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Abstract: With the discovery of gravitational waves, the search for the quantum of gravity, the
graviton, is imminent. We discuss the current status of the bounds on graviton mass from experiments
as well as the theoretical understanding of these particles. We provide an overview of current
experiments in astrophysics such as the search for Hawking radiation in gamma-ray observations
and neutrino detectors, which will also shed light on the existence of primordial black holes. Finally,
the semiclassical corrections to the image of the event horizon are discussed.
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1. Introduction

The gravitational quantum is still elusive experimentally and somewhat “elusive”
theoretically [1–3]. In electrodynamics, the quantum of the electromagnetic wave is known
as the photon, and we work with the interactions of photons to derive quantum electrody-
namics (QED) phenomena. In the case of gravity, gravitational waves have been discovered
100 years after their prediction. The question is, are there “gravitons” or quanta of these
waves? Like QED, one can define the “Fock” space quantization for the linearized Einstein
equations and study free gravitons. However, introducing interactions with gravitons
to study scattering amplitudes leads to uncontrollable infinities [3]. This is known as
the “non-renormalizability” of perturbative quantum gravity. General relativity might be
nonperturbative in the quantum regime, and the story of the quanta could be present in the
geometry measurements of area and volume [4]. These “nonperturbative” theoretical ex-
plorations cannot be verified, as they are still in the realm of the microscopic Planck length
regime of 10−35 m. We investigate the semiclassical fluctuations of the flat geometry using
loop quantum gravity (LQG) coherent states and discuss whether that can be interpreted
as a graviton quantum.

Further in the 1970s, the discovery of black hole thermodynamics and Hawking
radiation were studied as “semiclassical phenomena”, where gravity remained classical
and other fields were quantum. The isolated black hole was found to have a temperature
proportional to its surface gravity and entropy equal to its horizon surface area. For a
solar-mass black hole, which might have formed using stellar collapse, this temperature is
of the order of 10−8 K. If we observe the current-day black holes, then they are immersed
in the background cosmic radiation, which has a temperature of 2.783 K. As the heat
flows from higher to lower temperatures, the black holes would not radiate into the
surroundings, and as of now, there is no experimental evidence of Hawking radiation.
The study of black hole mergers using gravitational waves has provided evidence for
the area increase theorem [5]. How would one obtain a verification of the temperature
and radiative properties of black holes? The existence of primordial black holes (PBH) of
small mass, originating in density fluctuations of the early universe, would allow for
high-temperature black holes and Hawking decays in the form of gamma-ray bursts. The
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search for PBH has been a subject of experimental study [6]. We discuss this in some detail,
and the approximations which describe the theoretical derivation of Hawking radiation
are also discussed. The current experiments provide stringent restrictions on the PBH
contributions to photon and neutrino fluxes observed on earth, as well as as fractions of
dark matter [7–11]. Strangely, new observations from gravitational wave data suggest that
there are subsolar mass black holes. Recent work tries to find the origins of these, either as
PBH or from other processes without the Chandrasekhar limit in the collapse process [12].
Whereas this is very interesting, this is not exactly the realm of quantum gravity, though
the research in this area might shed light on semiclassical aspects.

However, astrophysical phenomena, such as the black hole merger event, the collapse
of a supernova to form a black hole, and neutron star mergers, are strong gravitational
events. The energies at which the events happen have strongly coupled gravitational
interactions. The quantum dynamics near these events is interesting, and even though
the effect is weak, one can try and find indirect evidence in the observational data. Using
LQG coherent states, some of these can be studied semiclassically. We discuss these
and also comment on other observational results from the semiclassical gravity program
for astrophysical observations, including that for the image of the event horizon [13,14].
There are several collaborations in quantum gravity phenomenology which, in particular,
discuss Lorentz violations and quantum anomalies. The appropriate discussions on these
topics can be found in [15]. For a previous comprehensive review on quantum gravity
phenomenology, see [16]. One of the aims of this current review is to also provide a
pedagogical introduction to some aspects such as the search for primordial black holes,
which is a very active field currently.

This review has discussions on the (i) graviton, (ii) Hawking radiation, and (iii) semi-
classical corrections to strong gravity systems such as the event horizon. The following
section discusses the theory of the graviton and the experimental bounds. Section 3 de-
scribes the phenomena of Hawking radiation, as well as the experimental efforts to detect
the emitted particles from PBH. Section 4 describes the physics of the event horizon and
quantum correction predictions to the same. The final section concludes with the present
status of the field of research in the above and future avenues of quantum gravity phe-
nomenology.

2. Graviton

The electromagnetic (EM) wave is a solution to Maxwell’s equation and is observed
in nature. The visible spectrum is known as light, the infrared, which we interpret as
heat, and radio waves. The ultraviolet radiation is also detectable and useful as are X-
rays in many practical day-to-day events. These, when quantized, give us the photon
description of the EM wave, and represent the source-free “free” EM fields. The actual
production of EM radiation is from accelerated charges, but as the waves propagate out in
space, they can be studied as “free” EM fields. In the case of gravity, Einstein’s action is
nonlinear, and the gravitational field has self-interactions. To find the “free” plane wave
which propagates on its own, we take a linearized gravity, “weak fluctuations” over a flat
background. Nonperturbative waves, produced using strong gravitational interactions,
have been studied in [17]. As the linearized gravitational waves represent classically “free”
fields, one would expect that the Fock space quantization of these would be obtained
similarly to the photon quantum electrodynamics description. However, herein lies the
problem: the graviton theory is a nonrenormalizable theory [3]. Is it because the graviton
vacuum, which represents the Minkowski spacetime is not a vacuum? Is flat space really a
vacuum state in a true theory of quantum gravity? Can we have a perturbation over the
flat-space system and describe a graviton as a quantum state in the flat-space background?
In the case of the EM theory, the EM field propagates in a flat background that, however,
serves as a noninteractive arena for the EM fields to propagate. The photon is created and
annihilated out of the QED vacuum, which is a state with the photon quantum number
as zero. In the following, we discuss whether seeking a similar quantum field vacuum for
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the graviton is relevant. We also discuss the question of which physics of the systems we
should experiment for the observation of the graviton.

2.1. The Linearized Theory of the Graviton

In the following, we discuss Einstein’s theory of the linearized metric. The field
equations for the Einstein action is “free” in its gauge-fixed form; however, if we try to write
the full Einstein Lagrangian for the gravitational field, then there are interaction vertices to
all orders for the graviton. The quantum amplitudes including these interactions do not
converge, and neither can the theory be renormalized using standard techniques. To begin
with, we write the metric of spacetime gµν as a flat space ηµν and a weak fluctuation hµν.

gµν = ηµν + hµν. (1)

It is assumed that |hµν|max � 1 (µ, ν, α, β etc. = 0, . . . , 3). Note that using standard conven-
tion, the metric is dimensionless and the amplitude of the fluctuations are defined using
the absolute maximum value. From experiments [1], we are aware now that the amplitude
of the “gravitational wave” is of the order of 10−22 as received on earth. One can write
the Einstein Lagrangian density as a function of this metric, its determinant g, and scalar
curvature R,

L =
√

g R = −1
2

√
−1 + h

[
(hµν)(ηαβ∂α∂µhνβ −� hµν)

]
. (2)

In the above, we have kept the terms in the Lagrangian which are quadratic in hµν.
The linear terms of the form ηµνηλρ∂ρ∂µhλν are total derivatives and contribute only at the
boundaries, which we ignore. Further, � ≡ ηαβ∂α∂β, and h is the trace of hµν. The equation
of motion from the above to a linear order in “hµν” is

ηαβ∂α∂µhνβ −� hµν = 0. (3)

This still has a gauge degree of freedom due to diffeomorphism invariance, which
can be fixed by putting the ∂αhαβ = 0 restriction on the linearized metric. The equation of
motion reduces to a “wave equation”

� hµν = 0. (4)

The solution for this is a transverse wave (due to Lorentz’s condition) and has two
polarizations as additional restrictions to fix the residual gauge freedom keeping only
two [18]. The two polarizations are taken as h+ = A+ cos(ωz−ωt) and h× = A× cos(ωz−
ωt), if it is propagating in the z-direction [18], with angular frequency ω and amplitude
A+, A×. The question is: can these waves, when quantized, give us “quanta” as it is possible
for photon quantization? In other words, can one define a Fock space representation for
the perturbative Hilbert space of Einstein’s gravity? The answer is surprisingly difficult, as
the Einstein action introduces self-interactions of the gravitons to all orders, which cannot
be renormalized using standard field theory techniques. The gravitational propagator can
be calculated, but the quantum corrections cannot be made finite using regularization and
renormalization techniques. One can see the origin of self-interactions even at this order
in the Lagrangian in Equation (2) as the nonpolynomial “measure”

√
−1 + h can give rise

to the interaction terms upon expanding the square root. A simple “degree of superficial
divergence” counting of the gravitational perturbative Feynman diagram gives the number
as D = 2(k + 1), where k is the number of independent momentum interactions [19].
This number therefore increases with the number of loops in the scattering calculations
and cannot be absorbed by redefining the bare Lagrangian. For Yang–Mill’s (YM) theory
the same degree is given as D = 4− Le, where Le is the number of external legs of the
Feynman diagram. The YM theory is therefore renormalizable, as the number of terms
in the Lagrangian which need to be renormalized is finite (0 < Le < 4). One can use
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asymptotic techniques to obtain a renormalizable effective Lagrangian for gravity, but we
do not discuss this in this review [20]. However, can there be a “free” graviton theory
where we can ignore all the interactions? Up to a certain length scale, a “free graviton”
quantization can be formulated, but the entire theory is also complicated by the definition
of the “gravitational vacuum”. In the theory of gravitational physics, the metric is the basic
degree of freedom, and the graviton is a “perturbation” over the flat-space geometry. In a
true quantization of the theory, the flat spacetime geometry is also an emergent “metric”.
If the metric is an operator, then causality and therefore quantization is not defined. The
vacuum likely is the state with no metric or the state that is such that

ĝµν |0〉 = 0. (5)

There have been several attempts to obtain the perturbative quantum state using a
polymer state in the nonperturbative quantization framework of loop quantum gravity. We
report on those works briefly and then describe a semiclassical description of a “gravita-
tional wave” using LQG. It remains though that the most complicated aspect of Einstein’s
gravity is the fact that the field which has to be quantized is the metric of the spacetime, the
causality of the system is complicated by the quantization, and macroscopic configurations
have to be emergent.

2.2. Gravitons in Loop Quantum Gravity

It was shown in [21] that the SU(2) generators of the loop quantum gravity (LQG)
variables decouple into three independent gauge generators in the linearized approxima-
tion. In LQG, the basic variables are obtained from the ADM formulation of the canonical
gravity. The spacetime is foliated by spatial slices Σ with a timelike normal vector along the
fourth direction, specified using the coordinate t. The induced three-metric on Σt is given
as qab, (a, b = 1, 2, 3); the metric in the ADM formulation is given as

ds2 = −(N2 + NaNa)dt2 + Nadxadt + qabdxadxb, (6)

where N2 is the lapse, Na is the shift, and qab is the induced metric of the time slices Σt.
The second fundamental form of this metric is Kab = Ltqab and is the extrinsic curvature
tensor which characterizes the embedding of the slice.

The LQG variables are defined using the soldering forms eI
a which connect the tangent

space (I = 1, 2, 3) of the three slices to the world volume. The canonical variables are
defined as

eI
aebI = qab, Ea

I EbI = q qab, AI
a = ΓI

a − KabEbI , (7)

where eI
a is the triad, Ea

I are densitized triads, and AI
a have the properties of a connection

due to their definition in terms of the spin connection ΓI
a and the extrinsic curvature tensor

Kab. The details of the variables can be found in [22]. There is usually an Immirzi parameter
in the definition of the gauge connection, and this reflects an ambiguity in the system. We
chose to set it to one, for the purpose of this paper. The internal indices I transform in
the SU(2) group, which is isomorphic to the group of rotations in the three-dimensional
tangent space [22]. The generators of the transformations in the internal directions are the
Gauss constraints

G I = ∂aeaI + εI JKea
J AaK. (8)

In the linearized approximation, q = 1, qab = δab + hab and AI
a = 0, if one keeps the

constraint up to a linear order in the fields, the constraint algebra commutes, i.e.,

G I
Lin = ∂a(δeaI) + εI JKδa

J δAaK, (9)

where due to the linearized metric, one has

eaI = δaI + δeaI , AaK = 0 + δAaK, (10)
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and
hab = δeaIδb

I , (11)

{δeI
a(x), δAKb(y)} = κδ3(x− y)δI

Kδab, (12)

where κ is related to Newton’s constant G [22,23]. The δeI
a and the δAKb are the linearized

dynamical fields, which are quantized. In the limit κ → 0,{
G I

Lin,G J
Lin

}
= 0. (13)

Interestingly, if one keeps the next order in the constraint definition, the algebra is not
zero to a linear order as the Poisson bracket gives a linear result in the fields.

G I
Lin = ∂a(δeaI) + εI JK

(
δa

J + δeaJ
)

δAaK, (14)

and {
G I

Lin,G J
Lin

}
= κ

(
δAI J − δI JδAb

b

)
δ3(x− y). (15)

This term would go to zero in the limit κ → 0. To avoid these confusions about the
algebra and also questions about the Minkowski “quantum state” about which perturbation
is being performed, we use the full SU(2) degrees of freedom and imposed the linear metric
only in the semiclassical approximation. The details of the calculations appear in [24].

For the polymer quantization of linearized gravity using the U(1) × U(1) × U(1)
Hilbert space, one can use the work of [25]. This approach is based on the linearized
algebra of LQG variables, as given in Equation (13). The LQG phase space thus has a
U(1)×U(1)×U(1) symmetry in the linearized approximation, instead of the full SU(2).
The Hilbert space quantum states are of the form

|~α, {q}〉 = |α1, q1〉|α2, q2〉|α3, q3〉, (16)

where |αi, qi〉 are elements of a U(1) Hilbert space. qi label integers and α labels the discrete
network. The flux operator defined in terms of the triads is given as [25]

Xa
~α,{q}(r)(~x) = ∑

I
qI

∫
dsI(~eI(sI),~x)ėa

I , (17)

where sI is a surface in three dimensions, which the discrete edge eI of the graph α
intersects once.

The Fock space quantum vacuum for the graviton is a transform of the state in
Equation (16). Whether this facilitates further study of the perturbation theory of the
graviton is yet to be investigated. The transform is given as

Φ0 := ∑
α,q

c0~α,{q}〈~α, q|, (18)

where

c0~α,{q} = exp
(
− ı

4

∫
d3x G~α,{q}(r)

ab (~x) ∗ Xab
~α,{q}(r)(~x)

)
, (19)

where these are “smeared” operators in the LQG polymer space, and r is a measure of the
Gaussian smearing (Xr(~x) =

∫
d3yX(~y) exp(−|~x−~y|2/2r2)/((2πr2)3/2)).

Xab
~α,{q}(r) = ∑

i
Xa

αi ,qi
δb

i . (20)

The G~α,{q}(r)
ab (~x) is related to the flux of the two “graviton” polarizations in the light

cone. We refrain from getting into the details of the above, but the reader is urged to follow



Universe 2023, 9, 128 6 of 24

the details of the derivation in [25,26]. Whereas this approach to obtaining a “quantum”
of linearized gravity is technically rather involved and involves an additional scale “r”
apart from the usual discretization of quantum variables, it is believed to give a polymer
representation of the “graviton”.

The expectation values of the operators are preserved in the transform and therefore,
one loop corrections to the graviton propagator can be tested. A derivation of a one-loop
correction using a perturbation of reduced loop quantum cosmology states exists in [27].
Another reference for the reduced phase-space quantization of linearized gravitational
waves is [28]. Moreover, a more recent work uses the free graviton Lagrangian and
obtains a “polymer state” for the same. This approach obtains some corrections to the
gravitational wave propagator [29]. However, in none of the above papers the emergence of
the background Minkowski metric is discussed. The self-interaction of gravitons is also not
obtained to all orders, as predicted by the Einstein Lagrangian. In the next section, we try to
find some phenomenological implications of the graviton’s existence in observational data.

2.3. Gravitons in Semiclassical Gravity

In this subsection, we derive the semiclassical phase space of the gravitational wave
metric and obtain a coherent state for the system using the techniques of [22,24]. To begin
with, we find the triads for the metric and the LQG gauge connection, which are the classical
variables for the system. The details can be found in [24]. The spatial metric for a standard
gravitational wave metric in the tt-gauge is (the lapse is one and shift is zero in the ADM
form of the four-metric)

qab =

 1 + h+ h× 0
h× 1− h+ 0
0 0 1

. (21)

In the process of obtaining the coherent state for the above metric, we identify the classical
phase space in terms of the LQG variables [30]. The triads eI

aebI = qab are obtained as

eI
a =


√

1−(h2
++h2

×)
2(1−h×)

√
1−(h2

++h2
×)

2(1−h×)
0

1−(h×−h+)√
2(1−h×)

−1+(h×+h+)√
2(1−h×)

0

0 0 1

 =


1√
2
+ h×

2
√

2
1√
2
+ h×

2
√

2
0

1√
2
+ 1√

2
(h+ − h×

2 ) − 1√
2
+ 1√

2
(h+ + h×

2 ) 0

0 0 1

. (22)

Obviously, in our gauge choice, the triad is not diagonal at the zeroth order. The
extrinsic curvature of the metric is obtained using the definition Kab = −∂tqab, and the
SU(2)-valued gauge connections defined in Equation (7) are:

A1
x = − 1

2
√

2
(∂zh× + ∂zh+) = A2

y

A1
y = − 1

2
√

2
(∂zh× − ∂zh+) = −A2

x

A1
z = A2

z = A3
x = A3

y = 0

A3
z =

1
2

∂zh+.

We also computed the nonzero spin connections for this metric [30]. Next, we take a
discretization of the background geometry. This smearing of variables is required to obtain
smooth commutators of the quantum theory, instead of distributional delta functions. For
details, see [22], and the smearing of the gauge connection on one-dimensional curves gives
holonomies which involve path-ordering.

he(A) = P exp
(∫

A
)

. (23)
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The discretization is not dictated by the theory but is motivated from the flat geometry
of the classical three-metric. We take a planar graph, which form a cubic 3-d polyhedronal
decomposition of the three-geometry, as shown in Figure 1. Therefore, there are six links
and/or six faces meeting at a given vertex.

Figure 1. (a) Building block for the decomposition of the 3-geometry. (b) Example of one of the
smearing surfaces to calculate the momenta.

The holonomies and the momentum are calculated as smeared along the one-dimensional
edges of the graph, and the two-dimensional faces of the cube which the links intersect precisely
at one point. These calculations are done using the techniques of [24]. The holonomies of the
three independent links in the x, y, and z directions and the corresponding momenta are given
up to a linear order in the amplitudes A+, A×,

hex = 1− i
ε

2
AI

xσI (24)

hey = 1− i
ε

2
AI

yσI (25)

hez = 1 + i
A+

2
sin
(

ω
(

z0 − t0 +
ε

2

))
sin
( ε

2

)
σ3, (26)

where one has taken a vertex at (x0, y0, z0) and the links are of width ε. σI are the Pauli
matrices. Next, one takes the faces centred at the middle of the links, i.e., at x0 + ε/2,
y0 + ε/2, and z0 + ε/2, and of area ε2. The momenta are labelled by the edges which
intersect the faces. The momenta are defined as PI

e = 1
κ

∫
Se
∗EI .

P1
ex =

1√
2κ

(
ε2 +

ε2(A×)
2

cos(ω(z0 − t0))

)
(27)

P2
ex =

1√
2κ

(
ε2 +

ε2(2A+ − A×)
2

cos(ω(z0 − t0))

)
(28)

P2
ey =

1√
2κ

(
−ε2 +

ε2(2A+ + A×)
2

cos(ω(z0 − t0))

)
(29)

P1
ey =

1√
2κ

(
ε2 +

ε2(A×)
2

cos(ω(z0 − t0))

)
(30)

P3
ez =

1
κ

ε2. (31)

As the densitized triads are smeared over two-dimensional areas and acquire dimen-
sions, the momenta are defined with the dimensional constant 1/κ, κ = 8πG/c3 to make
the variables dimensionless. In the quantum version, this acquires the role of 1/h̄κ = 1/l2

p,
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where lp is the Planck length. The coherent states are defined as peaked at the classical
values of a complexified SL(2,C) element as specified by Hall [31],

ge = exp(iT I PI
e )he,

and a detailed coherent state can be written for the above classical phase space, now
described only using the discrete one-dimensional smeared holonomies and corresponding
momenta. Note these “coherent states”, as defined in [22] for LQG, are representative
semiclassical states and are not exactly identifiable as “coherent states” as in completely
solvable Hamiltonian systems. However, these states have minimal uncertainty in the time
slice they are defined in. Next, we calculate the semiclassical corrections to the geometry
by using the results of [13]. The coherent states are given for one such discrete element e
and the LQG smeared variables as,

ψt(ge, he) = ∑
j
(2j + 1) exp(−t̃j(j + 1)/2)χj(geh−1

e ), (32)

where χj(he) is the character of the jth irreducible representation of SU(2). One can find the
expectation value of the momentum operator P̂I

e in this state, and one obtains it to the first
order in the semiclassical parameter t̃ [13]

〈ψt|P̂I
e |ψt〉 = PI

e

(
1 +

t̃
Pe

(
1
Pe
− coth(Pe)

))
= PI

e (1 + t̃ f (Pe)), (33)

where Pe =
√

PI
e PI

e and f (p) = (1/p)(1/p− coth(p)). Therefore, one can calculate the
semiclassical corrections to the metric of the classical gravitational wave, if one writes a
coherent state for each discrete element e which comprises the entire Minkowski three-
volume divided into cubic cells as in the figure. The vertices of the cube which are shared
by three+three coherent states and these can have SU(2) intertwiners [32], but the nature
of the corrections remain the same. Note these coherent states are not exactly similar to
the coherent states for photons, which are Abelian. These coherent states are non-Abelian
in nature.

In fact, if we take the pure Minkowski space and use the coherent state as a measure
of the quantum fluctuation, what would we generate as the corrected metric? All the PI

e ’s
for the Minkowski metric can be obtained as given above and, in the limit, A+,× = 0
would represent the Minkowski metric. In this particular gauge, the corrections generate
semiclassical fluctuations in the ηxx, ηyy, and ηzz components but not in the ηxy directions.

Next, we discuss the fluctuations to the gravitational wave metric as generated from
the coherent state which peaks at the gravitational wave metric. Obviously, the metric
would fluctuate and generate semiclassical corrections to the geometry at order t̃. We set
the semiclassical parameter (which has to be dimensionless) as a ratio of the Planck scale
to the gravitational wave, wavelength, or t̃ = l2

p/λ2. We take the wavelength as that is
the length scale which characterizes the wave system. A relevant-frequency gravitational
wave, which might generate detectable semiclassical fluctuations, has to be of very high
frequency. Let us say a 1035 Hz gravitational wave will have the semiclassical parameter as
t̃ ≈ 10−16.

In the above, have we predicted a “quantum origin” of the gravitational wave that
would comprise the “graviton”? Obviously, the story is not about particles in gravitational
physics, or matter quanta, but the quantum of geometry. The tiny area measurements in
each basis state of the operator P̂I

e represent the “graviton”, the condensate of which is
represented by the coherent-state wave packet. It thus remains that from our perspective,
the Minkowski geometry is not the gravitational vacuum, but also emergent from a semi-
classical state. Therefore, one should not confuse the quantum gravity vacuum state with
the “matter vacua”. We suggest two ways to search for quantum gravity bounds/origins
in a gravitational wave experiment:
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(i) As the coherent states are non-Abelian in nature, the expectation values of operators
have semiclassical corrections which originate due to self-interactions. These can be
detected for high-frequency gravitational waves.

(ii) The search for individual “gravitons” or quanta of geometry would require much
more precise instruments, able to resolve the coarse-graining of geometry itself.

The latter (ii) will require further investigations, in particular about what the dynam-
ical fundamental “quanta” of LQG is. One also has to find if there is a gauge invariant
observable which is measurable in experiments. Our questions seem to seek answers by
quantizing matter and the gravitational degrees of freedom simultaneously. However, due
to the hierarchy problem, it is preferred that matter is quantized and the gravitational degrees of
freedom are semiclassical in the current epoch. In the combined Hilbert space of the matter
and gravitational degrees of freedom Hmatter ⊗ Hgrav, the combined matter–gravity state
should be taken as

|Ψ〉 = |ψmatter〉 ⊗ |ψgrav
semiclassical〉. (34)

For previous work in adding matter interactions in LQG, refer to [23].
Using criterion (i) and the idea that matter quanta interact with gravitational degrees

of freedom at semiclassical length scales, one finds that the semiclassical fluctuations of
the metric are relevant. We therefore calculate the metric corrections as predicted from the
coherent states for LQG constructed by Thiemann, Winkler, [22] and as observed in [13].
They emerge as

gxx = (1 + h+)(1 + 2t̃ f (Pex )) (35)

gyy = (1− h+)(1 + 2t̃ f (Pey)) (36)

gxy = h×(1 + t̃ f (Pex ) + t̃ f (Pey)) (37)

gzz = 1 + t̃ f (Pez). (38)

The gauge invariant momenta are found to be:

Pex =
ε2

κ

(
1 +

1
2

h+

)
(39)

Pey =
ε2

κ

(
1− 1

2
h+

)
(40)

Pez =
ε2

κ
. (41)

The continuum limit is obtained using limε→0 Pe/ε2. This gives the metric fluctuations
at a location (x0, y0, z0) and one can solve the propagation of matter in this corrected metric.
As evident in the continuum limit, the corrections are functions of the classical triads, and
thus dependent only on the z coordinate. Moreover, the corrections are relevant only at one
instant t = t0 of the spacetime. For a 100 Hz frequency, the gravitational wave will have a
semiclassical correction of the order of 10−84, which is way smaller than the gravitational
wave amplitude. If one probes higher-frequency gravitational waves, and therefore shorter
wavelengths, the Planck scale coarse-graining will start manifesting itself and the effects
might be evident in a gravitational wave detector. The Minkowski metric is also corrected
semiclassically, and one can probe these using quantum fields in these geometries.

2.4. Summary

In this section, we gave a “semiclassical” state which could describe a gravitational
wave at one instant. It predicted fluctuations which could be measurable for high-frequency
waves ≥ 1030 Hz. These frequencies were way above the ones observed in the LIGO
detectors. From the current observation of gravitational waves, there are bounds on the
“graviton mass”. From LIGO, the bound is 1.2× 10−22 eV. This bound does not shed
light on the origins of the mass from the methodology. Theoretically, the graviton mass
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can originate from quantum corrections to the Einstein theory, as well as from matter
interactions which preserve diffeomorphism invariance. In this review, we do not discuss
massive gravitons.

3. Search for Hawking Radiation and Primordial Black Holes

The discovery that quantum mechanics near black hole horizons results in particle
creation originates in the paper by SW Hawking [33]. In that paper, a quantum field
vacuum was time-evolved in the collapsing geometry of a star. The quantum state evolved
into a thermal state, with a temperature inversely proportional to the mass of the black
hole. In [33], it was shown that the exact temperature of a solar-mass black hole was 10−8 K.
However, it would not radiate into the surrounding, which was at 2.78 K. This led to
the search for black holes with mass ∼ 1014 g, and these could have formed in the early
universe. Due to the Chandrasekhar limit, astrophysical black holes have a bounded mass
if formed from stellar collapse. On the other hand, early universe density fluctuations can
lead to the formation of tiny black holes, with horizon size fractions of a millimetre. These
black holes have intrinsic temperatures higher than the current CMB temperature of 2.78 K.
Even if the early universe had been hot, as the primordial universe cooled down, these
black holes would start radiating and evaporate eventually or form Planck size remnants.

3.1. Formation of Primordial Black Holes (PBH)

The story of the collapse of matter to form black holes is well-studied in the work of
Choptuik [34]. Scalar data in an initial slice undergo collapse, and the mass of the black
hole formed has a scaling equation. This physics is true for early universe cosmology. It
is noted that the matter undergoing collapse is taken as dust in most calculations and the
Fermion/quark composition (required for the Chandrasekhar limit) of the cosmic soup is
mostly ignored. For a comprehensive review of primordial black hole formation, one is
referred to [6]. Here, we briefly outline the methods used to study matter collapse in the
early universe. One of the main ingredient in the study of collapse in the early universe is
Jean’s instability. This instability characterizes density fluctuations in a fluid. The formula
for Jean’s instability is obtained by equating the time for free fall (or the time taken for an
object of radius R to collapse under its own gravity) to the time taken by a sound wave to
cross the radius. It is therefore a critical radius for which a pressure wave in the fluid gets
trapped. Jean’s critical length can also be obtained by solving for perturbations flowing in
a fluid and the self-gravitational force generated by the perturbation. In the following, we
discuss Jean’s instability.

3.2. Jean’s Instability

In this section, we discuss the collapse in a fluid of density ρ. This process also gives a
rough description of the physics of a “density” collapsing under “perturbations” or under
its own weight. The time for “free fall” of a mass in an elliptic orbit of eccentricity one,
according to Kepler’s laws (of planetary motion) is

τ2 =
π2

2
R3

GM
, (42)

where M is the mass causing the orbit, and R is the distance from the focus of the ellipse.
We use this to model self-collapse of a mass under its own gravity. If the mass collapses,
then only half of this time is taken. Given that the total mass in a radius R of a spherical
distribution of constant density ρ is

M =
4π

3
R3ρ, (43)

approximating the mass using this formula, the time for free fall is given as a function of
density as
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τ =

√
3π

32Gρ
. (44)

If the speed of sound in the fluid is cs, then the time for sound to flow through a
distance R is

R
cs

. (45)

This time would be the same as that a pressure wave flowing through the medium
would take. If the gravitational collapse time is greater than the pressure wave time, the
mass is unstable, and the critical length scale of the fluid region is given as

RJL =

(
3π

32

)1/2 cs√
Gρ

. (46)

The same “collapse formula” can be derived using a spherical homogeneous mass M,
whose radius increases by a perturbation ∆R = −αR, where α is a small perturbation. The
change in pressure using the formula δp/δρ = c2

s can be related to the change in density
due to the compression, and this gives rise to a force and “acceleration” obtained as

ap =
δp

ρ0R
=

3αc2
s

R
. (47)

In the above, we took δρ = 3αρ0, where ρ0 is the original density. Simultaneously the
shrinking of the radius gives rise to an increase of the Newtonian acceleration

ag =
2GMα

R2 . (48)

If the gravitational acceleration exceeds the “pressure acceleration”, the mass is ex-
pected to collapse, which gives a critical length

3αc2
s

RC
=

2GMα

R2
C

=
4π

3
ρ0R3

C
2G
R2

C
→ Rc ∝

cs√
ρ0G

. (49)

Thus, the critical radius for the collapse in a fluid of density ρ is proportional to the
speed of pressure waves cs in the medium. Here, one of the important assumptions for
the calculation of the speed of sound is the assumption that for the early universe fluid,
entropy is conserved. We next discuss if a change in the description of the fluid of the early
universe might change this Jean’s length. The above discussion on Jean’s instability can be
found in many references, including [35,36].

3.3. A Quantum Entropy Production Fluid and Jean’s Instability

In the above Newtonian derivation of gravitational collapse, the requirement that the
fluid be isentropic may not be true in the early universe. In fact, entropy production causes
the flow of the universe to be as in an “open system”, where the big bang singularity is
resolved [37]. We take a slight detour and discuss the situation where there is entropy
production in the fluid as anticipated in [37]. In [37], it is conjectured that spacetime can
generate particles which add to the fluid, the energy momentum tensor of the Einstein
equation. This particle creation is a quantum process and might add insight to the origins
of today’s cosmological observations. In [37], it is shown that in such open systems,
cosmological singularity is not formed. In this review, we briefly discuss whether the open
system allows for PBH formation. The conservation law for open thermodynamic systems
is given as

d(ρV) + pdV − h
n

d(nV) = 0, (50)
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where n is the particle number and h = ρ + p is the “enthalpy” of the system. In most
irreversible systems, as in systems with chemical reactions, enthalpy is a measure of the
energy of the system, and is a path-independent quantity. The thermodynamics of these
systems is controlled by the chemical potential µ, and the entropy per unit volume “s” is
defined as

µn = h− Ts, (51)

with T being the temperature of the system. The pressure for this fluid is given as

p =
nρ̇

ṅ
− ρ̇. (52)

If one assumes a fluid in the form of “radiation”, i.e., ρ = aT4 and n = bT3, where a
and b are dimensional constants [37], obviously, from Equation (52), the equation of state is
p = ρ/3. In such an open system, if one obtains the propagation equation of a “pressure
wave”, then the conservation of mass and momentum equations are different. In previous
work, the speed of sound in such a fluid was taken as cs =

√
1/3, which was at constant

entropy for the calculation of the Jean’s instability. However, the speed of sound changes in
a fluid with entropy production. We try to see the origin of the speed of a pressure wave in
a gravitating fluid, and it is nonisentropic, with dynamics given by the equations above. To
describe the propagation of pressure waves in a system, one uses the following equations:
For the conservation of mass equation in the fluid, one has

∂ρ

∂t
+ ~∇ · (ρ~v) = ṅi, (53)

where we have the “convective” derivative of the density and any particle production on
the other side of the equation. The conservation of momentum equation or Euler’s equation
gives (we assume that the fluid is not viscous)

∂(ρ~v)
∂t

+~v · ~∇(ρ~v) = −~∇p + ρg. (54)

In the above, the Navier–Stokes equations have been reduced by setting the viscosity
to zero. On the right-hand side, there is a potential term which can be a gravitational
potential term. In all discussions for the speed of sound, or the speed of pressure waves
in the system, the velocity is taken to be small, and the density and pressure undergo
perturbations. We assume no gravitational potential at this stage. If there is a linear
perturbation in the velocity, density, and pressure of the fluid, with the ṅ remaining the
same, the perturbations lead to the following equations

∂δρ

∂t
+ ρ0~∇ · ~δv = 0, (55)

and

ρ0
∂~δv
∂t

= −~∇δp. (56)

If the system is isentropic, i.e., homogeneous, one can take a partial derivative of
Equation (55) and obtain

∂2δρ

∂t2 + ρ0~∇ ·
∂~δv
∂t

= 0. (57)

In the above, using Equation (56), one obtains

∂2δρ

∂t2 −∇
2δp = 0. (58)
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In the isentropic approximation

δρ =

(
∂ρ0

∂p0

)
s
δp, (59)

one plugs in the above and obtain

∂2δρ

∂t2 − c2
s∇2δρ = 0, (60)

and one obtains the speed of propagation of the density perturbations as

1
cs

=

√(
∂ρ0

∂p0

)
s
. (61)

In case the fluid has entropy changes, they induce a change in volume. One therefore
can obtain for nonisentropic fluids

δρ =

(
∂ρ0

∂p0

)
s
δp +

(
∂ρ0

∂s0

)
p
δs. (62)

If we use the thermodynamic equation for entropy production as

δs =
(

∂s0

∂ρ0

)
T

δp, (63)

then, in the formula for the “density perturbation” velocity, we have

c =

√
c2

s c2
p

c2
s + c2

p
, (64)

where
1
c2

p
=

(
∂ρ0

∂s0

)
p

(
∂s0

∂p0

)
T

. (65)

If we add the gravitational potential in Euler’s equation, then the wave equation has
an inhomogeneous term which has a “force driving term” obtained from the gradient of
a gravitational potential. If we take the potential to originate from the density, we have
∇2φ1 = 4πGρ0, then

∂2δρ

∂t2 − c2∇2δρ = −4πGρ0δρ. (66)

We assume a plane wave solution for the density wave δρ ∼ ei(ωt+~k·~x), and we find

ω2 − c2k2 = 4πGρ0, (67)

so a critical “pressure wave” is identified. For waves with wave numbers above that, the
system will see instability. The critical wave number is given as

k2 =
4πGρ0

c2 . (68)

Jean’s instability is thus identified as perturbations having a wavelength greater than

λJ >

√
π

Gρ0
c. (69)

Unlike the previous estimate of the length scale where the gravitational instability sets
in, here, the speed of sound is not a mere

√
1/3 as given in the formula for an isentropic
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radiation fluid but is obtained using Equation (64). In a turbulent early universe, therefore,
it is expected that the fluid would be nonisentropic. In addition, the open universe will
ensure entropy production as spacetime generates particle species to add to the fluid. As the
speed differs, so will the threshold for the formation of PBH. Note the origin of this change
from an underlying quantum theory is implicit in the velocity change of the pressure wave.
Note our results for a nonisentropic fluid is just one way to see how some of the formulas
used for PBH might change; for other origins of change in Jean’s instability formula in
cosmic fluids, see [38].

3.4. PBH Formation

How does one obtain the dynamics of formation of PBH in the early universe? It
is postulated that the FLRW universe metric could have perturbations induced by the
density fluctuations of the fluid. These can be modelled using a spherical symmetry, and
the conditions for the formation of “trapped surfaces” or apparent horizons derived using
the “Misner–Sharp” equations. These PBH can then accrete and grow in size, and there
can be PBH formed of masses which are bigger than the solar masses of 10M◦–30M◦. A
great deal of the current work on PBH discusses these and the fraction of PBH contributing
to dark matter halos fPBH . For further reading on the PBH production and the interest
in them as contributors to dark matter and physical processes such as microlensing, etc.,
refer to [8]. As the black hole formation follows the same numerical flow as in the spherical
collapse obtained by Choptuik, the PBH’s mass has the following “scaling” formula

MPBH = K MH(tH)(δm − δc)
γ, (70)

where δm = (ρ− ρb)/ρb is the fluctuation in the fluid density over the Hubble density, at
the radius where a compaction function is maximum. δc is the fluctuation at the critical
radius related to the Jean’s instability in the fluid found earlier. δc represents the threshold
of black hole formation. This equation can only be trusted in the regime δm − δc ∼ 10−2.
MH(tH) is the Misner–Sharp mass of the horizon, K is a numerical constant. γ is a universal
scaling exponent and varies depending on the fluctuation profile and the equation of state
of the fluid. This equation provides the basis for PBH formation, though using classical
equations. The compaction function C(r, t) is defined as the excess of mass over the FLRW
mass Mb defined as Mb = 4πρbR3/3,

C(r, t) = 2
M(r, t)−Mb(r, t)

R(r, t)
. (71)

If one takes the perturbation of the FLRW metric to be modelled by a function ζ(r, t),
in the FLRW metric three-slice as a2(t)e2ζ(r,t)r2dΩ, one gets a formula for the compaction
function in terms of this parameterized fluctuation as

C(r) =
2
3

(
1− (1− rζ ′(r))2

)
. (72)

This facilitates the study of this function in terms of the curvature fluctuations of
the metric. The various calculations of the “peak” values of this compaction function
use different ensembles for the fluctuations and accordingly, obtain different values. It is
postulated that when the compaction function exceeds a critical value, a collapse occurs,
otherwise the fluctuation dissipates away. The density contrast parameter is related to the
peak value of the compaction function as

δm = C(rm). (73)

In this article, we refrain from discussing the various ways of finding PBH compaction
function but only show a way the change in threshold value δc of PBH formation influences
the collapse process. This critical value is related to Jean’s instability in the cosmic fluid
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and as shown previously, vary according to the approximations used. A dependence on the
formula for PBH on the nature of the fluid is discussed in [8]. As shown in Equations (69)
and (64), the threshold of the onset of the instability of a fluid changes if quantum “particle
creation” is allowed. In [37], the fluid exchanges particles with the gravitational “quantum
field”. In this open universe, there is no initial singularity [37], and as we anticipate, the
formation of PBH would also differ. The masses would be different, and the nature of the
cosmological fluctuations of the gravitational metric would also differ as per the “entropy
production” of this open universe. A more detailed calculation using quantum cosmology
is required for the exact changes required in the theoretical predictions of the PBH’s mass,
and the PBH formation from the cosmic soup.

The formation of PBH can vary from masses of the order of 105–1050 g, and therefore,
they can range from small black holes to larger-than-solar-mass black holes. The lower
limit is based on the Planck mass and the upper limit is based on the cosmological mass.
How can we verify the existence of PBH? The existence of PBH can be verified using the
observation of particles received on earth, which might have originated from the PBH
using the Hawking radiation process. It is this process which we describe next. We discuss
PBH whose evaporation time ∝ M3 is about the age of the universe. These PBH might have
radiated away their mass in the form of photons and neutrinos and would provide evidence
for the phenomena of Hawking radiation. The mass of these black holes is estimated as
<1014 g.

Curiously, there was an attempt to find quantum gravity effects on PBH production
using loop quantum cosmology (LQC) corrections to the scale factor and the density [39].
The authors found that using the LQC-corrected early universe cosmology, the production
of PBH was increased theoretically compared to estimates from other theoretical models as
that of the Brans–Dicke gravity.

3.5. Evaporation of PBH

The mechanism of radiation from black holes can be studied using the power law for
the emission of particles. In the 1970s [33,40,41], one typically calculated the power law
using Hawking’s formula for the particle flux from black holes. The total energy radiated
per unit time from PBH of Hawking temperature TH is given as

dE
dt

=
∫

dω
∫

dΩ ∑
lm

Γωslm
exp(ω/TH)± 1

(74)

where Γωslm is the grey-body factor for the black hole geometry and represents matter
waves scattering off the gravitational potential outside the black hole. s, l, m represent
the spin and angular momentum quantum numbers of particles with frequency ω. The
sign in the denominator is positive for bosons and negative for fermions. The Hawking
temperature for a nonrotating black hole is inversely proportional to the mass. The grey-
body factor is calculated using the solutions to the classical equation of motion of the
particles in the black hole background and is a function of the spin, angular momentum,
mass, and frequency of the emission. The fraction of power radiated in different species
can be calculated. The total power radiated can be calculated numerically as

P = 2.011× 10−4 h̄c5G−2M−2, (75)

where M is the mass of the black hole. Most of the above is radiated out in the form of
neutrinos (81.4%), 16.7% as photons and 1.9% as gravitons, as long as the black holes have
mass M > 1017g [40] After the black hole has shrunk further, the temperature being higher,
and the mass being denser, the black hole radiates quarks in the form of muons and other
particles such as electrons and positrons. For this range of black holes, 1014 g < M < 1017 g
the power radiated was found to be

P = 3.6× 10−4 h̄c5G−2M−2, (76)
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90% is equally divided in electrons, positrons, and neutrinos, 9% in photons, and 1%
in gravitons [40]. In this work, when computing the power of Hawking particles, the
numerical calculations of the grey-body factors were used, and the above division into
fractions were based on the spin of the particles. The emission of massive particles would
have a different calculation, but for a detection on earth, the massless particles acquire
relevance.

In a follow up work [41], the emission of gamma rays with energy of about 120 MeV
was discussed, and a study of “gamma ray bursts” from evaporating PBH was introduced.
In there, a mass distribution was assumed for PBH, and this is an ingredient in the current
analysis of the data received on earth. The search for Hawking radiation phenomena in the
universe is thus a search for primordial black holes and the particles emitted from them.
There are several searches for primordial black holes using gamma-ray bursts which might
be the evidence of these black holes evaporating. In the next, we describe some of these
searches in detail and provide a bibliography.

3.6. Archived Data

The Imaging Compton Telescope (COMPTEL) [42] was decommissioned in 2007, but
there remained the archived data to analyze gamma rays. The search from these data has
shown bounds for the primordial black holes (PBH) < 1017 g [43].

3.7. Gamma-Ray Bursts

There are several satellite-based experiments, which are functional or at the planning
stage such as AMEGO and e-ASTROGRAM. AMEGO is an abbreviation for the All-sky
Medium Energy Gamma-ray Observatory experiment and comprises a silicon tracker,
a cesium iodide calorimeter, and a scintillator anticoincidence detector. All these will
form the payload of a satellite. The detector will operate in the MeV range and provide
a wider field of view than the Fermi-LAT detector. This detector is planned by NASA.
e-Astrogram is a European Science Commission gamma-ray detector, based on similar
instrumentation as AMEGO [44]. The e-Astrogram project aims to observe the frequency
range of 0.3 MeV to 3 GeV. It is also aiming to be more sensitive at a particular frequency
than previous instruments. These instruments will send data about the gamma-ray bursts
and other sources which will give a clue on the existence of primordial black holes in the
early universe.

3.8. HESS

The HESS is a gamma-ray observation experiment using an array of atmospheric
imaging Cerenkov telescopes with energy in the TeV range. The telescopes are in Namibia.
We report on the techniques of the HESS experiment in details here as an example, but it is
one of several developments for PBH observations [45]. As the PBH which are smaller than
1017 g might have evaporated by now, one searches for gamma-ray burst signals. The PBHs
are expected to have evaporated with an explosion of gamma rays, which have a high
energy and last only for a few seconds. Using statistics and the methods of [46] Feldman
and Cousins, one can estimate the “rate of” the PBH formation density ρ̇PBH , with 95% and
99% confidence levels. Further, we discuss this experiment’s data analysis [45] in details to
illustrate the methodology of the search of PBH. Let us say an unknown parameter µ is
being assessed using the measurements of a variable x. Usually, one uses Bayesian statistics
to estimate the “belief” in a system’s parameter being µt. This is given using the formula

P(µt|x0) = L(x0|µ)
P(µt)

P(x0)
, (77)

where L(x0|µt) is the “likelihood” of obtaining x0 given µt. However, it is assumed that
there is prior knowledge of the probability P(µt) of finding µt independent of what x0 is,
which might not be the case. The probability P(x0) can be absorbed in the normalization
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of the conditional probability. In Bayesian methods, the belief in finding µt given the
measured values of x is expressed as a “confidence”. This is mathematically∫ µ2

µ1

P(µt|x0)dµt = α, (78)

where α is the degree of confidence for µt to be in the confidence interval [µ1, µ2]. In [46], a
variation of this is given, for estimating the value of a parameter µ given the measurements
of the variable x. If one takes the ratio of two likelihoods, then the “prior knowledge”
required in Bayesian statistics is not there.

R =
L(x|µ)
L(x|µbest)

, (79)

where µbest is the value of the parameter which maximizes the conditional probability. This
ratio determines the acceptance region in the x variable, for a given value of µ. A sum
of the observation probabilities in decreasing order of R, until the required confidence
limit is reached, provides a good estimate for the confidence intervals or upper limits for
a parameter.

In the HESS observations, gamma rays were detected using the Cerenkov telescopes
on earth. The number of photons detected could vary from one to infinity in a given time
interval ∆t. A time interval of ∆t = 10 s was taken for the purpose. We assumed that the
detection of photon “clusters” of size k followed a Poisson distribution

P(k, N) = e−N N
k!

, (80)

where N(r, α, δ, ∆t) is the number of γ rays emitted from PBH from a distance r in the
angular interval in the sky specified by α, δ in unit time ∆t. Integrating this over all space,
i.e., r, α, δ, and over all runs of the experiment, the number of significant clusters of photons
detected were estimated to be

nsig(k, ∆t) = ρ̇PBHVeff(k, ∆t), (81)

where

Veff(k, ∆t) = ∑
i

Ti

∫
dΩi

∫
dr r2 P(k, N) = ∑

i
TiΩi

(r0
√

N0)
3

2
Γ(k− 3/2)

Γ(k + 1)
, (82)

where N0 is the number of photons emitted from PBH at a distance of r0. Ti is the run’s
live time of the experiment, and Ωi is the solid angle of the observations. Based on the
observed data, the statistical analysis using the techniques of Feldman and Cousins was
implemented. The parameter being sought was nsig given n as the observed variable. Note
that these photon clusters, which might be from evaporating PBH, were received along
with the background photons, whose number was taken as n̄, or off photons.

R = ∏
n

L(n|n̄ + nsig)

L(n|n̄) . (83)

Here, the maximal value of the likelihood function was taken as that of the background n̄.
The χ2 estimate of the above can be found as [46]:

LNR = −2 ln(R) = 2 ∑
n

nsig + n(ln(n)− ln(n̄− nsig)), (84)

where n is the number of observed photon signals in the on position of the telescopes
and n̄ is the number of mean observed signals in the off data. This is an estimate of the
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background photons, obtained by averaging over “scrambled” time intervals. In deriving
the above, we used the Poisson distribution.

This LNR had a maximum of 0.006 in the preliminary data for ∆t = 10 s and 6240 runs
of four of the five telescopes [45]. This showed that there was not much of the PBH excess
data. However, if one sets LNR = 4, 9, one can obtain an upper-limit estimate for ρ̇PBH ,
with 95% and 99% confidence levels. The upper limit was found to be

ρ̇PBH < 2.5× 104/pc3yr (95%), (85)

ρ̇PBH < 5× 104/pc3yr (99%), (86)

These data points were further updated with other experiments such as VERITAS, MILA-
GRO, FERMI-LAT, and SWGO [47]. A comparative plot of the experimental predictions of
evaporating PBH or final bursts at the 99% confidence limit is given in Figure 2. The data
for this are quoted from [48] (2021). For some recent updates in the field of constraints on
PBH see [49].

Figure 2. The upper estimates of the number of final bursts at the 99% confidence limit from some
experiments [48].

For recent data on HESS, one can refer to the experiment’s website [50].

3.9. Neutrino Experiments

The Hawking radiation from PBH releases neutrinos. The flux of these as a function
of the PBH production and then a further analysis for “secondary effects” producing
neutrinos were analyzed. The data from several experiments were taken and showed
almost no or a very small estimation of the PBHs. Using a recent work [51], we comment on
the results. A neutrino spectrum rate was defined using the Hawking emission spectrum
as in Equation (74). Further, there can be secondary neutrino production due to the decay
of hadrons produced initially:

d2Nν

dωνdt
=
∫ ∞

0
dM

dN
dM

(
d2Nν

dωνdt prim
+

d2Nν

dωνdt sec

)
. (87)

where the black hole’s mass distribution could be taken as a Gaussian log-normal profile,

dN
dM

=
1√

2πσM
exp

(
− ln2(M/MPBH)

2σ2

)
, (88)
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or simply a delta function profile centred at M = MPBH. In the above, MPBH is an average
mass, and σ is the standard deviation, as the mass of the black hole is allowed to vary. A
plot of the differential neutrino flux from extragalactic sources and the milky way can be
calculated using publicly available software [51] and plotted. The differential flux of the
neutrino plotted as a function of the energy ων varied between 102 and 10−5, as the energy
varied from 1 to 100 MeV for PBH of mass 1013 g. The evaporated PBH were taken as a
fraction of the cosmic background which is 10−18 to obtain this result.

The experimental bounds obtained from the Super-Kamiokande data showed that
for PBH which were already evaporated, the abundance ratio was about 10−17 for 1013 g
black holes and a confidence limit of 90%. The question is of course what the above bounds
imply for quantum gravity phenomenology? Whereas the PBH production cannot be ruled
out completely, using the above estimation methods, it remains that the mechanism of
PBH formation could be different, and the emission flux calculations greatly modified
by intervening cosmic flows and quantum effects. In this aspect, one has to wait for
future experiments such as JUNO, DARWIN, ARGO, and DUNE, and perhaps quantum
cosmology predictions of the PBH formation from a more fundamental theory such as loop
quantum gravity.

It is obvious from the above discussions that the detection of bursts of photons and
neutrinos on earth gives a very small window for the PBH to exist which would be
evaporating now, i.e., those having masses 105–1014 g. However, as we know, there can
still be the option that there are PBH which have not evaporated away but have formed
remnants. These will still be candidate dark matter contributors. The fraction of PBH
which contribute to dark matter and have not been evaporated yet is also estimated as
∼10−3 for masses of the order of 1016 g as in [52]. There are other papers investigating this
using various data sources such as microlensing, accretion disk luminosity, radio signals,
anisotropies of the CMB, etc. We refer the reader to reviews in this field [8]; there are also
discussions of the PBH formation and evaporation using LQG corrected metrics, though in
reduced phase-space formulations [53]. In our opinion, whereas the search is now much
focused than earlier on what a gamma-ray burst or a neutrino flux from PBH may be, the
research is still nascent.

4. Event Horizon

In the initial days of the discovery of the black hole metric solution to Einstein’s equa-
tion, the existence of the horizon was one of the most bizarre predictions. The existence of
trapped surfaces in general relativity was later firmly established with the Ray–Chowdhury
equations and Hawking–Penrose singularity theorems. However, the debate continued on
whether the event horizon existed, as it was unobservable. With the discovery of compact
objects and the observation of X-rays from them, various models were tested for the exis-
tence of the event horizon. As the conclusions were model-dependent, the search continued,
until the event horizon telescope project produced an “assembled image” of the photon
sphere surrounding a black hole [14,54]. This confirmed some of the predictions about
the behaviour of geodesics near a black hole’s horizon, but did it confirm the presence
of an event horizon? Perhaps not, but this is as “good as it gets”. The snapshot of the
photon sphere assimilated from eight infrared telescopes captured the electromagnetic
waves circulating a compact object. The question we are asking in this article is: can we use
the observations of geodesics around a black hole to measure semiclassical physics? In a
work using semiclassical states in loop quantum gravity [13], it was shown that quantum
fluctuations could cause instabilities in black holes, and these could produce tangible
detectable effects for astrophysical black holes [13]. The main results of the paper were the
calculation of a nonpolynomial correction to the metric of the Schwarzschild black hole.
The semiclassically corrected metric was shown to be of the following form
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ds2 = −
(

1−
rg

r
− t̃ htt

)
dt2 + t̃ hrt dtdr +

{
1

(1− rg/r)
+ t̃ hrr

}
dr2 +

+
(

r2 + t̃ hθθ

)
dθ2 +

(
r2 sin2 θ + t̃ hφφ

)
dφ2. (89)

where rg is the Schwarzschild radius, and the location of the horizon is at rg = 2GM, where
M is the mass of the black hole. htt, hrt, hrr, hθθ , and hφφ are the perturbations motivated
from the corrections to the metric [13]. The perturbations of the metric could be attributed
to other quantum models of gravity, but we used the one motivated from [13], and a shift
was generated, hrt, breaking the “static” nature of the metric. The t̃ which appears in this
coherent state was obtained using the length scales of the system and was thus a ratio of
Planck’s area to the area of the horizon t̃ = l2

p/r2
g. Using this, we solved for the geodesics

of the black hole. The geodesics were taken as circular orbits and the radial coordinate
r was solved as a function of the coordinate φ. These orbits described the trajectory of
light rays which were incident on the black hole geometry from a distance, and the impact
parameter measured the perpendicular distance of the light ray from the horizon. Using
the invariant distance on the Schwarzschild geometry, one can write the equation of motion
for the geodesic of a photon as a differential equation in the azimuth φ, which was taken as
the affine parameter along the geodesic. The deviations in geodesic computations for the
rotating black hole from the nonrotating black holes were small [55] but detectable. For
rotating black holes, the cross section of the photon scattering might not be circular [55],
but the difference was about 4%. However, quantum corrections might be different, and
one needs to formulate coherent states for rotating black holes separately. The effect of
the presence of “echoes” might still be true. The results stated in this paper thus apply to
nonrotating black holes strictly but pave the way for realistic ones.

If we arrange the terms in a way they can be grouped into terms which are zeroth
order in t̃ and then first order in t̃ (in the equatorial plane), one gets [14]:

1
r4

(
dr
dφ

)2
+

1
r2

(
1−

rg

r

)(
1 + t̃

hφφ

r2 − t̃ hrr

)
=

1
b2

(
1 + 2 t̃

hφφ

r2 − t̃ hrr + t̃
htt

1− rg/r

)
. (90)

As one traces the trajectory through the entire path, the asymptotic angle of “scattering”
from the black hole geometry emerges as a function of the impact parameter of the photon.
The solution is obtained using a set of elliptic integrals and one finds

exp(−φ∞) = δ1+0.0203 t̃ exp

(
+

0.47 t̃1/2

(0.67δ + 0.225 t̃)1/2 + 0.23 t̃ + 1.712
t̃
δ

)
, (91)

where δ = b− bc, and φ∞ is the asymptotic angle the geodesic makes as it re-emerges to
the asymptotic region. The difference of the photon geodesic impact parameter with the
impact parameter of the critical orbit bc = 3

√
3M is expected to be zero as the photon can

orbit an infinite number of times round the horizon. One can see that in Equation (91), the
t̃ → 0 reduces to a linear term in δ. Most importantly, δ → 0 as φ∞ = µ + 2nπ → ∞. n
counts the number of times the geodesic encircles the black hole, and this goes to infinity
for the critical geodesic with the critical impact parameter. The photon circles the black
hole an infinite number of times, when the critical impact parameter is reached. If we take
the semiclassical corrections, then the plot of w(δ) (the RHS of Equation (91) as a function
of δ shows that the function does not reach zero but bounces off (see Figures 3 and 4), and
this we can associate with the presence of a quantization.
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Figure 3. Plot of the semiclassically corrected photon geodesic impact parameter relation. The plot
shows a bounce as the distance from the critical radius approaches the semiclassical length scale of
t̃ ∼ 10−8 units.

Figure 4. Plot of the semiclassically corrected photon geodesic impact parameter relation. The plot
shows a bounce as the distance from the critical radius approaches the semiclassical length scale of
t̃ ∼ 10−66 units.

This observation is commensurate with the work in fuzzballs and ECHOS [56]. In
these models, the horizon is replaced by a “wall” at a particular distance from the black
hole. In our calculations with the LQG coherent states [13], we found the explicit location
of the “wall” as a function of the semiclassical parameter t̃. We expect that our results can
be eventually verified from observational data from astrophysical black holes [56].

5. Conclusions

As it happens, the search for quantum gravity in experiments is still nascent. However,
we expect that in the early universe, the length scales were quantum, and therefore the
search for relics of quantum gravity is ongoing. There are a number of papers in this
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Universe special issue in quantum gravity phenomenology which discuss cosmology and
the effect of quantum cosmology in observational physics. In this review, the experiments
we discussed only provided bounds on the mass of the graviton, the PBH production. We
discussed the quantum effects which could be “directly” observable in recent experiments
including in gravitational wave detectors and event horizon telescope images. We also
reported on the numerous experiments which observe particles from distant celestial events
on earth. We showed theoretical calculations and reported on bounds from experiments
on Hawking emission from PBH. The experimental bounds did not violate any theoretical
predictions. The observations provide directions for the experimental community to seek
for more precise measurements. The plot of the electric and magnetic polarizations from
the EHT [57] and the launching of LISA [58] are ongoing efforts in that direction. The
study of fast radio bursts (FRB) provided an effort towards finding the quantum origins
of astrophysical phenomena. The most promising experiments on earth for the quantum
effects of gravity remain the GW detectors and the possibility that one would detect a
“graviton” or its semiclassical version in the near future.
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