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Abstract: Simple interpolation formulas are proposed for the description of the renormalization
group (RG) scale dependences of the gravitational couplings in the framework of the 2-parameters
Einstein-Hilbert (EH) theory of gravity and applied to a simple, analytically solvable, spatially
homogeneous and isotropic, spatially flat model universe. The analytical solution is found in two
schemes incorporating different methods of the determination of the conversion rule k(t) of the RG
scale k to the cosmological time t. In the case of the discussed model these schemes turn out to yield
identical cosmological evolution. Explicit analytical formulas are found for the conversion rule k(t) as
well as for the characteristic time scales tG and tΛ > tG corresponding to the dynamical energy scales
kG and kΛ, respectively, arising form the RG analysis of the EH theory. It is shown that there exists a
model-dependent time scale td (tG ≤ td < tΛ) at which the accelerating expansion changes to the
decelerating one. It is shown that the evolution runs from a well-identified cosmological fixed point
to another one. As a by-product we show that the entropy of the system decreases monotonically in
the interval 0 < t ≤ tΛ due to the quantum effects.

Keywords: renormalization group

1. Introduction

Asymptotically safe cosmology [1–6] relies on the success of the asymptotic safety
scenario [7] in quantum gravity achieved in the last two decades (see the status reports
in [8–10] and the references therein). Based on the RG studies of the four-dimensional
two-parameter EH gravity in the continuum, good evidence is found for the existence of an
ultraviolet (UV) fixed point, the so-called Reuter fixed point, and that of the Gaussian fixed
point [11–21]. It is assumed that the early time evolution of the Universe was governed
by the Reuter fixed point, revealing asymptotic safety, while its evolution preceding some-
what the present-day time was dictated by the perturbative regime of the gravitational
couplings near the Gaussian fixed point. The idea is that at any cosmological time t, the
relevant physical processes in the Universe are those of a given energy scale k = k(t)
identified with the RG scale k. The function k(t) is called below the k-to-t conversion rule.
As the authors pointed out in [22], the main features of the RG flow of the gravitational
couplings are rather independent of the fine details of RG scheme used, as well as the
matter content of the Universe. Moreover, the RG analyses of the Euclidean and Lorentzian
theories yield rather similar results in that respect [23–27]. These features of the RG flow
on realistic RG trajectories include (i) three scaling regions, the UV regime governed by
the Reuter fixed point, the crossover regime ended in the perturbative one close to the
Gaussian fixed point, and the IR region where the gravitational couplings become almost
scale-independent, and (ii) the order of magnitude of their limit points at kG ∼ O(mPl)
and kΛ ∼ O(10−30kG), where mPl is the Planck mass. For the expanding Universe, one
naturally expects that the decreasing energy scale k should correspond to the increasing
cosmological time t. The RG studies prove that Newton’s gravitational coupling G vanishes
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at the Reuter fixed point, making it plausible that the quantum-improved evolution equa-
tions and the quantum-improved Friedmann equations should keep their classical form
with the only modification that Newton’s gravitational constant G0 and the cosmological
constant Λ0 (the null index indicates the present-day values) should be replaced by the
time-dependent couplings G(t) ≡ G(k(t)) and Λ(t) ≡ Λ(k(t)), respectively. From now
on, we assume that the functions G(k) and Λ(k) are well-known functions from the RG
analysis of quantum gravity.

So far, quantum fluctuations of the metric and those of the matter fields have been
neglected, and the cosmological evolution of the homogeneous and isotropic Universe is
described by the quantum modified Friedmann equations and their consistency condition,
where the gravitational constants are replaced by their time-dependent counterparts. These
equations represent the symmetry-reduced sector of the quantum-improved version of
classical EH gravity, when the gravitational constants G0 and Λ0 are replaced by their
time-dependent counterparts. Then, the Bianchi identity ∇µGµν = 0 (for the Einstein
tensor Gµν) implies the quantum-improved consistency condition ∇µ[G(t)Tµν] = 0 of the
Einstein equations with the stress–energy tensor of matter Tµν. Having performed the
symmetry reduction to the homogeneous and isotropic sector, one obtains the quantum-
improved consistency condition (cf. (13) below) of the quantum-improved Friedmann
equations, which is now different from the law of the local energy conservation of matter,
as it was in the classical case. Let us say that one formulates the cosmological evolution
problem in terms of the Hubble parameter H(t), the energy density of matter ρ(m)(t), and
the function k(t). Then, one has only two independent equations for the determination
of three yet-unknown functions. Regarding this problem, various approaches have been
worked out in the literature. The first attempts assumed that one has to make some intuitive
assumption on the function k(t) such as k = ξ/t with some constant ξ, require the local
conservation of the energy of matter separately as in classical cosmology [28], and adjust
the constant ξ in the UV and in the perturbative regimes separately in order to achieve
consistency among the four equations [29,30]. These first efforts have given a hint about
the scale- or time-dependence of ξ itself: different results have been obtained for ξ in the
UV and in the perturbative regimes. There is an approach that determines the function
k(t) from the interplay between the local energy conservation of matter and the reduced
consistency condition (cf. (14) below) following from the quantum-improved consistency
condition [31]. Below, we shall follow this route under Scheme A. Another approach has
been proposed in the framework of dimensionless cosmological variables [32,33], when the
k-to-t conversion rule is determined from a constraint on the RG parameters (cf. (24) below),
which follows from taking the first derivative of the Friedmann constraint with respect to
the RG scale k [1]. This approach is particularly adequate to consider models in which both
gravitation and matter underlie quantum effects, but we restrict now ourselves to a model
where matter is represented by a barotropic fluid with the classical equation of state (EOS).
Below, we shall follow this route under Scheme B. Finally, we have to mention the approach
when one gives up the requirement of the local energy conservation of matter separately,
then one has to go back to some intuitive choice of the conversion rule k-to-t and establish
that matter is expanding in a nonadiabatic manner, and the entropy production can be
read off from the thermodynamical reinterpretation of the quantum-improved consistency
condition [3]. We should mention that, in particular systems, both Scheme A and Scheme B
may reproduce the naive inverse proportionality k ∝ 1/t, but not in general. It has been
shown that, according to the matter content of the Universe, the cosmological evolution
may exhibit cosmological fixed points, where the RG scale freezes in, and ones where the
RG scale continues to evolve; a detailed classification of the possible cosmological fixed
points can be found in [1].

The main goal of the present paper was to put forward interpolation formulas that
describe the above-mentioned main features of the RG flow of the gravitational couplings.
Then, we shall apply these formulas to a particularly simple, analytically solvable model
Universe, in order to obtain analytic relations for the characteristic time scales of the
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cosmological evolution. We restricted ourselves to the asymptotically safe cosmology
based on the two-parameter EH gravity. We intended to give interpolation formulas that
reproduce the main features of the RG flow discussed in detail in [22]. The UV scaling
for k > kG is governed by the Reuter fixed point, while for 0 < k ≤ kΛ, the gravitational
couplings take their present-day constant values G0 = m−2

Pl measured at the laboratory
scale kl ≈ 8.2× 10−34mPl ≈ 10−3kΛ and Λ0 ≈ 2.7× 10−122m2

Pl observed at the Hubble scale
kH ≈ 8.2× 10−62mPl � kΛ. (It should be noticed that, along the RG trajectories relevant for
the evolution of our Universe, there may exist a deep IR regime for k . kl ∼ O(10−3kΛ),
where the gravitational couplings G and Λ tend to zero in the limit k→ 0 [6]; this scaling
region can affect, however, the evolution of the Universe in the late future, which is out of
the scope of our discussion in the present paper).

On the space of the dimensionless couplings (g = Gk2, λ = Λ/k2), the physical RG
trajectory relevant for our Universe starts at the Reuter fixed point (g∗ ≈ 0.707, λ∗ ≈ 0.193).
We note that the position of the Reuter fixed point depends slightly on the details of the
RG analysis and can be influenced by the matter content of the early Universe, but our
considerations make use of the existence of the Reuter fixed point rather than its position.
For k ≈ kΛ, it approaches the Gaussian fixed point at (gG = 0, λG = 0), and with the further
decrease of the RG scale, k runs away from the Gaussian fixed point towards positive values
of λ, while the dimensionful couplings take their constant values observed in the present
day. The scaling of the couplings slightly above the scale kΛ is the so-called perturbative
regime. The proposed interpolation formulas recover the UV scaling laws and the constant
values G0 and Λ0 below the scale kΛ, and in the crossover regime k ∈ [kΛ, kG] are motivated
by the scaling in the perturbative regime. The interpolation formulas contain three free
parameters, which are determined from the continuity of G(k), Λ(k), and that of the matter
density ρ(m) at the dynamical scale kG, while the scale kΛ ≈ 8.2× 10−31mPl is taken from
the RG analyses [22].

The interpolation formulas are applied to a rather simple model Universe making
the assumptions that (i) the Universe is spatially homogeneous and isotropic, (ii) it is
spatially flat, (iii) its matter content is assigned to a single type of barotropic fluid with the
EOS p( f ) = wρ( f ) with the constant 0 ≤ w < 1 and p( f ) and ρ( f ) being its pressure and
energy density, respectively, while (iv) the barotropic fluid is subjected to the law of local
energy conservation separately. In this model, we identify the presence of the evolving
cosmological coupling Λ with that of the dark energy and call the quantity:

ρ(Λ) =
Λ

8πG
(1)

the density of the dark energy. It is rather giving a name to the Λ-component of the model;
to go beyond the nature of dark energy is out of the scope of the present paper. Motivated
by the interpretation used in [1], we take the point of view that ρ(Λ) can be considered as
the field-independent potential energy density of a condensed scalar field, which implies
the EOS p(Λ) = −ρ(Λ) with the pressure p(Λ) of the dark energy. Since the constituent
Λ is represented in its own right explicitly in our model, we assumed that the equation
of state parameter of the other constituent of matter is definitely larger than w = −1.
The cases of barotropic fluids with a constant negative parameter w ∈ (−1, 0), as well as
those with w ∈ (1/3, 1] are rather hypothetical ones according to our knowledge. For a
one-component scalar field ϕ(t,~x) in the slow-roll inflationary scenario, the parameter
w = p(ϕ)/ρ(ϕ) takes initially negative values close to, but larger than−1 and may approach
values either w ≈ 0 (dust) or w ≈ 1/3 (ultrarelativistic gas) at the graceful exit depending
on the particular form of the inflaton potential [34].

It is well known that, if the Universe was filled by radiation or dust after the Big
Bang, the quantum improvement may make unnecessary any fine-tuning of the initial
conditions or the introduction of an inflaton field, in order to solve the horizon and flatness
problems [29]. In that case, the physical phase trajectory runs to a universal attractor, being
independent of the IR values of the gravitational couplings. The early time evolution
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is characterized by the time-dependent Hubble parameter H = h/t and the scale factor
a(t) =Mth with h = 4

3(1+w)
. For h ≥ 1, both the flatness and horizon problems are solved

automatically [29]: (i) the universal attractor starts from a singularity at t = 0, characterized
by constant and equal cosmological parameters Ω(m) and Ω(Λ) of the matter and that
of the dark energy, respectively, so that Ω(m) = Ω(Λ) = 1

2 implies in total Ω(tot) = 1
and a flat spatial geometry; (ii) no finite particle horizon exists, so that our entire visible
Universe should have been causally connected in the Planck era. It should be noted that the
inequality h ≥ 1 allows for considering hypothetical barotropic fluids with −1 < w < 0,
as well. Our formulas found below remain valid for any values of the parameter w in the
interval −1 < w < 1.

Applying the proposed interpolation formulas to the above-described spatially flat
model Universe enables one to solve analytically the problem of evolution for times from
the Big Bang at t = 0 to the asymptotically far future t → ∞. This circumstance enables
one to obtain analytic expressions for the k-to-t conversion rule in the Planck and crossover
eras, as well as those for the characteristic time scales tG and tΛ corresponding to the
dynamical RG scales kG and kΛ, respectively. The discussion of the evolution problem is
performed both in Scheme A and Scheme B. Both descriptions provide identical results for
the entire cosmological evolution including the characteristic time scales. This is basically
the consequence of the equivalence of the reduced consistency condition and the constraint
on the RG parameters, Equations (14) and (24), respectively, in the case of the discussed
particular model Universe. After continuously sewing the solutions on the various intervals
for k(t) at t = tG and those for H(t) at t = tΛ, the cosmological quantities H(t), ρ( f )(t),
and ρ(Λ)(t) become continuous. In the Planck era for 0 < t ≤ tG, the well-known universal
evolution governed by the Reuter fixed point is recovered with the simple conversion rule
k ∝ 1/t, while for late times t ≥ tΛ, the classical evolution holds trivially. In the crossover
era for tG ≤ t ≤ tΛ, a nontrivial with increasing cosmological time strictly monotonically
decreasing function k(t) is obtained. Nevertheless, the simple proportionality tΛ ∝ kΛ
remains yet a rather good approximation. The solution found in Scheme B enables us to
identify the evolution in the time interval 0 < t ≤ tG as a cosmological fixed point with
an evolving RG scale k(t) and the dominance of a mixture of dark energy and barotropic
fluid in equal proportions. The evolution of the model Universe in the late future for t > tΛ
corresponds to another cosmological fixed point with a frozen-in RG scale at kΛ and dark
energy domination in the asymptotic limit t→ ∞. It is argued that the evolution of dark
energy is accompanied by the decrease of its entropy in the Planck and crossover eras,
while the entropy of the barotropic fluid is preserved.

2. Interpolation Formulas

In this section, we propose simple formulas reflecting the main features of the RG flow
of the gravitational couplings G and Λ in the four-dimensional, two-parameter EH gravity
and interpolating between the UV and IR scaling regimes. In the parameter space of the
dimensionless couplings (g, λ), the RG trajectories are considered along which both of the
couplings are nonnegative, running in the broken symmetry phase. The physically relevant
trajectories emanate from the Reuter fixed point (g∗, λ∗), pass the close neighborhood of
the Gaussian fixed point, and possibly approach an IR fixed point for k→ 0. The latter is
expressed in our treatment by saying that the couplings G and Λ take their present-day
observed values in the IR region. This behavior, based on the results of much effort on
the RG analysis of the EH theory of general relativity, was thoroughly discussed in [22].
There are two dynamical scales characterizing the RG flow: the scale kG above which
the UV scaling laws G = g∗/k2 and Λ = λ∗k2 hold and the scale kΛ below which the
IR regime with G = G0 and Λ = Λ0 is found. At the scale kΛ, the RG trajectory is close
to the Gaussian fixed point, so that for scales k larger, but close to kΛ, the perturbative
scaling laws can be used (see, e.g., Equations (1.2) and (1.3) in [3], or Equation (26) in [22]).
These perturbative laws motivated our choice of the interpolation formulas in the crossover
regime k ∈ [kΛ, kG]. Thus, the following simple formulas are proposed:
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G(k) =

{ G0 for 0 ≤ k ≤ kΛ
G0 − b(k2 − k2

Λ) for kΛ < k < kG
g∗k−2 for kG ≤ k

, (2)

Λ(k) =

{ Λ0 for 0 ≤ k < kΛ
Λ0 + c(k4 − k4

Λ) for kΛ ≤ k < kG
λ∗k2 for kG ≤ k

, (3)

where kΛ ≈ 8.2× 10−31mPl is taken from the RG analysis [22] and kG, b, c are still free
parameters. By construction, the formulas are continuous at the scale k = kΛ. Two
algebraic equations for the determination of the three yet-unknown parameters are the
continuity conditions for G and Λ at the scale kG. The third equation is obtained by
requiring the continuity of the ratio of the time derivatives of the gravitational couplings
rΛ̇/Ġ ≡

dΛ(k)/dk
dG/dk at the scale kG. (Here and below, the dot denotes the time derivative.)

Since local energy conservation is supposed to hold separately for matter, the consistency
condition ∇µ(GTµν) = 0 reduces to an expression, the reduced consistency condition (cf.
Equation (14) below) according to which the energy density of matter is proportional to the
ratio rΛ̇/Ġ. Therefore, the requirement of the continuity of that ratio ensures the continuity
of matter density ρ(m) at the scale kG. We shall see that the three requirements settle kG at a
value of the correct order of magnitude, kG ∼ O(mPl). The continuity conditions are then
the following:

Λ(kG) = Λ0 + c(k4
G − k4

Λ) = λ∗k2
G, (4)

G(kG) = G0 − b(k2
G − k2

Λ) =
g∗
k2

G
, (5)

rΛ̇/Ġ(kG) = −
2ck2

G
b

= −λ∗
g∗

k4
G. (6)

Making the working hypotheses that the order-of-magnitude estimates kG ∼ mPl � kΛ
and ck4

G � Λ0 hold, one obtains for the free parameters of the interpolation formulas:

k2
G =

3g∗
G0

, b =
2

9g∗
G2

0 , c =
λ∗
3g∗

G0. (7)

Then, we see that our working hypotheses are rather well-satisfied, because the following
estimates can be made: kG =

√
3g∗mPl ≈ 1.46mPl and ck4

G = λ∗k2
G = 3g∗λ∗

G0
≈ 0.4m2

Pl �
Λ0 ≈ 3 · 10−122m2

Pl.
One can check that the interpolation Formula (2) provides a good approximation of

the IR scaling law for scales close to, but above the scale kΛ given by Equation (26) in [22].
The latter can be approximated for k & kΛ, i.e., for k− kΛ � kG by

G(k) ≈ G0

(
1− 7

6π
G0(k2 − k2

Λ)

)
, (8)

where G(kΛ) = G0 was used. A comparison of the estimate (8) with our interpola-
tion Formula (2) yields b(est) = 7

6π G2
0 ≈ 0.37G2

0 , while according to our setting above,
b = 2

9g∗G2
0 ≈ 0.31G2

0 .
Finally, it was checked numerically that the interpolation Formulas (2) and (3) with

the parameter setting (7) reproduce fairly well the RG evolution of the couplings G and Λ
over the entire range of the RG scale covering roughly 40 orders of magnitude (see Figure 4
in [22]).
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3. Model Universe

In this section, we briefly overview the equations governing the evolution of the model
Universe with the properties (i)–(iv). Below, we intend to follow the evolution of this simple
model in Schemes A and B independently.

3.1. Scheme A

In order to be somewhat more general, let us consider models with the properties (i)
and (ii) containing some matter with energy density ρ(m) and pressure p(m). Assuming the
adiabatic expansion of matter implies the law of local energy conservation:

ρ̇(m) + 3H(ρ(m) + p(m)) = 0, (9)

where H = ȧ/a is the Hubble parameter and a denotes the scale factor of the Universe. The
local energy conservation for matter does not involve the gravitational couplings explicitly,
so that it keeps its unimproved form. Nevertheless, the time-dependence of the Hubble
parameter H is affected by quantum effects. The quantum-improved Friedmann equations
are given via the replacement of the observed constants G0 and Λ0 by their time-dependent
counterparts G(t) and Λ(t):

H2 =
8πG(t)

3
ρ(t) =

8πG(t)
3

ρ(m) +
Λ(t)

3
, (10)

ä
a

= −4πG(t)
3

(ρ(m) + 3p(m)) +
Λ(t)

3
. (11)

Equation (11) can be replaced by the simpler equation:

Ḣ = −4πG(t)(ρ + p) = −4πG(t)(ρ(m) + p(m)), (12)

where ρ = ρ(m) + ρ(Λ) and p = p(m) + p(Λ) stand for the total energy density and pressure,
respectively. The critical density ρc = H2/(8πG(t)) is identical to the total energy density,
since we restricted ourselves to models with flat spatial geometry. Equations (11) and (12)
are dynamical equations, whereas Equation (10) is the so-called Friedmann constraint laid
on the cosmological variables. Equations (10) and (11) imply the consistency condition:

ρ̇(m) + 3H(ρ(m) + p(m)) = −8πρ(m)Ġ + Λ̇
8πG

≡ P (m), (13)

which is the symmetry-reduced form of the condition∇µ(GTµν) = 0. Combining the latter
with the local energy conservation for matter, one finds the reduced consistency condition:

8πρ(m)Ġ + Λ̇ = 0, (14)

i.e., the vanishing of the quantity P (m). The condition P (m) = 0 expresses that, dur-
ing the evolution, the entropy of the matter is conserved [3]. Assuming the consistency
condition (13), as well as the law of the local energy conservation of matter is in agreement
with the treatment used in [28–30].

Although our interpolation formulas are not differentiable at t = tG and t = tΛ, the
continuity of the matter density ρ(m) ensures the continuity of the Hubble parameter H
and that of its first time derivative via the Friedmann Equations (10) and (12), respectively,
which implies the continuity of the scale factor a and its first and second time derivatives.
Furthermore, the continuity of the matter density ρ(m) implies that of its first time derivative
through Equation (13) with P (m) = 0.

It is noteworthy to make here a note on the entropy of the dark energy. In the case of
time-dependent G and Λ, the equation holds:

ρ̇(Λ) + 3H(ρ(Λ) + p(Λ)) = ρ̇(Λ) = P (Λ) (15)
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with

P (Λ) =
Λ̇− 8πρ(Λ)Ġ

8πG
= −ρc

Ġ
G
6= 0, (16)

where we made use of the EOS of the dark energy and the relation ρ(Λ) = ρ − ρ(m) =
ρc− ρ(m). Multiplying Equation (15) by the proper volume V of the Universe and comparing
it by the first law of thermodynamics applied to the dark energy as in [3], one reads off
from Equation (16) that the entropy S(Λ) of the dark energy changes, TṠ(Λ) = P (Λ)V ,
where T is the temperature of the dark energy. As a rule, the inequalities dG(k)/dk <
0 and k̇ < 0 hold, implying that Ġ = k̇(dG/dk) > 0, so that P (Λ) < 0. Thus, the
entropy S(Λ) should decrease in a realistic case. This does not contradict the second law of
thermodynamics, because the dark energy “in the auxiliary field G(t)” does not represent
a closed thermodynamical system. Assuming that the matter and the dark energy are in
thermodynamical equilibrium, the temperature T can be estimated by making use of the
Stefan–Boltzmann law, T = (ρ(m)/σ)1/4 with the constant σ determined by the number of
independent degrees of freedom of matter. Then, we obtain the estimate:

Ṡ(Λ) = −Vσ1/4 Ġ
G

ρc

(ρ(m))1/4
. (17)

The above-listed equations incorporate implicitly the yet-undetermined function
k = k(t), the k-to-t conversion rule. In the case of cosmological expansion, it is expected that
the RG scale k can be uniquely converted into the cosmological time t in such a manner that
strictly monotonically decreasing k corresponds to continuously and strictly monotonically
increasing t. Therefore, characteristic times tG < tΛ can be assigned to the dynamical RG
scales kΛ < kG. Let us turn now to the particular model characterized by the properties
(i)–(iv) and described in terms of the cosmological variables H(t), ρ(m)(t) = ρ( f )(t) and
the conversion rule k = k(t). For k < kΛ, i.e., for t > tΛ, the couplings G and Λ are frozen
at their values G0 and Λ0 taken at the scale kΛ, the consistency condition (13) reduces to
the law of the local energy conservation of matter, i.e., to Equation (9), so that we have
two independent equations, say Equations (9) and (10) for the two variables H(t) and
ρ( f )(t) for times t > tΛ. Therefore, the classical evolution takes place for times t > tΛ with
the initial conditions given at tΛ. For times 0 < t ≤ tΛ, quantum effects come into play via
the evolving gravitational couplings, and we have one more variable, k(t), as well as one
more equation, the reduced consistency condition (14). We take the point of view of [31]
that, for a given RG flow G(k) and Λ(k), the reduced consistency condition (14) can be
interpreted as an implicit equation for the determination of the conversion rule k = k(t).

3.2. Scheme B

Now, we turn to the description of the model with the properties (i)–(iv) in terms of the
dimensionless cosmological variables proposed in [1,32,33]. That model is the particular
case of the models discussed in [1], although in our model, the scalar field ϕ with the
potential energy density V(ϕ) is degenerated in the sense that it exhibits a single degree
of freedom incorporated in the actual value of Λ. Namely, we can think of the potential
V(ϕ) ≡ ρ(Λ) being independent of the field variable ϕ and the field variable to be frozen
at any constant value, since a field-independent potential has a continuum of minimum
places. Below, we apply the description given in [1] to our particular model. In such an
approach, the dimensionless variables are

x = ±

√
ϕ̇2/2

ρc
≡ 0, y =

√
V
ρc

=

√
Λ√

3H
, (18)

z =
V,ϕ(ϕ)

8πGV(ϕ)
≡ 0, Ω( f ) =

ρ( f )

ρc
(19)
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with V,ϕ = ∂V/∂ϕ, and also the quantity η = V,ϕϕ/(8πGV) = 0 vanishes identically.
For later use, we shall introduce the cosmological parameters Ω(Λ) = ρ(Λ)/ρc = y2 and
Ω = Ω( f ) + Ω(Λ). Instead of the cosmological time, it is more convenient to use the
dimensionless evolution parameter N = − ln a related to the time variable t via the relation
Hdt = −dN. Therefore, the k-to-t conversion rule reappears through the yet-unknown
function k = k(N). A general field-dependent potential, as well as the position of its
minimum exhibit scale dependences, which should be invoked from the RG analysis of
the scalar field coupled to gravity. Nevertheless, in our model, the only scale dependence
of the minimum value of the potential energy density is already incorporated in the scale
dependence of ρ(Λ), i.e., in that of the gravitational couplings G and Λ. The RG scale
dependences are characterized by the beta functions given in [1]:

ηRG =
∂ ln G
∂ ln k

, νRG =
∂ ln Λ
∂ ln k

− ηRG, (20)

which are independent of the field variable ϕ in our case, and the quantity σRG falls off
trivially. The law of the local energy conservation (9) applied to the barotropic fluid
(cf. Equation (22) in [1]) is rewritten as

dΩ( f )

dN
= 3γΩ( f )(1−Ω( f )) + ΩηRG

d ln k
dN

. (21)

Equations (19) and (21) in [1] for the evolution of x and z turn to the trivial identity 0 = 0,
while Equation (20) in [1] is rewritten as

dy
dN

= y
(
−3

2
γΩ( f ) +

1
2
(ηRG + νRG)

d ln k
dN

)
. (22)

The Friedmann constraint (10) is rewritten as

0 = 1− y2 −Ω( f ) (23)

and the constraint on the beta functions given by Equation (25) in [1] yields

0 = ηRG(k) + y2νRG(k). (24)

In the particular model discussed here, the constraint (24) is equivalent to the reduced
consistency condition (14), since the t-dependence of the gravitational couplings occurs
implicitly via their k-dependences, and (14) can be rewritten as

−0 = 8πρ( f )ηRG +
Λ
G
(ηRG + νRG). (25)

Dividing both sides of this equation by 8πρc, we obtain

0 = Ω( f )ηRG + Ω(Λ)(ηRG + νRG)

= (Ω( f ) + y2)ηRG + y2νRG, (26)

which is identical to the constraint (24) since the relation y2 = Ω(Λ) and the Friedmann
constraint (23) holdin our case.

Now, the dynamical Equation (27) in [1] gives

d ln k
dN

=
3

2αRG
γΩ( f ) (27)



Universe 2023, 9, 184 9 of 22

with

αRG =
1
2

[
(ηRG + νRG)−

d
d ln k

ln
(
−ηRG

νRG

)]
(28)

in our case. In this description, the quantum improvement is taken into account in the
dynamical Equations (21) and (22) by the terms proportional to d ln k/dN and the dynamical
Equation (27). In the classical case, the evolving scale k = k(N) and the terms proportional
to d ln k/dN fall off. Due to the Friedmann constraint (23), the classical model exhibits
a single independent variable (e.g., y), while the quantum-improved one exhibits two
independent variables (e.g., y and k). For the later discussion, the relation of the flow of the
Hubble parameter to that of the RG scale k given by Equation (28) in [1] becomes useful,
which is rewritten as

d ln H
dN

= αRG
d ln k
dN

(29)

in our case.

4. Analytical Solution

In this section, we show that both Schemes A and B provide the same analytical
result for the evolution of the discussed model Universe along the entire time axis. First,
the analytical solutions were determined in the time intervals [0, tG], [tG, tΛ], and [tΛ, ∞)
separately, and then, these sectional solutions were sewn continuously at the times tG and
tΛ requiring the continuity of k(t) at t = tG and that of H(t) at t = tΛ. The classical solution
valid for tΛ ≤ t < ∞ was found in Scheme B and the constant of integration in H(t) settled
by its continuity at t = tΛ. The zero of the cosmological time is chosen when the expanding
solution has its initial singularity.

Independent of the scheme used, the local energy conservation (9) for the barotropic
fluid yields the relation:

ρ( f ) = Ma−3γ, (30)

where the (dimensionful) constant of integrationM is a free parameter, determining the
matter content of the model Universe. The relation (30) holds for all times 0 < t < ∞, so
thatM remains the only free parameter after the solution in the various time intervals has
been sewn continuously.

4.1. Scheme A

Applying the independent Equations (9), (10) and (14) to our model for 0 < t ≤ tΛ,
Equations (14) and (9) enable one to express the variables ρ( f )(t) and H(t) in terms of the
function k(t):

ρ( f ) = − 1
8π

Λ̇
Ġ

=

{ λ∗
8πg∗ k4 for 0 < t ≤ tG,
3λ∗

8πG0
k2 for tG ≤ t ≤ tΛ

, (31)

H = − 2
3γ

k̇
k

{
2 for 0 < t ≤ tG,
1 for tG ≤ t ≤ tΛ

, (32)

respectively, where we made use of the scale dependences given in Equations (2) and (3).
Inserting the expressions (31) and (32) into the Friedmann constraint (10), one obtains a
first-order ordinary differential equation (ODE) for the function k(t), the explicit form of
which depends on the explicit scale dependence of the gravitational couplings given in
Equations (2) and (3). In this manner, we see that the dynamics contains a single additional
constant of integration in both time intervals [0, tG] and [tG, tΛ] occurring when the ODE
for the function k(t) is integrated.
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4.1.1. Time Interval 0 < t ≤ tG

The ODE for k(t) takes the form:

k̇ = −
√

3λ∗
8

γk2, (33)

where we consider the case with the negative square root the realistic one for the expanding
Universe, since it yields increasing time t with decreasing RG scale k. The solution of
Equation (33) is given as

k(t) =

√
8

3λ∗

1
γt

, (34)

where we shifted the singularity of the solution to t = 0 by the appropriate choice of the
constant of integration. Inserting this back into Equations (31), (32), (2), and (3), the time
dependences of all interesting cosmological quantities can be made explicit:

H(t) =
4

3γt
≡ h

t
, (35)

ρ( f )(t) =
8

9πg∗λ∗γ4t4 = ρ(Λ) =
1
2

ρc, (36)

ρc(t) =
3H2

8πG
=

16
9πg∗λ∗γ4t4 , (37)

Ω( f ) = Ω(Λ) =
1
2

. (38)

The comparison of Equations (34) and (35) reveals that the simple proportionality holds:

k =

√
3

2λ∗
H (39)

in the time interval 0 < t ≤ tG. The inverse proportionality of the Hubble parameter to the
time t leads to the time dependence of the scale parameter:

a = Ath, (40)

and the comparison of Equation (30) with (36) gives

A =

(
9πg∗λ∗γ4

8
M
) 1

3γ

. (41)

We see that the usage of the reduced consistency condition (14) has led to the naive inverse
proportionality k ∝ 1/t ∝ H of the RG scale k to the cosmological time t in the interval
0 < t ≤ tG. The cosmological evolution is unique in this interval for any given model
characterized with a given value of the parameterM. Evaluating the right-hand side of
the expression (16), it is straightforward to check that the equality holds:

P (Λ) = − 32
9πg∗λ∗γ4t5 = ρ̇(Λ). (42)

Furthermore, one obtains from Equation (17) that Ṡ(Λ) ∝ −1/t4, i.e., the rate of the negative
entropy production falls off rapidly during the Planck era 0 < t ≤ tG.
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Since the solution is uniquely settled in the interval [0, tG], one is enabled to determine
the characteristic time scale corresponding to the dynamical RG scale kG through the
requirement k(tG − 0) = kG:

tG =

√
8

3λ∗

1
γkG

=

√
8

9g∗λ∗γ2 m−1
Pl , (43)

where we made use of Equations (7) and (34). Thus, we obtained that tG ∝ 1/kG in the
discussed model.

4.1.2. Time Interval tG ≤ t ≤ tΛ

For later use, we rewrite the RG scale dependences (2) and (3) of the gravitational
couplings as

G(k) = b
(
−k2 +

1
2

E
)

, Λ(k) = c(k4 + F) (44)

in the interval k ∈ [kΛ, kG], where

E = 2
(

G0

b
+ k2

Λ

)
= 3k2

G

(
1 +

2
3

k2
Λ

k2
G

)
, (45)

F =
Λ0

c
− k4

Λ = k4
G

(
G0Λ0

3g∗λ∗
−

k4
Λ

k4
G

)
≈ −8.4× 10−120k4

G. (46)

Taking again the negative square root, the dynamical equation for the RG scale k = k(t)
can now be recasted as

k̇ = −3γ

2
kD1/2, (47)

with

D =
λ∗G(k)k2

G0
+

Λ(k)
3

= −b2u2 + b1u + b0, (48)

where the variable u = k2 and the coefficients:

b0 =
Λ0

3
− λ∗G0

9g∗
k4

Λ ≈ −0.47× 10−122m2
Pl, (49)

b1 = λ∗

(
1 +

2G0

9g∗
k2

Λ

)
≈ λ∗[1 +O(k2

Λ/k2
G)], (50)

b2 =
λ∗
9g∗

m2
Pl (51)

were introduced. The quantity D is definitively positive by construction in the interval
k ∈ [kΛ, kG]. Multiplying both sides of Equation (47) by 2k, one can rewrite it as

u̇ = −3γuD1/2(u). (52)

The inverse function t = t(u) is then given as

t− t2 = − 1
3γ

I(u) (53)
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with the constant of integration t2 and the integral

I(u) =
∫ du

uD1/2(u)
. (54)

Since the coefficient b0 < 0 and the discriminant of the quadratic form D(u) is
∆ = −4b0b2 − b2

1 ≈ −λ2
∗[1 +O(k2

Λ/k2
G)] < 0, one obtains (see Item 2.266 in [35])

I(u) = (−b0)
−1/2arc tan I(u) with

I(u) =
2b0 + b1u

2[−b0D(u)]1/2 (55)

and rewrites Equation (53) as

I(u) = I(t) ≡ tan
(
−3γ

√
−b0(t− t2)

)
. (56)

Since b1 ≈ λ∗ with the accuracy of 60 valuable digits, this yields the second-order algebraic
equation for u:

0 ≈ [λ2
∗ − 4b0b2I2(t)]u2 + 4b0(λ∗u + b0)[1 + I2(t)] (57)

having the roots:

u± =
2b0

λ∗

−1±
√

1− Ξ(t)
Ξ(t)

(58)

with

Ξ(t) =
λ2
∗ − 4b0b2I2(t)
λ2∗[1 + I2(t)]

> 0. (59)

Below, we show that only the root u− is physical. Making use of Equation (43), the constant
of integration t2 is settled by the relation I(k2

G) = −3γ(tG − t2), which yields

t2 = tG +
1

3γ
√
−b0

arc tan I(k2
G). (60)

The estimate of I(k2
G) with an accuracy of 60 valuable digits gives 1061. For a huge number

I , it is a good approximation to take

arc tan I ≈ π

2
− 1
I . (61)

This estimate enables one to determine the second term on the right-hand side of Equation (60)
with an accuracy of the order O(tG/t2) to obtain

t2 =
2
3

tG +
π

6γ
√
−b0

(62)

and hence,

I(t) = cotan
[

3γ
√
−b0

(
t− 2

3
tG

)]
. (63)

The next relation I(k2
Λ) = I(tΛ) enables one to determine the time scale tΛ corresponding

to the dynamical scale kΛ. Here, I(k2
Λ) ≈ 2.6× 1030 is also a huge number, so that one

makes use of the estimate (61) once more to obtain
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tΛ =
2
3

tG +
2

3γ
√

λ∗kΛ
. (64)

This means that, with an accuracy of 30 valuable digits, tΛ is inversely proportional to
kΛ. The knowledge of tΛ enables one to decide that only the root u− reproduces k2

Λ
when the expression (64) for tΛ is inserted into the right-hand side of Equation (58). It
is worthwhile mentioning that Ξ(tΛ) ≈ 10−60 and Ξ(tG) ≈ 10−122, so that Ξ remains
very small as compared to 1 in the entire interval [tG, tΛ]. This justifies the approximation√

1− Ξ ≈ 1− 1
2 Ξ. Therefore, the root u− of (58) provides with rather high accuracy that

k(t) ≈

√
−4b0

λ∗Ξ
≈
√

3kG(1 + BH t̄2)−1/2 (65)

with BH = 81g∗λ∗γ2

4 m2
Pl and the shorthand notation t̄ = t− 2

3 tG. It is straightforward to
check that, even with this estimated form of the conversion rule k = k(t), the equality
k(tG) = kG holds.

The comparison of Equation (32) with Equation (47) yields

H =
√

D, (66)

a rephrasing of the Friedmann constraint. Therefore, the relations (31):

ρ(Λ) =
c(k4 + F)

8πb(−k2 + 1
2 E)

, ρc =
3D

8πb(−k2 + 1
2 E)

, (67)

imply that ρc = ρ( f ) + ρ(Λ) and Ω( f ) + Ω(Λ) = 1, which is another form of the Friedmann
constraint. Equations (66) and (48) reveal a nontrivial relationship between the RG scale
k and the Hubble parameter H in the time interval tG ≤ t ≤ tΛ instead of the simple
proportionality k ∝ H valid in the interval 0 ≤ t ≤ tG. For later discussions, it is useful to
rewrite (47) in the form:

d ln k
dt

= −3γ

2
H(k). (68)

It is important to notice that both Equations (66) and (68) are exact equations.
Since the expression (65) is an estimate, we may obtain somewhat different results for

the function H(t) when evaluating it in various ways:

H(1)(t) =
√

D
(
k2(t)

)
or H(2)(t) = − 2k̇

3γk
, (69)

although H(1)(t) and H(2)(t) are identical for the exact form of the function k(t). The
nonvanishing of the quantity:

δH(t) =
H(2)(t)− H(1)(t)

H(2)(t)
(70)

characterizes the accuracy of the usage of the estimate (65). A straightforward, but lengthy
evaluation yields
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H(1)(t) = 3
√

g∗λ∗mPl

[
− 1
(1 + BH t̄2)2 +

1
1 + BH t̄2

(
1 +

2k2
Λ

3k2
G

)
+

F
9k4

G

]1/2

, (71)

H(2)(t) =
2

3γ

BH t̄
1 + BH t̄2 , (72)

δH(t) = 1−
[

1 +
2k2

Λ
3k2

G
+

1
BH t̄2

2k2
Λ

3k2
G
+

(1 + BH t̄2)2

BH t̄2
F

9k4
G

]1/2

≡ 1− A1/2
H (t). (73)

The numerical values of δH(t) are extremely small, e.g., one obtains δH(tG) ≈ − 1
2

k2
Λ

k2
G
∼

O(10−60) and δH(tΛ) ≈ 1
6

k2
Λ

k2
G
− Λ0

2λ∗k2
Λ
∼ O(10−60). Thus, H(1)(t) and H(2)(t) provide

identical numerical results with the accuracy of 60 valuable digits. With the help of
the estimate (65), it is now straightforward to obtain the time dependences of the other
interesting cosmological quantities. In order not to violate the Friedmann constraint by the
time-dependent analytical expressions, we evaluate the critical density by making use of
H(1)(t) given in Equation (71). Then, we obtain

ρ( f )(t) =
3λ∗m2

Plk
2

8π
=

BHm2
Pl

6πγ2(1 + BH t̄2)
, (74)

ρc(t) =
3[H(1)(t)]2

8πG(t)
=

27g∗λ∗m2
Pl AH(t)

8πb[−k2(t) + 1
2 E]

, (75)

Ω( f )(t) =
ρ( f )(t)
ρc(t)

=
1

AH(t)

[
− 2
(1 + BH t̄2)2 +

1
1 + BH t̄2

(
1 +

2k2
Λ

3k2
G

)]
, (76)

Ω(Λ)(t) =
Λ(t)

3[H(1)(t)]2
=

1
AH(t)

[
1

(1 + BH t̄2)2 +
F

9k4
G

]
. (77)

Now, it is trivial that adding Equations (76) and (77) recapitulates the identity Ω( f ) + Ω(Λ) = 1.
The time dependence of the Hubble parameter (72) implies the time dependence of the
scale factor:

a(t) = Ca(1 + BH t̄2)
1

3γ , (78)

where the constant of integration Ca =

(
8π

27g∗λ∗M
) 1

3γ

m
− 4

3γ

Pl is set by the continuity of a(t)

at t = tG. The comparison of Equations (65) and (78) yields the relation:

k =

√
8π

3λ∗m2
Pl
Ma−

3γ
2 . (79)

The quantity −P (Λ) characterizing the entropy production is

P (Λ)(t) = −ρc
Ġ
G

= −
81g∗γm4

Pl
16π

k2(t)D3/2[k2(t)]
(−k2(t) + 1

2 E)2
, (80)

where one has to insert the function k(t) from Equation (65) into the right-hand side.
Making use of Equation (17), one can take the ratio of the rates of entropy production
at the end tΛ and at the beginning tG of the crossover era. A somewhat lengthy, but
straightforward evaluation yields the estimate:

Ṡ(Λ)|t=tΛ

Ṡ(Λ)|t=tG

≈ t̄Λ

t̄G

(
kΛ

kG

)7/2

[1 +O(k2
Λ/k2

G)] ≈ 10−75. (81)

This means that the entropy production rate radically falls off during the crossover era.



Universe 2023, 9, 184 15 of 22

It is straightforward to check that the cosmological quantities we are interested in are
all continuous at t = tG at least with the accuracy of 60 valuable digits corresponding to
the ratio k2

Λ/k2
G. Equation (64) shows that the characteristic time scale tΛ corresponding to

the RG scale kΛ is equal to t̄Λ with the accuracy of tG/tΛ ∼ kΛ/kG ∼ 10−30, i.e., with that
of 30 valuable digits.

4.1.3. Evolution for t ≥ tΛ

For times t ≥ tΛ, the well-known classical evolution takes place. The time dependences
of the cosmological variables H(t), ρ( f )(t), and a(t) are given in Equations (111), (112),
and (113), respectively, rederived now in Scheme B. The constant of integration Ct can be
settled by requiring the continuity of H(t) at t = tΛ. With the accuracy of 30 valuable
digits, one obtains Ct ≈ 2

3 tG. The explicit evaluations with the help of Formula (65) show
again that the cosmological quantities considered here are continuous at t = tΛ at least
with the accuracy of 60 valuable digits. It was checked analytically that ρ( f )(t) and a(t)
are also continuous with the same accuracy at t = tΛ for that choice of Ct. The constant of
integration Ct describes that the Big Bang singularity should be dated with 2

3 tG earlier due
to quantum effects than it was extrapolated from the classical cosmology.

4.2. Scheme B

In this section, we show that the solution of the system of Equations (21)–(27) provides
exactly the same evolution in the case of the particular model discussed by us as the one
we obtained in the framework of Scheme A. For 0 < t ≤ tΛ, we have five equations for
three yet-unknown functions: Ω( f )(N), y(N), k(N). In order to test that our interpretation
of ρ(Λ) as a field-independent potential energy density of a homogeneous scalar field
does not lead to any contradiction, we checked that the constraints (23), (24), and either
Equation (21) or Equation (27) represent systems of three independent equations. Namely,
both Equations (22) and (27) can be derived from the system of Equations (21), (23) and (24).
In our particular model, the functions y(k) and Ω( f )(k) are directly determined from the
constraints (23) and (24):

y2(k) = −ηRG(k)
νRG(k)

, Ω( f )(k) = 1 +
ηRG(k)
νRG(k)

, (82)

and the evolution k(N) of the RG scale is governed by Equation (27).

4.2.1. Time Interval 0 < t ≤ tG

Making use of the scale dependences given in Equations (2) and (3), we find that the
RG parameters are the scale-independent constants ηRG = −2, νRG = 4, and therefore,
Equation (28) yields αRG = 1, and the solution of the constraints (23) and (24) are the
constants y2(= Ω(Λ)) = Ω( f ) = 1

2 . Thus, the solution in the time interval 0 < t ≤ tG
represents a cosmological fixed point, when the matter content is a mixture of the barotropic
fluid and the dark energy with equal energy densities. The dynamical Equation (27) for the
RG scale reduces to

d ln k
dN

≡ d ln k
d ln a

=
3γ

2
Ω( f ) =

3γ

4
, (83)

having the solution:

k = K1a−3γ/4 (84)

with the constant of integration K1. Then, one finds from Equation (29) that d ln H
dN = d ln k

dN ,
so that

H = CHk = CHK1a−3γ/4 (85)
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with the constant of integration CH . Equation (85) with H = ȧ/a represents a first-order
ODE for the scale factor a(t) having the solution:

a(t) =

(
3γCHK1

4
t
) 4

3γ

, (86)

where the point of singularity has been shifted to t = 0 by the appropriate choice of the
constant of integration. Inserting the time dependence of the scale factor (86) back into
Equations (84) and (85), one obtains the explicit time dependence of the scale factor and
that of the Hubble parameter:

k(t) =
4

3γCH

1
t

, (87)

H(t) =
4

3γ

1
t

. (88)

Then, the knowledge of the k-to-t conversion rule enables one to make explicit the time
dependence of the quantities G(t), Λ(t), ρc(t) = 3H2

8πG(t) , and ρ( f )(t) = ρ(Λ)(t) = 1
2 ρc(t).

The comparison of ρ( f )(t) and ρ(Λ)(t) evaluated in that manner with the expression (30)
and the definition ρ(Λ) = Λ

8πG , respectively, enables one to settle the yet-undetermined
constants of integration:

K1 =

(
16πg∗

λ∗
M
)1/4

, CH =

√
2λ∗

3
. (89)

In this manner, we recapitulate all the results given in Equations (34)–(40) obtained in the
framework of Scheme A. The additional point is that we could now identify this early
evolution of the discussed model Universe with a cosmological fixed point with evolving
RG scale.

4.2.2. Time Interval tG ≤ t ≤ tΛ

Making use of the RG scale dependences of the gravitational couplings given in
Equations (2) and (3), one establishes that the RG parameters are scale-dependent in the
interval tG ≤ t ≤ tΛ:

ηRG(k) =
−2k2

−k2 + 1
2 E

, (90)

νRG(k) =
2k2(−k4 + Ek2 + F)
(k4 + F)(−k2 + 1

2 E)
, (91)

αRG(k) = 1 +
ηRG(k)
νRG(k)

= Ω( f )(k). (92)

Then, Equation (27) yields the first-order ODE:

d ln k
dN

=
3γ

2
(93)

for the evolution of the RG scale, having the solution:

k = K2e
3γ
2 N = K2a−

3
2 γ (94)
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with the constant of integration K2. Inserting the solution (94) into Equation (29), one finds
the first-order ODE:

d ln H
dk

=
αRG(k)

k
= 2k

−k2 + 1
2 E

−k4 + Ek2 + F
, (95)

having the solution:

H(k) = DH

√
−k4 + Ek2 + F (96)

with the constant of integration DH . With the help of the k dependences of the Hubble
parameter (96) and the RG parameters (90), one is enabled to determine the k dependences
of the other important cosmological quantities:

ρc(k) =
3H2(k)
8πG(k)

=
3D2

H
8πb

−k4 + Ek2 + F
−k2 + 1

2 E
, (97)

ρ( f )(k) = ρc(k)Ω( f )(k) =
6D2

H
8πb

k2 =
6D2

H
8πb
K2

2a−3γ, (98)

Ω(Λ)(k) = y2(k) =
k4 + F

−k4 + Ek2 + F
, (99)

ρ(Λ)(k) = ρc(k)Ω(Λ) =
3D2

H
8πb

k4 + F
−k2 + 1

2 E
. (100)

The comparison of Equations (98) and (100) with Equations (30) and (1), respectively, yields
the expressions of the constants of integration:

DH =

√
λ∗

9g∗m2
Pl

, K2 =

√
8π

λ∗m2
Pl
M. (101)

Now, we can compare our results (66) and (96) for H(k) obtained in the frameworks
of Scheme A and Scheme B, respectively. Taking into account the definition (48) of D(k)
and the explicit expressions (49)–(51) of the constants b0, b1, and b2, on the one hand,
and the explicit expression of the constant DH given in (101) and the relations E = 3b1/c,
F = 3b0/c, and 3b2/c = 1, on the other hand, one concludes that both schemes provide the
same result for H(k). Moreover, taking the time derivative of both sides of Equation (94),
we just recover the first-order ODE (68) found in Scheme A. We have shown that the
constraint (24) of Scheme B is identical to the reduced consistency condition (14) of Scheme
A in the case of the particular model discussed by us. Then, the dynamical problem of
evolution to be solved turns out to be identical in both schemes. Thus, we obtain the
same time dependences of all cosmological quantities in both schemes in the time interval
tG ≤ t ≤ tΛ.

4.2.3. Evolution for t ≥ tΛ

For t ≥ tΛ, the RG scale is frozen at k = kΛ, and the evolution becomes classical, de-
scribed by two independent equations: for example, the classical versions of Equation (21):

dΩ( f )

dN
= 3γΩ( f )(1−Ω( f )), (102)

and the Friedmann constraint (23). Furthermore, the equation holds:

d ln H
dN

=
3
2

γΩ( f ), (103)

which represents Equation (11) in [1] applied to our particular model Universe.
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As a first step, one can determine the evolution of Ω( f ) vs. the parameter N and
express all cosmological quantities in terms of Ω( f ). The first-order ODE (102) can be
solved in a straightforward manner by making use of the integral Formula 2.103.4 in [35]:

Ω( f ) = (1 + CΩe−3γN)−1 = (1 + CΩa3γ)−1 (104)

with the constant of integration CΩ. Then, one obtains trivially from the Friedmann
constraint that

y2 = Ω(Λ) = 1−Ω( f ). (105)

Inserting the function Ω( f ) = Ω( f )(N) given in Equation (104) into the right-hand side
of Equation (103), one obtains a first-order ODE for the N dependence of the scale factor,
having the solution:

H =
CHC1/2

Ω√
1−Ω( f )

, (106)

reexpressed in terms of Ω( f )(N), where CH is the constant of integration. Then, one finds
by definition that

ρc =
ρ(Λ)

y2 =
Λ0

8πG0(1−Ω( f ))
, (107)

ρ( f ) = ρcΩ( f ) =
Λ0

8πG0

Ω( f )

1−Ω( f )
, (108)

and from the second equality of Equation (104) that

a =

(
1−Ω( f )

CΩΩ( f )

) 1
3γ

. (109)

Next, we determine the inverse function t = t(Ω( f )) by making use of the relation
dt = −dN/H:

t = −
∫ dN

H
= − 1

3γCHC1/2
Ω

∫ dΩ( f )

Ω( f )
√

1−Ω( f )

= − 1

3γCHC1/2
Ω

ln
1−

√
1−Ω( f )

1 +
√

1−Ω( f )
+ Ct (110)

with the constant of integration Ct. (Here, we made use of the integral Formula 2.224.5
in [35].) Now, one has to settle the constants of integration. With the help of the relations (108)
and (109), one expresses ρ( f ) in terms of the scale factor a, and a comparison with the
expression (30) yields then CΩ = Λ0

8πG0M . The constant CH is easily settled by requiring the

equality of ρc =
3H2

8πG0
=

C2
HCΩ

1−Ω( f ) with the expression given in Equation (107). This implies

C2
HCΩ = Λ0/3 and CH =

√
8πG0Λ0M

3 . Finally, we invert the relation (110) and obtain the
well-known time dependences obtained generally by solving the problem of evolution in
terms of the traditional, dimensionful cosmological variables:



Universe 2023, 9, 184 19 of 22

H(t) =

√
Λ0

3

[
tanh

(
3γ

2

√
Λ0

3
(t− Ct)

)]−1

, (111)

ρ( f )(t) =
Λ0

8πG0

[
sinh

(
3γ

2

√
Λ0

3
(t− Ct)

)]−2

, (112)

a(t) = C
− 1

3γ

Ω

[
sinh

(
3γ

2

√
Λ0

3
(t− Ct)

)] 2
3γ

. (113)

The determination of the constant of integration Ct is discussed at the end of Section 4.1.3.

4.3. Typical Time Scales

In Sections 4.1 and 4.2, it was shown that both schemes provide the same evolution
of the discussed particular model Universe. This evolution is characterized by various
time scales. The evolution following just the the Big Bang singularity is governed by the
RG evolution of the gravitational couplings determined by the Reuter fixed point and
ends up at tG = ξUV/kG (see Equation (43)) corresponding to the dynamical RG scale kG.
The inverse proportionality t = ξ(UV)/k is valid in the whole time interval 0 < t ≤ tG

with the coefficient ξ(UV) =
√

8
3λ∗

1
γt (see Equation (34)), in agreement with previous

findings [30,31]. There exists another dynamical RG scale, kΛ, such that, for k ≤ kΛ, the
gravitational couplings keep their constant values. The corresponding time scale tΛ is
given by Equation (64). Since tG/tΛ ∼ O(10−30), one finds that tΛ ≈ ξ(IR)/kΛ with an
accuracy of 30 valuable digits, where ξ(IR) = 2

3γ
√

λ∗
. Our finding for ξ(IR) is rather similar

to that found in [29] in the perturbative regime, ξ(pert) =
√

2ω
3ν

1
γ , where ω and ν are RG

scheme-dependent constants in the perturbative expansion of the gravitational couplings
close to the Gaussian fixed point. The intermediate era of the evolution is governed by the
crossover RG scaling properties of the gravitational couplings showed up between the UV
and deep IR scaling regions. The k-to-t conversion rule is rather complicated in that era,
being not at all a simple inverse proportionality, but can be estimated with a good accuracy
with the formula given in Equation (65).

In addition to the time scales tG and tΛ, there are two other important time scales:
(i) td, when the accelerating expansion turns into a decelerating one, and (ii) ta, when the
decelerating expansion turns again into an accelerating one. The time scale ta ∼ O(Λ−1/2

0 )
is a feature of the classical cosmology occurring due to the dominance of the nonvanishing
cosmological constant Λ0 in the late future. The scale td is, however, affected by quantum
effects. The deceleration parameter:

q = − aä
ȧ2 = −1− Ḣ

H2 (114)

can easily be calculated for the Planck and the crossover eras. One finds

q = −1 +
3γ

4
=

{
0 for w = 1/3
− 1

4 for w = 0
, (115)

for 0 < t ≤ tG and

q = −1 +
3γ

2
− 2

27g∗λ∗γm2
Pl t̄

2
(116)
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for tG ≤ t ≤ tΛ. The deceleration parameter is continuous at t = tG and is a strictly
monotonically increasing function of t in the crossover era, taking the positive value:

q(tΛ) = −1 +
3γ

2
−

γk2
Λ

2k2
G

=

{ 1− 2
3

k2
Λ

k2
G

for w = 1/3

1
2

(
1− k2

Λ
k2

G

)
for w = 0

}
(117)

when the crossover era is ended. One can see that the value of the deceleration parameter
is model-dependent: for radiation (w = 1/3), it is vanishing at t = tG, so that in that case,
it holds td = tG, but for dust (w = 0), q changes sign at td > tG. The condition q(td) = 0
yields that

td =
2
3

tG +

√
γ

12
tG

(
−1 +

3γ

2

)−1

=

{
tG for w = 1/3

2+
√

3
3 tG > tG for w = 0

}
. (118)

5. Summary

In this paper, we proposed simple, analytic formulas to describe the main features
of the RG scale dependences of the gravitational couplings in the framework of four-
dimensional, two-parameter EH gravity. These analytic formulas interpolate in a con-
tinuous manner between the Reuter-fixed-point-governed UV scaling regime and the
low-energy IR regime, where the couplings take their observed classical values. The in-
terpolation formulas were constructed to ensure the continuity of the energy density of
matter at the border of the UV and crossover scaling regions in the framework of asymptot-
ically safe cosmology. We applied the proposed interpolation formulas to an analytically
solvable, homogeneous, and isotropic, spatially flat model Universe, which contains a
classical barotropic fluid and the Λ-component identified here with dark energy. The local
energy conservation of the barotropic fluid has been required separately. The problem
of evolution was solved in two schemes. In Scheme A, we followed the method used
in [31], i.e., we worked in terms of the traditional, dimensionful cosmological variables and
determined the conversion rule k(t) between the RG scale k and the cosmological time t
by means of the reduced consistency condition (14) of the quantum-improved Friedmann
equations. In Scheme B, we followed the method used in [1], i.e., we worked in terms of
dimensionless cosmological variables and determined the conversion rule k(t) from the
Friedmann-constraint-induced constraint on the RG parameters (24). We showed that the
constraints (14) and (24) are equivalent in the case of the particular model. Therefore, both
schemes provided just the same result for the evolution of the system.

In the framework of the particular model, explicit formulas were given for the char-
acteristic time scales tG and tΛ corresponding to the dynamical RG scales kG and kΛ,
respectively, arising in the RG analysis of EH gravity. We recovered the well-known result
of quantum-improved cosmology, that in the Planck era, just the inverse proportionality
t ∝ 1/k holds. In the crossover era, a nontrivial relation was obtained for the conversion
rule k(t), but it happens that, at the end of the crossover era, the relation tΛ ∝ 1/kΛ holds
with an extremely high accuracy. The characteristic time scale td was also discussed, when
the quantum effects driving the accelerating expansion of the early Universe go into a
decelerating one. It was shown that td ≥ tG holds and the value of td depends on the matter
content of the model. The determination of the solution in Scheme B enabled us to identify
the cosmological fixed points, in the sense of the classification given in [1], from which the
evolution starts and at which it ends up. As a by-product, it was found that the quantum
effects result in the change of the entropy of the dark energy.
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