,j|g〉 =

∫
u2=1

du′ ∑
j

Bj(u)Bj(u′)g(xu′) = g(xu), (76)

or equivalently,

n
2π

∫ ∞

−∞
dE ∑

j
fE,j(x)〈 fE,j|g〉 = g(x), (77)

which can be written as the resolution of unity

n
2π ∑

j

∫ ∞

−∞
dE| fE,j〉〈 fE,j| = I. (78)

We conclude that the spectrum of H0 consists of R, and fE,j(x) form a complete set.
Various explicit forms of Bj can be found in the literature that deal with quantum mechanics
on Lobachevsky spaces.

5.3. Cosmic Four-Position Representation

Dimensionless four-position representation is defined by:

Qµ = `−1xµ, (79)

Pµ = −i`∂µ, (80)

Vµ =
1
n
`n−1

xn xµ, (81)

H0 = VµPµ = PµVµ. (82)

The latter follows from the continuity equation ∂µVµ = 0. The remaining basic com-
mutators read:

[Qµ, Pν] = igµν, (83)

[Qµ,H0] = iVµ. (84)

The coupling of matter to space-time is given by

H = H0 +H1 (85)

= VµPµ +H1(Q). (86)

In an empty universe the wave function Ψτ(x) plays the role of a vacuum state.
The space of such vacuum states is infinitely dimensional. The standard arguments leading
to Ehrenfest’s theorem in quantum mechanics are applicable here as well, so the average
Minkowski-space position

〈xµ(τ)〉 =
∫

d4x xµ|Ψτ(x)|2 (87)

defines a world-line of the centre-of-mass of the empty universe. In a sense, the Copernican
principle is spontaneously broken by the initial condition Ψ0(x).

Postponing the issue of matter fields to Sections 9–12, let us first concentrate on further
properties of the empty universe,H1(Q) = 0.
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6. Average Size of the Universe for Ψτ(x)Ψτ(x)Ψτ(x)

Size of the universe is here described by the support properties of Ψτ(x). In our
discussion we assume, for simplicity, that the support is given by a compact set, which is
in fact somewhat too strong (we only need the square integrability of Ψτ(x)). Moreover,
asymptotically for large τ, the support becomes concentrated in a neighbourhood of a
Milnean hyperboloid xµxµ = x2, so consists of events that are approximately simultaneous
from the point of view of τ. Obviously, the support cannot be identified with the universe
observable at xµ. The latter consists of the past cone of the event xµ.

Let us now investigate in more detail the time-like thickness of the wave packet for

aτ = `τ1/n ≤ x ≤ (`nτ + C)1/n = bτ . (88)

Denote

∆τ = (`nτ + C)1/n − `τ1/n (89)

=
C

∑n−1
k=0 (`

nτ + C)(n−1−k)/n(`nτ)k/n
, (90)

C = (∆τ + `τ1/n)n − `nτ. (91)

limτ→∞ ∆τ = 0 implies that for large cosmic times the wave packet concentrates in a
neighbourhood of the hyperboloid a2

τ = xµxµ. For n = 4 the hyperboloid is given by
`2√τ = c2t2 − x2.

In our formalism, the four-dimensional volume V(4) of the universe is defined in a
τ-invariant way,

V(4) =
∫

V+

d4x|Ψτ(x)|2/Z

=
∫

V+

d4x|Ψ0(x)|2/Z = ∆τV(3)
τ = 1/Z . (92)

Writing V(3)
τ ∼ r3

τ we obtain a measure rτ of the space-like size of the support of Ψτ(x),
satisfying

∆τr3
τ = ∆0r3

0. (93)

Note that both ∆τ and rτ are invariant under the action of the Lorentz symmetry
group of V̄+. For τ0 = 0 the hyperboloid `2√τ = c2t2 − x2 determines the gap, depicted
in Figure 1, between the support of Ψτ(x) and the light cone c2t2 − x2 = 0. It is clear that
r0, in spite of being relativistically invariant, cannot be identified with geodesic length
computed along the light-cone, because the latter is always zero, while ∆0 = C1/4 is finite
and non-zero, and thus r0 is finite and non-zero as well.

Intuitively, rτ represents a relativistically invariant average radius of the universe,
an analogue of a half-width of a wave-packet. One has to keep in mind that, at τ = τ0 = 0,
the wave packet has a non-trivial time-like profile, as illustrated by Figure 1.

Let us now experiment with some estimates of the parameters involved in the con-
struction. For example, take ` = 1.61622837× 10−35 m (Planck length), tH = 4.55× 1017 s
(Hubble time), and c = 299 792 458 m/s (velocity of light in vacuum), and define the
quantum/cosmic Hubble time τH by `τ1/4

H = ctH ,

τH = (ctH/`)4 = 5.07361× 10243. (94)

For n = 4,

C = (∆τH + `τ1/4
H )4 − `4τH = (∆τH + ctH)

4 − (ctH)
4.
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Assuming ∆τH ≈ `, we arrive at the estimate

C ≈ 1.64081× 1044 m4. (95)

Initially, at τ0 = 0 the universe extends in time-like directions by approximately 1 AU,
∆0 = C1/4 ≈ 1.13179× 1011 m, that is by around 377 light seconds. Was our universe
created in seven minutes?

At the Hubble time we expect the universe to have the volume of the order of (ctH)
3;

hence, the four-dimensional volume is of the order of (ctH)
3`. Accordingly, we can estimate

V(4) = ∆0V(3)
0 ∼ (ctH)

3` (96)

The result is

V(3)
0 ∼ (ctH)

3`/∆0 ∼ (ctH)
3 × 10−44 (97)

The defined radius changes with τ according to

rτ = ctH(`/∆τ)
1/3 (98)

=

(
`(ctH)

3

(`+ ctH)4 − (ctH)4

)1/3(
(`4τ + C)3/4 + (`4τ + C)2/4(`4τ)1/4 + (`4τ + C)1/4(`4τ)2/4 + (`4τ)3/4

)1/3
. (99)

The hyperboloid formula `4τ = (xµxµ)2 = x4
τ leads to

rτ =

(
`(ctH)

3

(`+ ctH)4 − (ctH)4

)1/3(
(x4

τ + C)3/4 + (x4
τ + C)2/4xτ + (x4

τ + C)1/4x2
τ + x3

τ

)1/3

≈ 4−1/3
(
(x4

τ + C)3/4 + (x4
τ + C)2/4xτ + (x4

τ + C)1/4x2
τ + x3

τ

)1/3
. (100)

Here, xτ defines the hyperboloid that restricts the time-like extent of the support from
below (that is, xτ measures the space-time gap between the support and ∂V+).

For large xτ , say xτ = `τ1/4
H , one finds an approximately linear relation between rτ

and xτ ,

rτ ≈ xτ = `τ1/4. (101)

Let us stress again that estimates such as (100) deal with the support of Ψτ(x), so they
effectively determine the volume often encountered in quantum optics in the ‘finite-box’
mode decomposition of fields. In our model the volume is finite but its size grows with xτ ap-
proximately linearly, that is, proportionally to the fourth root of the cosmic/quantum time.

It is clear that such a quantization volume has nothing to do with the observable
universe that should be identified with the past cone of the argument xµ in Ψτ(x). The ob-
servable universe here has the same meaning as in the Milnean cosmology.

7. Gap Hyperboloid, `2√τ = c2t2− x2

The gap hyperboloid may be regarded as a semi-classical characteristic of the universe.
With the cosmic-time parametrization of V+,

(x0, x1, x2, x3) = `τ1/4(cosh Ξ, sinh Ξ cos Φ sin θ, sinh Ξ sin Φ sin θ, sinh Ξ cos θ), (102)

the Minkowski-space metric gµν of V+ can be rewritten in terms of (x̃0, x̃1, x̃2, x̃3) =
(τ, Ξ, Φ, θ),
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ds2 = gµνdxµdxν (103)

= (`dτ1/4)2 − (`τ1/4)2
(

dΞ2 + sinh2 Ξ sin2 θ dΦ2 + sinh2 Ξ dθ2
)

(104)

=
1

16
`2τ−3/2dτ2 − `2τ1/2

(
dΞ2 + sinh2 Ξ sin2 θ dΦ2 + sinh2 Ξ dθ2

)
. (105)

The form (104) is the standard Milnean metric, provided one treats `τ1/4/c as the
standard (classical) cosmological time (not to be confused with τ itself, our quantum cosmic-
time parameter). The corresponding Hubble diagram for distance modulus vs. redshift
is known to agree with the observed expansion of our universe [21,22]. On the other
hand, the form (105) shows that for the present values of τ (i.e., τH ∼ 10243), the time-like
component of the metric is a very tiny number,

gττ =
1

16
`2τ−3/2 ∼ 10−435m2, (106)

as if the background space-time was effectively three-dimensional. The latter agrees with the
support properties of Ψτ(x) because ΨτH (x) 6= 0 only in a narrow future-neighbourhood
of the gap hyperboloid. At the other extreme is the case of τ ≈ 0, where gττ is large in
comparison to

gΞΞ ≈ gΦΦ ≈ gθθ ≈ 0, (107)

as if the space-time was one-dimensional and consisted of time only.
Of course, the estimates (106) and (107) reflect the asymptotic properties of the metric

tensor of the background space-time and not of the universe itself, identified here with
the set of points x that satisfy Ψτ(x) 6= 0. However, this set is partly characterized by
the properties of the gap hyperboloid, which in turn is characterized by the evolution
parameter τ. The asymptotic properties of (105) agree with the intuitive classical picture of
the universe that evolves from a single point at τ = 0 into a three-dimensional space for
τ → ∞.

An exact relation between Minkowskian space-time x0 = ct and the cosmic/quantum
τ is implied by the hyperboloid equation `2√τ = c2t2 − x2, so

ct(τ, x) =

√
`2
√

τ + x2. (108)

Consequently,

ct(τ + ∆τ, x) =

√
`2
√

τ + ∆τ + x2 = ct(τ, x) +
`2

4
√

τ
√
`2
√

τ + x2
∆τ + . . . (109)

= ct(τ, x) +
`

4τ3/4

√
1 +

(
x

` 4√τ

)2
∆τ + . . . (110)

Assuming that present-day observers deal with cosmic times of the order of the Hubble
time, `τ1/4 ≈ ctH , and systems whose sizes are negligible in comparison to the size of
the universe, x/(ctH) ≈ 0, we can neglect the square root occurring in the denominator
of (110),

ct(τ + ∆τ, x) = ct(τ, x) + c∆t(τ, x) ≈ ct(τ, x) +
`4

4(ctH)3 ∆τ. (111)
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The usual ∆t we encounter in elementary undergraduate non-relativistic definitions
of velocity or acceleration are related to our ∆τ by

c∆t =
`4

4(ctH)3 ∆τ. (112)

It is intriguing that Wiener, in his MIT lectures on Brownian motion (see equa-
tion (1.14) [45]), introduced the notion of a roughness of a curve (measuring the straightness
of a string x(s) passing through a given sequence of holes) by

max
x(s + τ)− x(s)

τ1/4 . (113)

Wiener’s ‘roughness’ thus resembles a derivative of x(τ) but computed with respect
to t(τ) and not just τ itself.

8. ‘Average Radius of the Universe’ vs. Space-like Geodesic Distance

Let us continue with n = 1 + 3. Consider xµ and yµ that belong to the same hyper-
boloid, x2 = xµxµ = yµyµ = y2. Define (x · y)/x2 = cosh ξ (here x · y = xµyµ). Then

ξ =

 ln
(
(x · y)/x2 +

√
(x · y)2/x4 − 1

)
, if ξ ≥ 0,

− ln
(
(x · y)/x2 +

√
(x · y)2/x4 − 1

)
, if ξ ≤ 0,

(114)

so the geodesic distance between x and y, computed along the hyperboloid, is

x|ξ| = x ln
x · y +

√
(x · y)2 − x4

x2 (115)

With x→ ∞ the geodesic distance is just the Euclidean distance in R3.
Writing x|ξ| = r, we can parametrize Lorentz transformations mapping yµ into xµ

by means of r, the distance between the two points. Taking xτ = `τ1/4, ya = (xτ , 0),
xa = (

√
x2

τ + x2, x), we find

(x · y)/x2
τ = x0/xτ = cosh(rτ/xτ). (116)

For any unit three-vector n we conclude that

(x0, x) = xτ

(
cosh(rτ/xτ), n sinh(rτ/xτ)

)
, (117)

is located at geodesic distance rτ from the origin x = 0. The distance is computed along the
hyperboloid `2√τ = xµxµ = x2

τ . The result is Lorentz invariant, so is typical of any choice
of the origin.

Let us now consider points separated by geodesic distance rτ on hyperboloid xτ ,
but assume that the distance coincides with the ‘average radius of the universe’ rτ given
by (100),

rτ/xτ ≈ 4−1/3
(
(x4

τ + C)3/4 + (x4
τ + C)2/4xτ + (x4

τ + C)1/4x2
τ + x3

τ

)1/3
/xτ . (118)

Asymptotically, limτ→0 rτ/xτ = ∞, limτ→∞ rτ/xτ = 1. For large τ the world-vectors
whose geodesic distance from x = 0 equals rτ ≈ xτ = `τ1/4 are located on straight and
time-like world-lines (Figure 2)

τ 7→ xτ

(
cosh 1, n sinh 1

)
= `τ1/4(1.543, 1.175 n). (119)
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Figure 2. The hyperboloid xµxµ = ∆2
0, in units where ∆0 = 1 (dashed) and the light-cone (dotted).

The full line represents the world line (117), plotted in the half-plane spanned by (1, 0) and (0, n).
When τ tends to 0, the curve escapes towards future-null infinity. The wide-dashed straight line is
the asymptote (119), τ 7→ xτ

(
cosh 1, n sinh 1

)
.

Such world lines may be regarded as quantum analogues of generators of an ex-
panding boundary of our universe. Interestingly, asymptotically, for late cosmic times the
resulting boundary does not expand with the velocity of light, but rather with v = c tgh 1 ≈
0.76 c. It is intriguing that tgh 1 is a neutral element of multiplication in the arithmetic of
relativistic velocities.

9. An Empty Universe as a Reservoir for Matter Fields

Until now, we discussed an empty universe. Matter fields should be included by
means of (86). Leaving a detailed discussion of explicit examples to a separate paper, let us
outline the construction ofH1(Q).

We are guided by the asymptotic correspondence principle with ordinary quantum
mechanics and quantum field theory in our part of the universe, formulated as follows.

We assume that after some 13–14 billion years of the cosmic evolution the matter fields
within our Galaxy should evolve by means of a matter-field Hamiltonian

H1(τH) ≈ Z
∫

V(3)
τH

d3x T00(ctH , x). (120)

where V(3)
τH is the effective volume of the universe at τ = τH, as implied by Equation (92), Z

is a renormalization constant, and Tµν is an energy-momentum tensor of some matter field.

Introducing the characteristic function χ
V(3)

τH
(x) of V(3)

τH , as well as the approximation

of the measure,

d3x ≈ d3x√
1 + x2/(ctH)2

(121)

we can write

H1(τH) ≈ Z
∫
R3

d3x√
1 + x2

(ctH)2

χ
V(3)

τH
(x)T00(ctH , x)

= Z
∫

V+

d4x δ
(
x2 − (ctH)

2)χ
V(3)

τH
(x)T00(x). (122)
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A constant Z should be chosen so that

Z
∫
R3

d3x√
1 + x2

(ctH)2

χ
V(3)

τH
(x) = 1. (123)

Equivalently,

1 = Z
∫

V+

d4x δ
(
x2 − (ctH)

2)χ
V(3)

τH
(x)

=
∫

V+

d4x |ΨτH (x)|2 =
∫

V+

d4x |Ψτ(x)|2. (124)

A comparison of formulas (122)–(124) leads to the conclusion that an exact expression,
valid for all τ, should read

H1(τ) =
∫

V+

d4x |Ψτ(x)|2xµxνTµν(x)/x2 (125)

=
∫

V+

d4x |Ψτ(x)|2H1(x) (126)

=
∫

V+

d4x 〈Ψ0|U†
τ |x〉〈x|Uτ |Ψ0〉H1(x) (127)

where we have used the fact that xµ/(ctH) ≈ (1, 0) for xµ in a small (say, galaxy-scale)
neighbourhood of our labs.

One concludes that what we regard as a total Hamiltonian that governs the time
evolution of matter in the present-day and our-part quantum universe looks like a partial
average over the reservoir of an interaction-picture Hamiltonian

H1(Qτ) =
∫

V+

d4x U†
τ |x〉〈x|Uτ ⊗H1(x). (128)

The full Schrödinger-picture Hamiltonian thus reads

H = H0 +H1 (129)

= VµPµ ⊗ I+
∫

V+

d4x |x〉〈x| ⊗ H1(x) (130)

= VµPµ ⊗ I+H1(Q). (131)

The presence of |Ψτ(x)|2 in (126) can be also interpreted by means of a certain weak
limit N → ∞, if one replaces the single projector I(x, 1) = |x〉〈x| in (130) by the frequency-
of-success operator

I(x, N) =
1
N
(

I(x, 1)⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
N

+ · · ·+ I⊗ · · · ⊗ I⊗ I(x, 1)
)

(132)

employed in weak quantum laws of large numbers [46–50]. Operator (132) occurs also in
commutators of field operators if fields are quantized by means of reducible representations
of the oscillator algebra [51–55]. The free part then takes the form of a free N-particle bosonic
extension ofH0(1) = VµPµ, i.e.,

H0(N) = H0(1)⊗ I⊗ · · · ⊗ I+ · · ·+ I⊗ · · · ⊗ I⊗H0(1). (133)

It is then a standard result that at the level of matrix elements the limit N → ∞ is
equivalent to the replacement I(x, N)→ |Ψτ(x)|2, where |Ψτ〉 is interpreted as a vacuum
state, which agrees with the intuition that a cosmological vacuum corresponds to an empty
universe. Moreover, parameters such as Z , related to |Ψτ(x)|2 by formulas (122)–(124), can
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be shown to play the role of renormalization constants in exactly the same sense as the one
employed in quantum field theory.

Accordingly, operators of the form (126) will occur as weak limits N → ∞ of

H(N) = H0(N)⊗ I+
∫

V+

d4x I(x, N)⊗H1(x), (134)

if the limit is taken in the interaction picture. Hamiltonian (134) for a finite N describes
an N-point universe, an analogue of an N-particle state, where each of the particles is
point-like and bosonic. For large N the universe becomes a Bose–Einstein condensate of
point-like objects, whose probability density in space-time is given by |Ψτ(x)|2. Let us stress
that these point-like entities should not be treated as matter-field particles, but as points of
the universe itself. For various technicalities of the weak limits see [47–55], but a detailed
exposition of the approach is beyond the scope of the present paper. The model which is
formally closest to what we encounter here is the case of a classical current interacting
with quantized electromagnetic field, discussed in detail in [54]. Readers interested in
generalization based on (134) should first understand the construction from [54].

Let us note that the choice

H1(x) = xµxνTµν(x)/x2 (135)

is motivated by isotropy, uniformity, manifest covariance and, first of all, the correspon-
dence principle with T00 for large τ ≈ τH . We do not need the usual argument based on the
continuity equation ∇aTab = 0, because (130) is independent of x0 and τ. This is why the
issues such as the non-vanishing trace of Tab or transvection of Tab with Killing fields are
irrelevant in this context. The transvection with uµ = xµ/x can be postulated regardless of
its property of being or not being a Killing field of some symmetry.

Schrödinger-picture Hamiltonian describes the evolution of the entire ‘universe plus
matter’ system. The average energy of the whole system is conserved but, of course,
the energy of matter alone is not conserved. However, at large τ the averaged-over-reservoir
matter Hamiltonian is essentially the standard Hamiltonian but evaluated in a finite and
growing with time ‘quantization volume’.

The structure of the Hilbert space associated withH1 also resembles the one occurring
in the ‘quantum time’ formalism of Page and Wooters [56,57].

10. Effective Conformal Coupling of Matter and Geometry

The universe is defined in terms of |Ψτ(x)|2 which effectively determines coupling of
matter and space-time by means of the formula for the averaged-over-reservoir interaction
Hamiltonian (or the weak large-number limit of (134))

H1(τ) =
∫

V+

d4x |Ψτ(x)|2H1(x). (136)

There are two natural ways of interpreting (136) as a representation of coupling
between matter and geometry.

The first one is based on the identification

|Ψτ(x)|2 =
√
|gτ(x)| (137)

In four-dimensional background Minkowski space M with metric gµν we can
write [58,59]

gτµν(x) = |Ωτ(x)|2gµν, (138)

so that

gτ(x) = −|Ωτ(x)|8 (139)
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and |Ψτ(x)|2 = |Ωτ(x)|4. Here, we again have two options. Firstly, we can employ the
usual strategy and demand that Ωτ(x) be real and non-negative; hence,

Ωτ(x) = |Ψτ(x)|1/2, (140)

gτµν(x) = |Ψτ(x)|gµν, (141)

gµν
τ (x) = |Ψτ(x)|−1gµν. (142)

Recall that the universe is identified with x ∈ M fulfilling Ψτ(x) 6= 0.
Secondly, we can write

Ψτ(x)Ψτ(x) = Ωτ(x)2Ωτ(x)2, (143)

so that

Ωτ(x) = Ψτ(x)1/2 (144)

is complex. We know that complex Ωτ(x) will lead to a connection with torsion [59].
However, for Hamiltonian densities

H1(x) = H1
(
φA(x),∇φA(x)

)
(145)

which are quadratic in matter fields φA(x), there exists yet another theoretical possibility.
Namely, we can demand

H1(τ) =
∫

V+

d4x |Ψτ(x)|2H1
(
φA(x),∇φA(x)

)
(146)

=
∫

V+

d4xH1
[
ΨτφA(x), D(ΨτφA(x))

]
, (147)

where D and ∇ are spinor covariant derivatives related by [58,59]

∇µ ε̂(x)BC = 0, DµΨτ(x)ε̂(x)BC = 0. (148)

Spinor ε̂(x)BC is unspecified as yet. Typically, either∇ or D has non-vanishing torsion.
Equation (147) suggests that D = ∂ is the usual flat torsion-free covariant derivative in
Minkowski space, and thus

Ψτ(x)ε̂(x)BC = εBC (149)

is the usual flat Minkowski-space ‘metric’ spinor. Hence,

ε̂(x)BC = Ψτ(x)−1εBC = Ωτ(x)εBC, (150)

ε̂(x)BC = Ψτ(x)εBC = Ωτ(x)−1εBC, (151)

ε̂(x)B′C′ = Ψτ(x)−1εB′C′ = Ω̄τ(x)εB′C′ , (152)

ε̂(x)B′C′ = Ψτ(x)εB′C′ = Ω̄τ(x)−1εB′C′ . (153)

We have skipped
√
|g| in (146)–(147) because now the conformal transformations

are not regarded as changes of coordinates on the same space-time, but as modifications
of the space-time itself. The lack of square root in (150)–(153) is not a typographic error.
The construction leading to (150)–(153) is not equivalent to the one that has led to (144).

∇ and D can be chosen in many different ways. The standard paradigm is to assume
conformal invariance of field equations satisfied by matter fields (which excludes massive
fields), and demand that connections be torsion-free. However, a complex conformal
transformation naturally introduces non-vanishing torsion. Moreover, the formalism should
not crucially depend on the mass of matter fields. In what follows we discuss a connection
which has the required properties.
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Our discussion is based on the Minkowski-space background. However, the same
analysis can be performed in space-times that are conformally flat, which includes FRW
cosmologies [60–62].

11. Conformal Covariance of Arbitrary-Mass Matter Fields

Typically, conformal covariance is associated with massless fields or twistors [58].
In the present section we will take a closer look at the standard construction of the spinor
covariant derivative, leading us to a simple form of connection that does not require m = 0
for the conformal covariance of matter fields. We switch to the standard spinor notation
with space-time abstract indices written in lowercase Roman fonts (in the previous sections
we avoided formulas of the form xa because a could be confused with the scale factor).
The conformal factor Ω can denote either Ψτ(x)1/2 or Ψτ(x)−1. By ∂a = ∂AA′ we denote the
flat torsion-free covariant derivative in four-dimensional Minkowski space with signature
(+,−,−,−). gab is the Minkowski-space metric.

We begin with

∇aΩεBC = 0, (154)

∇aΩ−1εBC = 0, (155)

∇aΩ̄εB′C′ = 0, (156)

∇aΩ̄−1εB′C′ = 0. (157)

When comparing our formulas with Equation (5.6.11) in [58], keep in mind that
our ∂a is denoted in the Penrose–Rindler monograph by ∇a, so our ∇a stands for their ∇̂a.
Practically, the only consequence of this conflict of notation is in the opposite sign of the
torsion tensor.

Spinor connection is denoted by

∇a f B = ∂a f B −ΘaB
C f C (158)

∇a f B′ = ∂a f B′ − Θ̄aB′
C′ f C′ . (159)

Equations (154)–(157) imply

ΘaBC = Θa(BC) +
1
2

Ω−1∂aΩ εBC, (160)

Θ̄aB′C′ = Θ̄a(B′C′) +
1
2

Ω̄−1∂aΩ̄ εB′C′ . (161)

The torsion tensor is given by

(∇a∇b −∇b∇a) f =
(
−ΘaBCεB′C′ − Θ̄aB′C′ εBC + Θb ACεA′C′ + Θ̄b A′C′ εAC

)
∇c f (162)

= Tabc∇c f (163)

(note the sign difference with respect to Equation (4.4.37) in [58]). The study of complex
conformal transformations was initiated in [59] with the conclusion that Tabc 6= 0 may be
an interesting alternative to the usual choice of Tabc = 0. Although we generally agree here
with Penrose, we will not exactly follow the suggestions from [59]. However, before we
present our own preferred spinor connection let us first recall the results from [59].

11.1. The Case Tabc = 0

Assume that Tabc = 0 in addition to (154)–(157). Then (cf. (4.4.47) in [58])
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ΘaB
C = iΠaεB

C + ΥB A′ εA
C (164)

=
1
4

(
Ω−1∂aΩ− Ω̄−1∂aΩ̄

)
εB

C + εA
C∂B A′ ln |Ω|, (165)

Θ̄aB′
C′ = −iΠaεB′

C′ + ΥAB′ εA′
C′ (166)

= −1
4

(
Ω−1∂aΩ− Ω̄−1∂aΩ̄

)
εB′

C′ + εA′
C′∂AB′ ln |Ω|. (167)

The world-vectors Πa and Υa are real. The particular case Ω = eiθ , |Ω| = 1, leads to

ΘaBC =
i
2

∂aθ εBC (168)

and was discussed by Infeld and van der Waerden in their attempt to derive electromagnetic
fields directly from spinor connections (168). Connection (168) bears a superficial similarity
to the antisymmetric connection we discussed in Section 11.3. However, the essential
difference between (168) and (181) is that the latter can be real.

Transformation

ΦB1 B2 ...Bn = Ω
n
4−

1
2 Ω̄−

n
4−

1
2 ϕB1 B2 ...Bn (169)

implies

Ω−
n
4 +

1
2 Ω̄

n
4 +

1
2∇aΦB1 B2 ...Bn = ∂a ϕB1 B2 ...Bn (170)

−(∂a ln |Ω|)ϕB1 B2 ...Bn − (∂B1 A′ ln |Ω|)ϕAB2 ...Bn − · · · − (∂Bn A′ ln |Ω|)ϕB1 B2 ... A

If ϕB1 ...Bn is totally symmetric then

−(∂A A′ ln |Ω|)ϕB1 B2 ...Bn − (∂B1 A′ ln |Ω|)ϕAB2 ...Bn − · · · − (∂Bn A′ ln |Ω|)ϕB1 B2 ... A

is totally symmetric in AB1. . .Bn. Transvecting A with any Bj we obtain a conformally
covariant formula

Ω−
n
4 +

1
2 Ω̄

n
4 +

1
2∇Bj

A′ΦB1 ...Bj ...Bn = ∂Bj
A′ϕB1 ...Bj ...Bn . (171)

The massless-field equation

∂Bj
A′ϕB1 ...Bj ...Bn = 0 (172)

thus implies

∇Bj
A′ΦB1 ...Bj ...Bn = 0. (173)

Conformal transformation (169) was introduced in [59]. If Ω = |Ω| then (169) takes
the well-known form

ΦB1 B2 ...Bn = Ω−1 ϕB1 B2 ...Bn . (174)

For Ω = |Ω|, the massless fields are conformally invariant with conformal weight −1,
which is the standard result. For a complex Ω the weight is given by (169).

11.2. Penrose Connection for Tabc 6= 0

If one insists on (174) for a complex Ω one may follow the suggestion of Penrose [59]
and assume that Tabc 6= 0, with Πa = 0 in (164)–(166),
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ΘaB
X = ΥB A′ εA

X , (175)

Υa = Ω−1∂aΩ, (176)

ΦB1 B2 ...Bn = Ω−1 ϕB1 B2 ...Bn . (177)

Then

Ω∇aΦB1 B2 ...Bn = ∂a ϕB1 B2 ...Bn

−(∂a ln Ω)ϕB1 B2 ...Bn − (∂B1 A′ ln Ω)ϕAB2 ...Bn + · · · − (∂Bn A′ ln Ω)ϕB1 B2 ... A (178)

which is analogous to the right-hand side of (170). Symmetry ϕB1 ...Bn = ϕ(B1 ...Bn) implies

Ω∇Bj
A′ΦB1 ...Bj ...Bn = ∂Bj

A′ϕB1 ...Bj ...Bn (179)

so that the massless field is conformally invariant with weight −1, as in the real case
Ω = |Ω|, but for the price of non-vanishing torsion.

11.3. Alternative Connection for Tabc 6= 0

Once we decide on non-zero torsion, we may go back to (160)–(161) and take the
simple case of connections whose symmetric parts vanish,

Θa(BC) = 0 = Θ̄a(B′C′). (180)

Then,

ΘaBC =
1
2

Ω−1∂aΩ εBC, (181)

Θ̄aB′C′ =
1
2

Ω̄−1∂aΩ̄ εB′C′ , (182)

leads to covariant derivatives

∇a f B =
(
∂a + ∂a ln Ω−

1
2
)

f B, (183)

∇a f B′ =
(
∂a + ∂a ln Ω̄−

1
2
)

f B′ , (184)

with non-trivial torsion tensor

Tabc = −∂a ln |Ω|gbc + ∂b ln |Ω|gac. (185)

Infeld–van der Waerden connection satisfies |Ω| = 1, so its torsion vanishes and we
are back to Section 11.1 with Υa = 0.

The main advantage of our new form of connection can be seen in the formula linking
∇ with ∂,

Ω−
n−k

2 Ω̄−
m−l

2 ∇a
(
Ω

n−k
2 Ω̄

m−l
2 ϕB1 ...Bn B′1 ...B′m

C1 ...Ck C′1 ...C′l
)

= ∂a ϕB1 ...Bn B′1 ...B′m
C1 ...Ck C′1 ...C′l . (186)

Equation (186) just links ∇AA′ with ∂AA′ and does not involve transvection of A with a
field index. For this reason, (186) holds true independently of field equations fulfilled by ϕ.
This is why this type of covariant differentiation may be employed in the particular case of
m 6= 0 fields.

Formulas

ΦB1 ...Bn B′1 ...B′m
C1 ...Ck C′1 ...C′l = Ω

n−k
2 Ω̄

m−l
2 ϕB1 ...Bn B′1 ...B′m

C1 ...Ck C′1 ...C′l , (187)

Ω−
n−k

2 Ω̄−
m−l

2 ∇aΦB1 ...Bn B′1 ...B′m
C1 ...Ck C′1 ...C′l = ∂a ϕB1 ...Bn B′1 ...B′m

C1 ...Ck C′1 ...C′l , (188)
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when compared with the complicated expressions (170) and (178), show the degree of
simplification and generality we obtain. Of particular interest is the case where Ω relates
background Minkowski space with the universe defined by Ψτ(x) 6= 0.

In the next section we will discuss the free Dirac equation with non-zero mass, but first
let us cross-check some important special cases. For εAB we have n = 2, m = k = l = 0,
and we indeed obtain

Ω−1∇a
(
ΩεB1 B2

)
= ∂aεB1 B2 = 0 (189)

because ε is independent of x. Analogously, for εAB we have k = 2 and m = n = l = 0,

Ω∇a
(
Ω−1εC1 C2

)
= ∂aεC1 C2 = 0. (190)

Of particular interest is the case of the world-vector field xa itself (n = m = 0, and
k = l = 1),

Ω
1
2 Ω̄

1
2∇a

(
Ω−

1
2 Ω̄−

1
2 xb) = xb∂a ln Ω−

1
2 Ω̄−

1
2 + ∂axb + xb∂a ln Ω

1
2 Ω̄

1
2 (191)

= ∂axb = ga
b. (192)

A similar calculation yields

Ω−
1
2 Ω̄−

1
2∇a

(
Ω

1
2 Ω̄

1
2 xb
)

= gab. (193)

The formulas are valid for any Ω, complex or real. Actually, in the next section we will
see that the case Ω = |Ω| is particularly interesting when it comes to massive fields.

12. First-Quantized Dirac Equation

Let us consider the first-quantized free Dirac’s electron with mass m as a test of the
proposed description of conformal properties of massive fields. For large τ we expect the
bispinor field

(
ψA(x), ψA′(x)

)
, x ∈ M, which is scanned by the subspace ofM, defined by

Ψτ(x) 6= 0. This subspace looks ‘almost like a hyperplane’ propagating towards the future.
If we assume that a single Dirac electron does not influence the evolution of Ψτ(x), we can
treat Ψτ(x) as a given solution of an empty universe Schrödinger equation that determines
the flow of quantum time.

Obviously, we do not discuss here the full dynamics with Hamiltonian (130) and
second-quantized energy momentum tensor of the Dirac field (cf. Sections 5.8–5.10 in [58]).
Instead of discussing the influence of matter fields on the wave function of the universe,
we try to understand why and how the concrete choice of Ψτ(x) may look like a conformal
modification of the geometry of space-time.

A two-spinor form of Dirac’s equation for an electron of mass m is given in the
background Minkowski space by [58]

∂B A′ψ
B = −MψA′ , (194)

∂AB′ψ
B′ = −MψA, (195)

where M = mc/(h̄
√

2). (186) implies

Ω
1
2∇a

(
Ω−

1
2 ϕC1

)
= ∂a ϕC1 , (n = m = l = 0, k = 1), (196)

Ω̄
1
2∇a

(
Ω̄−

1
2 ϕC′1

)
= ∂a ϕC′1 , (n = m = k = 0, l = 1), (197)

so Dirac’s equation is transformed into

∇BB′
(
Ω−

1
2 ψB) = −MΩ−

1
2 ψB′ , (198)

∇BB′
(
Ω̄−

1
2 ψB′) = −MΩ̄−

1
2 ψB. (199)

If Ω = |Ω| then (198)–(199) is just a conformally transformed form of (194)–(195).
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The link between conformal invariance and mass crucially depends on torsion of the
connection. The result seems interesting in itself and deserves further study.

The most natural choice of Ω then corresponds to (150) if we additionally assume
that the wave function of the universe Ψτ(x) is real and non-negative. Reality and non-
negativity are preserved by (3).

The conformally rescaled Dirac equation now reads

∇BB′
(√

ΨτψB) = −M
√

ΨτψB′ , (200)

∇BB′
(√

ΨτψB′) = −M
√

ΨτψB, (201)

with covariant derivatives

∇a f B =
(
∂a + ∂a ln

√
Ψτ

)
f B, (202)

∇a f B′ =
(
∂a + ∂a ln

√
Ψτ

)
f B′ , (203)

and torsion

Tabc = ∂a ln Ψτ gbc − ∂b ln Ψτ gac. (204)

Covariant derivatives (202)–(203) may be easily confused with standard modifications
of ∂a by a local U(1) electromagnetic gauge transformation. The main difference is that the
connection in (202)–(203) is spin-dependent, i.e., depends on the spinor type of the field.
Therefore, this is a true spin connection, unrelated to the notion of charge. Generalization of
spinor connections to charged fields is described in Chapter 5 of [58]. The same construction
can be adapted here.

Let us note that the spinor indices have been raised and lowered by means of
Minkowskian εAB and εAB. This can be regarded as a logical inconsistency, which leads
now to an alternative interpretation of (198)–(199).

Indeed, we have introduced ∇a by demanding (154)–(157). Returning to (198)–(199),
but rewritten as

∇BB′ ψ̂
B = −MΩ−

1
2 Ω̄−

1
2 Ω̄−

1
2 ψC′︸ ︷︷ ︸

ψ̂C′

Ω̄εC′B′︸ ︷︷ ︸
ε̂C′ B′

, (205)

∇BB′ ψ̂
B′ = −MΩ̄−

1
2 Ω−

1
2 Ω−

1
2 ψC︸ ︷︷ ︸

ψ̂C

ΩεCB︸ ︷︷ ︸
ε̂C B

, (206)

we obtain Dirac’s equation with spinor indices lowered according to the rules of the
universe, and not the ones of the background Minkowski space,

∇BB′ ψ̂
B = −M̂ψ̂B′ , (207)

∇BB′ ψ̂
B′ = −M̂ψ̂B. (208)

Here,

ψ̂B = Ω−
1
2 ψB, (209)

ψ̂B′ = Ω̄−
1
2 ψB′ , (210)

ε̂CB = ΩεCB, (211)

ε̂C′B′ = Ω̄εC′B′ , (212)

ψ̂B = ψ̂C ε̂CB = Ω
1
2 ψB, (213)

ψ̂B′ = ψ̂C′ ε̂C′B′ = Ω̄
1
2 ψB′ , (214)

M̂ = MΩ̄−
1
2 Ω−

1
2 . (215)
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The last term is Higgs-like. Indeed, squaring the mass and employing (150), we find

M̂2 = M2Ω̄−1Ω−1 = M2|Ψτ |2. (216)

Possible links between conformal rescalings and Higgs fields have been investigated
in [63,64], but typically with the implicit assumption of zero mass. The present construction
sheds new light on the problem and requires further study.

Ω can in principle be complex, but Ω = |Ω| = Ψ−1
τ is again the simplest choice:

ψ̂B =
√

ΨτψB, (217)

ψ̂B′ =
√

ΨτψB′ , (218)

ε̂CB = Ψ−1
τ εCB, (219)

ε̂C′B′ = Ψ−1
τ εC′B′ , (220)

ε̂CB = ΨτεCB, (221)

ε̂C′B′ = ΨτεC′B′ , (222)

ψ̂B = ψ̂C ε̂CB = ψB/
√

Ψτ , (223)

ψ̂B′ = ψ̂C′ ε̂C′B′ = ψB′/
√

Ψτ , (224)

ĝab = |Ψτ |−2gab, (225)

ĝab = |Ψτ |2gab, (226)

M̂ = MΨτ = M
√

Z χτ . (227)

Z = maxx{|Ψτ(x)|2} is a renormalization constant. Effectively, the mass of the elec-
tron, as seen from the interior of the universe, becomes renormalized and multiplied by a
cutoff function.

13. 1 + 1 Revisited

This section summarizes all the essential steps of the construction on toy models in
(1 + 1)-dimensional Minkowski space. Calculations are performed in hyperbolic coordi-
nates but, as opposed to [39], do not crucially depend on their properties.

13.1. Scalar Product

In hyperbolic coordinates,

x0 = x cosh ξ, x1 = x sinh ξ, (228)

the scalar product reads

〈F|G〉 =
∫

V+

d2x F(x0, x1)G(x0, x1) (229)

=
∫ ∞

0
dx
∫ ∞

−∞
dξ x f (x, ξ)g(x, ξ) = 〈 f |g〉, (230)

where f (x, ξ) = F(x cosh ξ, x sinh ξ), etc.

13.2. Dynamics of Empty Universe

The dynamics is given by

Ψτ(x) = Ψτ0

(√
x2 − (aτ)2 + (aτ0)

2 cosh ξ,
√
x2 − (aτ)2 + (aτ0)

2 sinh ξ

)
(231)

= ψτ0

(√
x2 − (aτ)2 + (aτ0)

2, ξ

)
= ψτ(x, ξ), for x2 − (aτ)

2 + (aτ0)
2 > 0 (232)
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and

ψτ(x, ξ) = 0, for x2 − (aτ)
2 + (aτ0)

2 ≤ 0. (233)

The empty-universe Hamiltonian

H0 = −i
`2

2x2 xµ∂µ = −i`2 ∂

∂(x2)
(234)

implies that the dynamics acts by displacement in the x2 variable,

ψτ(x, ξ) = e−i((aτ)2−(aτ0 )
2)H0/`2

ψτ0(x, ξ) (235)

= e
−((aτ)2−(aτ0 )

2) ∂
∂(x2) ψτ0(

√
x2, ξ) = ψτ0

(√
x2 − (aτ)2 + (aτ0)

2, ξ

)
, for x2 ≥ (aτ)

2 − (aτ0)
2, (236)

and

ψτ(x, ξ) = 0, for x2 < (aτ)
2 − (aτ0)

2. (237)

The parameter that plays the role of ‘quantum time’ is given by (aτ)2. The simplest
parametrization is (aτ)2 = `2τ.

13.3. Group vs. Semigroup

The dynamics is unitary for any initial condition ψτ0(x, ξ) if τ0 → τ is equivalent
to translation by (aτ)2 − (aτ0)

2 to the right in the space of the variable x2 ∈ R+. This is
equivalent to (aτ)2 − (aτ0)

2 ≥ 0.
Our dynamics is effectively given by a unitary representation of the semigroup of

translations in R+. If the translation ψτ0(x, ξ) 7→ ψτ(x, ξ) is to the right, the inverse trans-
lation to the left, ψτ(x, ξ) 7→ ψτ0(x, ξ) is unitary as well (evolution is locally reversible).
However, although all translations to the right are unitary, this is not true of all translations
to the left. The latter property automatically introduces a global arrow of time, in spite of
local reversibility. Figure 3 illustrates these properties.

Figure 3. All translations to the right and some translations to the left are unitary, as opposed to those
translations to the left that decrease the area under the curve. The disallowed translations cannot
bring us to the negative axis of R, yet they influence the norm of the state vector. Any shift to the
right is unitary and reversible (local reversibility). In this sense, the global arrow of time coexists
with local reversibility of time evolution. Note that the shifted variable is not x but x2 (for n = 1 + 1),
and xn for arbitrary n. The shift in xn shrinks the time-like width of the membrane when plotted in
plain x-coordinates.

13.4. Unitarity of the Semigroup

For simplicity assume (aτ0)
2 = `2τ0 = 0. One begins with

〈 fτ |gτ〉 =
∫ ∞

0
dx
∫ ∞

−∞
dξ x fτ(x, ξ)gτ(x, ξ). (238)
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The dynamics is given by,

fτ(x, ξ) =

{
f0

(√
x2 − (aτ)2, ξ

)
for (aτ)2 ≤ x2

0 for 0 ≤ x2 ≤ (aτ)2
(239)

(and analogously for gτ(x, ξ)). Inserting (239) into (238), and then changing variables
y2 = x2 − (aτ)2, we find

〈 fτ |gτ〉 =
1
2

∫ ∞

(aτ)2
d(x2)

∫ ∞

−∞
dξ f0

(√
x2 − (aτ)2, ξ

)
g0

(√
x2 − (aτ)2, ξ

)
(240)

=
1
2

∫ ∞

0
d(y2)

∫ ∞

−∞
dξ f0

(√
y2, ξ

)
g0

(√
y2, ξ

)
= 〈 f0|g0〉. (241)

It is clear that the vanishing of (239) for 0 ≤ x2 ≤ (aτ)2 is essential for the proof of
〈 fτ |gτ〉 = 〈 fτ0 |gτ0〉. Therefore, disappearance of the past becomes a sine qua non-condition
for unitarity!

13.5. Time-like Width of the Membrane

Now assume an initial condition satisfying

ψ0(x, ξ) = 0, for x ≥ ∆0, (242)

for some ∆0 > 0. Accordingly, the initial wave function can be non-zero, ψ0(x, ξ) 6= 0, only
for 0 < x < ∆0. Formula (236) implies that ψτ(x, ξ) 6= 0, only for 0 <

√
x2 − (aτ)2 < ∆0,

i.e.,

|aτ | < x <
√
(aτ)2 + (∆0)2. (243)

The time-like width of the membrane shrinks to zero with aτ growing to infinity,

∆τ =
√
(aτ)2 + (∆0)2 − |aτ | =

(∆0)
2√

(aτ)2 + (∆0)2 + |aτ |
−→

aτ→∞
0. (244)

In n-dimensional Minkowski space the effect is even more pronounced as the shifted
variable is xn.

13.6. Spectral Properties of the Hamiltonian

The eigenvalue problem is

−i`2 ∂

∂(x2)
fE(x) = E fE(x), (245)

fE(x) = fE(0)eiEx2/`2
. (246)

Scalar product (230) implicitly involves integration
∫ ∞

0 d(x2), over the same variable
that occurs in (246). Spectral theorem reduces here to the Fourier analysis of wave packets
whose supports are subsets of R+. Fourier transform artefacts at 0, such as the Gibbs
phenomenon, do not occur because we consider wave packets as continuous (and vanishing)
at x = 0. Eigenvectors of H0 (plane waves) are complete. Eigenvalues E are given by
arbitrary real numbers (the Hamiltonian is unbounded from below). The same discussion
applies to Minkowski spaces of any dimension n.
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13.7. Interaction with Matter: Shape Dynamics as an Example

Let us consider some toy model of a universe filled with matter. For illustrative
purposes, the matter content can be described by a discrete degree of freedom A. The wave
function is ψτ(x, ξ, A), with total Hamiltonian

iψ̇τ(x, ξ, A) = Hψτ(x, ξ, A) (247)

= −i`2 ∂

∂(x2)
ψτ(x, ξ, A) + ∑

B
H1(x, ξ)ABψτ(x, ξ, B). (248)

Following Barbour’s shape dynamics [65], let us assume that interaction depends
solely on the shape variable ξ,

iψ̇τ(x, ξ, A) = −i`2 ∂

∂(x2)
ψτ(x, ξ, A) + ∑

B
H1(ξ)ABψτ(x, ξ, B). (249)

Our shape dynamics involves a interaction Hamiltonian analogous to the one from (130),

H1 = I ⊗
∫ ∞

−∞
dξ|ξ〉〈ξ| ⊗ H1(ξ) (250)

Separating variables, ψτ(x, ξ, A) = fτ(x)gτ(ξ, A), we obtain

i ḟτ(x) = −i`2 ∂

∂(x2)
fτ(x), (251)

iġτ(ξ, A) = ∑
B
H1(ξ)ABgτ(ξ, B). (252)

The solution

ψτ(x, ξ, A) =

{
f0

(√
x2 − `2τ

)
e−iτH1 g0(ξ, A) for `2τ ≤ x2

0 for 0 ≤ x2 ≤ `2τ
(253)

represents an entangled shape-matter state,

|ψτ〉 =
∫ ∞

0
dx x fτ(x)|x〉 ⊗∑

A

∫ ∞

−∞
dξ gτ(ξ, A)|ξ〉 ⊗ |A〉, (254)

while matter alone is described by the reduced density matrix

ρM
τ = ∑

AB

∫ ∞

−∞
dξ gτ(ξ, A)gτ(ξ, B)|A〉〈B|. (255)

The wave function of the universe is influenced by the presence of matter. The proba-
bility density of the universe alone is given by ∑A |ψτ(x, ξ, A)|2, and depends on the form
ofH1(ξ). With the initial condition analogous to (242),

f0(x) = 0, for x ≥ ∆0, (256)

we obtain the probability density that vanishes for x 6∈
[
`
√

τ,
√
`2τ + ∆2

0
]
.

It should be emphasized that the evolution parameter τ is huge—it counts out cosmic
time since τ = 0. The parameter we are dealing with in physical applications corresponds
to an infinitesimal increase τ 7→ τ + ∆τ (even if ‘infinitesimal’ means in this context a
million years). It is therefore justified to write

ρM
τ+∆τ ≈ ρM

τ − i∆τ ∑
ABC

∫ ∞

−∞
dξ
(
H1(ξ)ACgτ(ξ, C)gτ(ξ, B)− gτ(ξ, A)gτ(ξ, C)H1(ξ)CB

)
|A〉〈B|. (257)
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Assuming that the influence of a small material system (a molecule, say) on the wave
function of the universe is negligible, we can untangle ξ and A, gτ(ξ, A) ≈ gτ(ξ)φτ(A), so
that ρM

τ = |φτ〉〈φτ |, and

ρM
τ+∆τ ≈ ρM

τ − i∆τ ∑
ABC

∫ ∞

−∞
dξ |gτ(ξ)|2

(
H1(ξ)ACφτ(C)φτ(B)− φτ(A)φτ(C)H1(ξ)CB

)
|A〉〈B| (258)

= ρM
τ − i∆τ[HM

τ , ρM
τ ], (259)

where we have introduced the effective matter Hamiltonian

HM
τ =

∫ ∞

−∞
dξ |gτ(ξ)|2H1(ξ) =

∫
V+

d2x |Ψτ(x)|2H1(x). (260)

This is precisely the Hamiltonian (126) arrived at by heuristic considerations. The evo-
lution equation that represents the evolution of small amounts of matter thus takes the
usual von Neumann form

iρ̇M
τ = [HM

τ , ρM
τ ]. (261)

HM
τ is τ-dependent (integration is over a time dependent domain), but at time scales

available in quantum mechanical experiments it can be treated as time-independent,
HM

τ+∆τ ≈ HM
τ .

What we regard as a total Hamiltonian in our standard quantum mechanics or field
theory turns out to be an interaction of part of a true total Hamiltonian that includes the
universe itself. From the point of view of matter alone, the wave function of the universe
appears in a role of a ‘cutoff function’, regularizing integrals over matter fields. The fact that
time-like thickness ∆τ associated with |Ψτ(x)|2 shrinks to 0 is responsible for the effective
3D forms of 4D integrals occurring in (126) for late τs.

14. Assumptions in a Nutshell

Similarly to Cortázar’s Hopscotch, our article can be read according to two different
sequences of sections. The present one could become Section 2, while the previous one could
play the role of Section 3 (or the other way around). We will first concentrate on the physical
intuitions behind our construction, and then sketch possibilities of some generalizations
beyond the simple Minkowskian framework.

14.1. Physical Assumptions

We treat (1 + 3)-dimensional space-time as an exact analogy to three-dimensional
configuration space in non-relativistic quantum mechanics. A point in a universe can
exist in superposition of different locations, described by a τ-dependent wave function
Ψτ(x). A true universe may be regarded as a collection of N such points, analogous to
N-particle systems in non-relativistic quantum mechanics. What we do in the paper is
essentially a one-particle description, but an extension to Ψτ(x1, . . . , xN), xj ∈ V+ ⊂ R4,
based on (134), is worthy of further studies. A similar formalism in momentum space was
discussed in [51–55], with the conclusion that two types of N → ∞ limits are physically
meaningful. One plays the role of a weak law of large numbers, the other is interpreted as a
thermodynamic limit. Such a perspective is conceptually close to the idea of a causal set
of discrete points in space-time [66], with space-times as their continuum limits, but in a
version involving wave packets instead of points (instead of a classical point we have a
wave packet that represents a point-like object, such as in a matter-wave interferometer).

The coupling (130) between space-time and matter is analogous to Hamiltonians
occurring in the formalism of quantum time as proposed by Page and Wooters [56,57]. In
addition, a momentum-space analogue of such a ‘quantum-time’ structure can be found
in [51–55].
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The universe wave packet Ψτ(x) is extended in time-like directions by a non-zero
width ∆τ . A similar case occurs for the Chern–Simons time [67,68], although technically
the Chern–Simons formalism is completely unrelated to what we propose.

Popular explanations of general relativistic expansion of the Universe often employ
a metaphor of an inflating balloon, meant to represent an expanding three-dimensional
submanifold of four-dimensional space-time. The main intuition behind our formalism
is similar, only the purely mathematical three-dimensional submanifold is replaced by
a finite-thickness membrane which resembles a true balloon. As the balloon expands its
density decreases; however, by density we mean the density of probability. The fabric of
our universe is completely quantum.

In the systematization proposed by Rovelli [69], what we discuss is neither a global pre-
sentism, nor a static eternalism. At late τs, when ∆τ ≈ 0, we can speak of an approximately
global approximate presentism.

Another important guiding principle behind our formalism is the correspondence
principle with the usual quantum mechanics and field theory. At ‘late times’ (of the order
of 13–14 billion years) our new theory should reduce to something more standard, at least
within sufficiently small neighbourhoods of our labs (here ‘small’ means ‘of galaxy size’). We
expect that matter Hamiltonians should be approximately time-independent, at least at time
scales ∆t negligible with respect to 13–14 billion years. Only the full Hamiltonian is exactly
independent of τ. At corresponding size scales, the volume of integration of the matter-field
Hamiltonian densities should be approximately flat, due to negligible corrections to d3x
arising from the curvature of the proper-time hyperboloid at very late times.

We based the whole analysis on flat Minkowskian backgrounds, but it seems that
an analogous discussion could be performed in space-times that are only conformally
Minkowskian, simply by augmenting formulas (140)–(142) and (150)–(153) by additional
conformal factors. Alternatively, a conformally Minkowskian space-time should be first
conformally transformed into the Minkowski space, then the construction would follow
the lines discussed in the paper, and finally the result should be conformally transformed
back. The formalism that seems especially suitable from our perspective is Barbour’s shape
dynamics [65] due to its natural separation of the ‘time’ and ‘space’ variables discussed at
the end of the preceding section.

Coupling between matter and ‘geometry’ is described by the total Schrödinger-picture
Hamiltonian H = H0 +H1 that involves a free part H0 responsible for the expansion of
the empty universe. The more standard form of matter–geometry interaction occurs only at
an approximate level, if we treat Ψτ(x) as a background field which is not influenced by
matter. Therefore, all the considerations involving formulas such as |Ψτ(x)|2 =

√
|gτ(x)|

or similar, should be regarded as semi-classical.

14.2. Mathematical Assumptions

First of all, a universe is represented by a subset of space-time defined by Ψτ(x) 6= 0.
The world-vector xa belongs to the future-cone of some fiducial world-vector Xa = 0,
in some n-dimensional Minkowski space with signature (+,−, . . . ,−). In principle, one
could replace the fiducial world-vector Xa by a point X in some manifold. The field Ψτ(x)
would then belong to a fibre over X. The boundary condition is: Ψτ(x) = 0 if xa is not
future-time-like. In all the examples we assume that the support of Ψτ(x) is compact,
which can be weakened if needed. We assume that Ψτ(x) is a complex scalar field, square-
integrable with respect to dnx, but any spinor field would do as well. The dynamics is
given by a semigroup of translations in xn, where n is the dimension of the background
Minkowski space and x2 = gabxaxb.

This is one of the points that can be easily generalized beyond Minkowskian back-
grounds. Indeed, it suffices to replace the Minkowskian gab by a more general gab, provided
a global foliation parametrized by x exists. The shape dynamics is a natural candidate for
such generalizations. The dynamical semigroup would still be the translations of the nth
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power of x. The links between shape dynamics and the new framework are intriguing and
worthy of a detailed study.
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