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Abstract: Warm inflation, its different particle physics model implementations, and the implications
of dissipative particle production for its cosmology are reviewed. First, we briefly present the
background dynamics of warm inflation and contrast it with the cold inflation picture. An exposition
of the space of parameters for different well-motivated potentials, which are ruled out, or severely
constrained in the cold inflation scenario, but not necessarily in warm inflation, is provided. Next,
the quantum field theory aspects in realizing explicit microscopic models for warm inflation are
given. This includes the derivation of dissipation coefficients relevant in warm inflation for different
particle field theory models. The dynamics of cosmological perturbations in warm inflation are then
described. The general expression for the curvature scalar power spectrum is shown. We then discuss
in detail the relevant regimes of warm inflation, the weak and strong dissipative regimes. We also
discuss the results predicted in these regimes of warm inflation and how they are confronted with
the observational data. We explain how the dissipative dynamics in warm inflation can address
several long-standing issues related to (post-) inflationary cosmology. This includes recent discussions
concerning the so-called swampland criteria and how warm inflation can belong to the landscape of
string theory.
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1. Introduction

Among the different proposals that attempted to implement consistent inflationary
dynamics within an explicit quantum field theory realization, the warm inflation (WI)
paradigm [1–3] is one of the most attractive. Warm inflation explores the fact that the
inflationary dynamics is inherently a multifield problem, since the vacuum energy that
drives inflation eventually must be converted to radiation, which generally comprises a
variety of particle species. Thus, WI model realizations explore those associated dissipative
processes to realize radiation production concurrently with the inflationary expansion1.
This is the opposite of the more usual scenario of cold (supercooled) inflation (CI) [6–10],
where a separated period of radiation production after the end of inflation (graceful exit)
is required.

From a model building perspective, the recent developments have aimed at overcom-
ing some of the important issues found in earlier particle physics realizations of warm
inflation. In order to be able to sustain a nearly-thermal bath during WI, a sufficiently
strong dissipation is typically required, such that some of the energy density in the inflaton
can be converted to radiation. For this to happen, earlier particle physics realizations of
WI required large field multiplicities [5,11]. These large field multiplicities can be diffi-
cult to be generated in simple models while keeping perturbativity and unitarity in these
models [12] (see, however, for natural realizations in the context of brane models [13], or
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in extra-dimensional models with a Kaluza–Klein tower [14]). One other difficulty in WI
model building is to properly control both quantum and thermal corrections to the inflaton
such as not to spoil the flatness of its potential, which could otherwise prevent inflation
to happen. Earlier models for WI have made use, for instance, of both supersymmetry
and heavy intermediate fields coupled to the inflaton for this purpose [4,15]. More recent
implementations of WI have focused, instead, in using symmetry properties such as to
be able to efficiently control the corrections to the inflaton potential [16–18]. Finally, from
an effective field theory point of view, WI constructions that can be able to achieve strong
dissipative regimes have been shown to display quite appealing features. For example,
already in some of the first studies in WI [19,20], it has been claimed that WI in the strong
dissipative regime can also prevent super-Planckian field excursions for the inflaton, thus
making WI potentially attractive in terms of an effective field theory consistent with an
UV-complete realization in terms of quantum gravity [21–34]. Finally, the dissipative effects
in WI can lower the energy scale of the inflaton and, as a result of this, the tensor-to-scalar
ratio can be decreased with respect to what it would be in CI for the same type of primordial
inflaton potential. This makes several primordial inflaton potential models that would
otherwise be and had been discarded in CI, to be in line with the CMB observations in
the context of WI [35]. The above are just a few examples of recent developments in WI
and which have been attracting increasing interest in this intriguing alternative picture of
inflation. In this paper, we review some of these major developments achieved in the area
in the recent years.

This paper is divided as follows. In Section 2, we start by briefly reviewing the WI
background dynamics and contrasting it to the CI picture. We discuss how a supplementary
friction term in the Klein–Gordon equation is able to bring about a richer dynamics for WI.
The smooth connection of the end of WI with the radiation-dominated regime is discussed.
We show that there are several different possibilities for graceful exit depending on the form
of the inflaton potential, the dissipation coefficient and whether being in the weak or strong
dissipative regimes. In Section 3, we describe the necessary tools for calculating dissipation
coefficients in the context of non-equilibrium quantum field theory and which are applied to
WI. Some of the most recent microscopic realizations of WI are discussed and the respective
derivation of the dissipation coefficients for these models is outlined. In Section 4, we
discuss the cosmological perturbation theory for WI. Several important issues are discussed
and the general derivation of the scalar of curvature power spectrum in WI is given. The
bispectrum and non-Gaussianities in WI are also discussed. In Section 5, we discuss the
observational constraints and other applications of the WI dissipative dynamics. It is shown
how the dissipative particle production addresses/alleviates some of the long-outstanding
problems in cosmology, e.g., related to the inflationary and post-inflationary phases and
which CI cannot directly answer. In Section 5, we also discuss the connections which WI
recently made with the so-called swampland criteria. We start by briefly reviewing the
motivation behind the swampland conjectures [36–41]. We discuss why the dynamics of
WI allows it to satisfy the swampland conjectures. Given the constraints imposed by the
swampland conjectures, we find under which conditions WI is able to simultaneously
satisfy the swampland conjectures and the implications of this for building inflationary
models in string theory in the context of WI. An overview of different WI implementations
and applications, including in the context of non-canonical models, is also given. Finally, in
Section 6, we give our concluding remarks.

2. Background Dynamics of WI

A WI regime is typically realized when the inflaton field is able to dissipate its energy
into other light degrees of freedom with a rate that is faster than the Hubble expansion.
Thus, the produced particles have enough time to thermalize and become radiation. During
this time, where the inflaton is decaying into the radiation particles and that can subse-
quently thermalize, one can then model their contributions as simply a radiation fluid with
ρr = π2g∗T4/30, with ρr, T, and g∗ being the radiation energy density, the temperature,
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and the effective number of relativistic degrees of freedom of the produced particles. Hence,
the total energy density of the universe in the WI scenario contains both the inflaton field
and a primordial radiation energy density, i.e., ρ = ρφ + ρr, where ρφ is the inflaton field
energy density. Energy conservation then demands that the energy lost by the inflaton field
must be gained by the radiation fluid. Therefore, the evolution equations can be obtained
from the conservation of the energy-momentum tensor Tµν [42],

∇µTµν = 0. (1)

We work in the spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric,
ds2 = −dt2 + a(t)2δijdxidxj, where a(t) is the scale factor. Hence, Equation (1) leads to a
set of continuity equations for each component of the cosmological fluid,

ρ̇α + 3H(ρα + pα) = Qα, (2)

where a dot here means a derivative with respect to the cosmic time t, with ρα and pα

being the energy density and pressure for each fluid component α, respectively, and
H ≡ ȧ/a =

√
ρ/3/MPl is the Hubble expansion rate. Here, MPl = (8πG)−

1
2 ' 2.44× 1018

GeV is the reduced Planck mass and G is Newton’s gravitational constant. Moreover, Qα

in Equation (2) is a the source term, which describes the energy conversion between the
species α accounted in the theory. The conservation of energy assures that ∑α Qα = 0.
Therefore, the conversion of the inflaton energy density into radiation energy density in
the WI scenario is, hence, described by the following set of equations [5]

ρ̇φ + 3H(ρφ + pφ) = −Υ(ρφ + pφ), (3)

ρ̇r + 3H(ρr + pr) = Υ(ρφ + pφ), (4)

where Υ is the dissipation coefficient, which can generally be a function of the inflaton field
φ and temperature T and whose functional form depends on how WI is being described in
terms of the microscopic physics [11,12,16–18]. Considering the energy density and pressure
for a standard canonical inflaton field, i.e., ρφ = φ̇2/2 + V(φ) and pφ = φ̇2/2−V(φ), with
pr = ρr/3, Equations (3) and (4) reduce to

φ̈ + (3H + Υ)φ̇ + Vφ = 0, (5)

ρ̇r + 4Hρr = Υφ̇2, (6)

where Vφ is the derivative of the inflaton potential with respect to φ. Although inflation
happens when the energy density is dominated by the inflaton field potential V, i.e.,
ρr, φ̇2/2� V, such that the radiation energy density is sub-dominant, even so the produced
radiation energy density can still satisfy ρ1/4

r > H. Assuming thermalization, this condition
then translates into T > H, which is usually considered as a condition for WI to happen.
This condition is easy to understand. Since the typical mass for the inflaton field during
inflation is mφ ' H, hence, when T > H, thermal fluctuations of the inflaton field will
become important. Looking at Equation (5), one can immediately see that dissipative
particle production effects manifest as an extra friction term in the equation of motion for
the inflaton. Therefore, radiation will not be necessarily redshifted during inflation, because
it can be continuously fed by the inflaton through dissipation. As a consequence, this can
result in a sustainable quasi-stationary thermal bath during the inflationary dynamics.
Such radiation production also results in entropy production. The entropy density s is
related to the radiation energy density by Ts = 4ρr/3, i.e., it is related to the temperature as
s = 2π2g∗T3/45, where we have considered a thermalized radiation bath as it is typically
the case in the WI scenario. Then, Equation (6) can be rewritten in terms of the entropy
density as follows [43]:

T(ṡ + 3Hs) = Υφ̇2. (7)
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With the inflaton’s potential dominating, an inflationary phase sets in. Thus, to
solve Equations (5) and (6), one can use the so-called slow-roll approximation, which
consists in dropping the leading derivative term in each equation, i.e., φ̈� 3Hφ̇, Vφ and
ρ̇r � 4Hρr, Υφ̇2. Hence, the slow-roll equations read as follows,

3H(1 + Q)φ̇ + Vφ ' 0, (8)

ρr '
3
4

Qφ̇2, (9)

and H '
√

V/3/MPl. In Equations (8) and (9), we have introduced Q,

Q =
Υ

3H
, (10)

which defines the dissipation ratio in WI and it measures the strength of the dissipative
particle production effects in comparison to the spacetime expansion. There are two
different regimes in WI that can be defined depending on the value of the dissipation ratio
Q. The weak dissipative regime is when Q < 1. In this regime, dissipation is not expected
to modify significantly the background dynamics. Hence, in this case, the background
dynamics is similar as in CI. However, as we will see in the Section 4, thermal fluctuations
of the radiation energy density can still strongly affect the field fluctuations, and also the
primordial spectrum of perturbations as long as T > H. The other regime of WI is the strong
dissipative regime, Q > 1. In this case, dissipation strongly modifies both the background
dynamics and the primordial fluctuations. Note that Q is not necessarily constant. In
fact, it can increase or decrease depending on the form of the dissipation coefficient and
inflaton potential. Therefore, there is also a possibility that a model can start in the weak
dissipative regime, but later on to transit into the strong dissipative regime, or vice versa.
Let us discuss in more details these different possibilities that can appear in WI and how
dissipation ultimately affects the dynamics.

From the slow-roll equations, one can express the Hubble slow-roll parameter εH in
terms of the so-called potential slow-roll parameter εV as follows,

εH ≡ −
Ḣ
H2 '

1
2

M−2
Pl (1 + Q)

φ̇2

H2 '
εV

(1 + Q)
, (11)

where εV = M2
Pl(Vφ/V)2/2. To reach the second equality in Equation (11), we have used

the second Friedmann equation, i.e., −2M2
PlḢ = ρ + P, together with Equation (9) and

then used Equation (8) to reach the last equality. One can realize from Equation (11) that
inflation will end when εH ' 1 or, equivalently, when εV ' 1 + Q. Moreover, looking at
the last equality in Equation (11), one can immediately see that the equality between the
Hubble slow-roll and the potential slow-roll parameters as observed in the CI, εH ' εV ,
does not hold in the WI scenario. In the CI scenario, the inflationary phase occurs when
the Hubble slow-roll parameter is smaller than unity, i.e., εH � 1, which means that
the potential slow-roll parameter should also be smaller than unity. However, in the
WI scenario, the inflationary phase occurs even when the potential slow-roll parameter
is bigger than one (or even much bigger than one), provided that the dissipation ratio
is large enough. This in particular alleviates the need for very flat potentials, as far as
the background dynamics is concerned. Moreover, defining the number of e-folding as
N = ln a, i.e., dN = Hdt = (H/φ̇)dφ, which measures the expansion of the universe, one
can see from the last two expressions in Equation (11) that dφ/dN = MPl

√
2εV/(1 + Q),

which means that the inflaton field excursion can be much smaller in the WI scenario than
in comparison to the CI scenario for the same variation of εH . In fact, the inflaton field
excursion in WI can be sub-Planckian even for very steep potentials. We will discuss later
in Section 5 how such novel background dynamics will allow WI to reside in the landscape
of the string theory.
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When using the slow-roll approximation in Equations (3) and (4), one should carefully
consider its consistency. This consistency check can be performed, for instance, using a
linear stability analysis to determine under which conditions the system remains close to
the slow-roll solution for many Hubble times [43]. Through this procedure, one finds that
the sufficient conditions for the slow-roll approximation to hold are2

εV , ηV , βV � 1 + Q, 0 < b� Q
1 + Q

, |c| < 4, (12)

where we have defined the additional quantities ηV = M2
PlVφφ/V, βV = M2

PlVφΥφ/(VΥ),
b = TVφT/Vφ and c = TΥT/Υ. The condition on the parameter b states that the thermal
correction to the inflaton potential should be small, while the condition on the parameter
c reflects the fact that radiation has to be produced at a rate larger than the red-shift due
to the expansion of the universe. Therefore, slow-roll WI occurs when all conditions in
Equation (12), together with T > H, are satisfied. However, one may wonder that the
condition for WI to happen is in conflict with the conditions for the slow-roll approximation.
Using Equation (9) and given that T > H during inflation, one finds that

φ̇2/2
V(φ)

>
π2g∗
135

Q−1 H2

M2
Pl

. (13)

Since H � MPl in most inflationary models, one can find that the WI scenario is consistent
with the slow-roll approximation even for the weak dissipation regime, Q < 1. Moreover,
one shall further show that the radiation energy density will never exceed the potential
energy in the slow-roll regime, thus guaranteeing a period of accelerated expansion. To
this end, one can calculate the radiation energy density to potential energy density ratio
as follows,

ρr

V
' 1

2
εV

1 + Q
Q

1 + Q
. (14)

During inflation εH � 1, meaning that ρr � V, even for a large dissipation ratio, while at
the end of inflation, εH ' 1, i.e., εV ' 1 + Q, implying that ρr ' V, if the strong dissipation
regime can be achieved. Therefore, radiation will not be diluted and can even become
dominant at the end of inflation. As a consequence, the universe can smoothly enter into
the radiation-dominated epoch without the need of a separate reheating phase as required
in the CI scenario. Therefore, there is a possibility that even potentials without a minimum
can also be embedded into a WI scenario without any difficulty. In other words, those
inflationary potentials without minimum, which have attracted considerable attention due
to recently proposed swampland conjectures inspired from string theory, usually result in
an ever-lasting inflationary phase in the CI scenario and they require another mechanism for
termination of inflation. However, inflation will end due to dissipative particle production
in the WI scenario even if the inflaton potential has no minimum. Hence, larger classes of
inflationary potentials can be embedded into the WI scenario due to its richer dynamics in
comparison to the CI case.

Having discussed under which conditions a slow-roll WI dynamics can be consis-
tently achieved, one next consistency check is to investigate under which conditions the
inflationary phase can end in this context. Looking at Equation (11), one can see that there
are several possibilities for graceful exit in the WI scenario. The end of WI depends on
the form of the potential, on the dissipation coefficient and whether the regime of weak or
strong dissipation has been achieved. In other words, the inflationary phase can continue
as long as εV < 1 + Q and it will end when εV ' 1 + Q. Although in the CI scenario,
inflation ends when εV increases during inflation, in the WI scenario, there is a possibility
that even potentials with constant and decreasing εV have graceful exit, since Q is also a
dynamical parameter. In fact, depending on the evolution of εV and Q, there are generally
three possibilities for graceful exit in the WI scenario. First, if εV increases, inflation ends
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when Q decreases, remains constant or not increases faster than εV . In fact, potentials
such as the monomial potentials, hilltop potentials, natural inflaton potential and the
Starobinsky potential, which have a graceful exit in the CI scenario, also have graceful exit
in WI depending on the form of the dissipation coefficient. Second, if εV is constant, in the
exponential type of potentials, inflation ends only when Q is a decreasing function. Third,
if εV � 1 and it is a decreasing function, inflation ends when Q decreases much faster
than εV and cross εV before it becomes less than unity. Although the last possibility exists
in the WI scenario, it is very challenging from a model building point of view and these
models usually do not end as in the case of the CI scenario (see [51] for more details). All
of the aforementioned possibilities can be summarized in terms of the Hubble slow-roll
parameter in such a way that inflation ends when εH increases with the number of e-folding.
Therefore, taking the derivative with respect to the number of e-fold from Equation (11),
one obtains the following inequality [51]

d ln εV
d ln N

>
Q

1 + Q
d ln Q

dN
. (15)

As long as the inequality (15) is satisfied, inflation will end. To understand under
which conditions WI goes through graceful exit, one needs to find the evolution of εV and
Q during inflation. To this end, we need to fix both the dissipation coefficient and the
potential function. Several different forms of dissipation coefficients were derived from
first principles in quantum field theory during the development of the WI scenario. In the
early development of WI, an inverse temperature-dependent dissipation coefficient, i.e.,
Υ ∼ φ2/T was derived. However, soon after that, it was realized that such model suffers
from large thermal corrections affecting the inflaton potential [52,53]. To overcome such
difficulty, a two-stage mechanism was proposed (see, e.g., [4]) in which the thermal bath can
be produced and sustained without introducing large thermal corrections to the inflaton
potential. In this case, the dissipation coefficient has a cubic temperature dependence, i.e.,
Υ ∼ T3/φ2. Later, in [16], a model with a dissipation coefficient with linear temperature
dependence, i.e., Υ ∼ T was also constructed and also a variant model [17] with an inverse
temperature dependence in the high temperature regime to obtain Υ ∼ T−1 was created.
More recently, in [18], a dissipation coefficient with a simple cubic temperature dependence
without field dependence, i.e., Υ ∼ T3 was also realized. The models originating these
forms of dissipation coefficients and others will be discussed in more details in Section 3.
Almost all of the aforementioned dissipation coefficients can generally be parameterized
as follows

Υ(φ, T) = CΥTcφp M1−p−c, (16)

where CΥ is a dimensionless constant that carries the details of the microscopic model used
to derive the dissipation coefficient, such as the different coupling constants of the model
(see, e.g., Section 3), M is some mass scale in the model and depends on its construction,
while c and p are numerical powers, which can be either positive or negative powers (note
that the dimensionality of the dissipation coefficient in Equation (16) is [Υ] = [energy]).
Given this general form for the dissipation coefficient, one can find the dynamical evolution
of the relevant parameters of the system, εV , Q, T/H, and T in terms of the potential
slow-roll parameters as follows:



Universe 2023, 9, 124 7 of 34

d ln εV
dN

=
4εV − 2ηV

1 + Q
, (17)

d ln Q
dN

= C−1
Q [(2c + 4)εV − 2cηV − 4pκV ], (18)

d ln(T/H)

dN
= C−1

Q

[
7− c + (5 + c)Q

1 + Q
εV − 2ηV −

1−Q
1 + Q

pκV

]
, (19)

d ln T
dN

= C−1
Q

(
3 + Q
1 + Q

εV − 2ηV −
1−Q
1 + Q

pκV

)
, (20)

where κV = M2
PlVφ/(φV) and CQ = 4− c + (4 + c)Q is a positive quantity, since Q is

always positive and −4 < c < 4 from stability conditions [43–45].
For illustration purposes, in Figure 1, we show the space of parameters leading to

different scenarios in WI when considering monomial potentials,

V(φ) =
V0

n

(
φ

MPl

)n
, (21)

and for different parametric forms for the dissipation coefficient in the weak dissipative
regime. Using Equations (17) and (18) and the inequality (15), we find for which values
in the space of parameters (n, c, p), WI has a graceful exit. One should note that the
conditions for WI to have a graceful exit are independent of being in the weak or in
the strong dissipation regime as it is clear from Equation (18). Moreover, we also used
Equations (19) and (20) to see how T/H and T evolve in the region for which WI has a
graceful exit.

(a) 3d parameter space (c, p, n) (b) Plane p = 0 (c) Plane p = 2

(d) Plane c = −1 (e) Plane c = 1 (f) Plane c = 3

Figure 1. The parameter space of WI in the weak dissipative regime (Q < 1) and for the monomial
class of inflaton potentials. The shaded areas indicate WI has a graceful exit, while empty (white)
space indicates where there is no graceful exit. The shaded areas are classified based on the behavior
of Q, T/H, and T during inflation when all three increase (light green), Q decreases and both T/H
and T increase (dark green), T decreases and both Q and T/H increases (light blue), T/H increases
and both Q and T decreases (dark blue), and all three decrease (dark red). Figure based on [51].
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In Figure 2, we also illustrate the space of parameters for WI in the strong dissipation
regime to allow to see how the region for evolution for T/H and T changes. As we have
discussed previously, Q is a dynamical parameter, hence WI may start in the weak dissipa-
tive regime and be able to end in the strong dissipative regime, or vice versa. Therefore,
T/H and T should not necessarily monotonically increase or decrease during inflation.

(a) 3d parameter space (c, p, n) (b) Plane p = 0 (c) Plane p = 2

(d) Plane c = −1 (e) Plane c = 1 (f) Plane c = 3

Figure 2. The parameter space of WI in the strong dissipative regime (Q > 1) and for the monomial
class of inflaton potentials. The shaded areas are classified based on the behavior of Q, T/H, and T
during inflation when all three increase (light green), Q decreases and both T/Hand T increase (dark
green), T decreases and both Q and T/H increase (light blue), and T/H increases and both Q and T
decrease (dark blue). Figure based on [51].

Comparing Figures 1 and 2, one may easily observe that there are possibilities for
which T/H and T first increase and then decrease, or vice versa, depending on being in the
weak or strong dissipation regime and Q increases/decreases.

In Figure 3, for illustration purposes, the dynamical parameters of WI for a quadratic
potential and linear temperature-dependent dissipation coefficient are plotted versus the
number of e-folding. One can obviously see that the dissipation ratio Q, the temperature
T, and the ratio T/H all increase during the inflationary phase, as it was expected from
Figure 1. Moreover, the radiation to potential energy density increases and becomes order
unity shortly after the end of the inflation. That is because the condition εV ' 1 + Q is a
weaker condition than εH = 1 to specify the end of the inflationary phase in the WI scenario.
In fact, the first condition points out that inflation ends when ρr ' V/2 while, in reality,
one expects that inflation ends when the radiation energy density equals or suppresses
the potential energy density as one can see in Figure 3. In this sense, εV ' 1 + Q predicts
the end of inflation slightly earlier. In general, the weaker condition only underestimates
the end of inflation by less than one e-folding. Thus, the condition εV = 1 + Q is still
good enough as a way of estimating the instant where WI ends for all practical purposes.
Furthermore, the inflaton field starts from super-Planckian values and ends sub-Planckian,
with an overall super-Planckian field excursion, which is a typical feature of large field
inflationary potentials and, in this case, for WI in the weak dissipative regime, as considered
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in the example shown in Figure 3. Sub-Planckian field excursions in WI is possible in the
strong dissipative regime of WI, as we will discuss later.

ρr /V(ϕ)

Q

ϕ/MP

T/H

T/MP

ϵV /(1+Q)

0 10 20 30 40 50 60

10
-4

0.1

100

Figure 3. Evolution of the different quantities in the WI scenario for the case of V(φ) = 1
2 m2φ2,

Υ = CTT, with m = 10−7 MPl and CT = 0.002.

As an additional example, in Figure 4, we plotted the space of parameters for another
class of potential, hilltop-like potentials, given by

V(φ) = V0[1− (φ/φ0)
2n]2, (22)

with n ≥ 1 and with the inflation taking place around the top (plateau) of the potential,
|φ| � φ0. We also consider that φ0 is sufficiently large such that inflation ends before the
inflection point of the potential. Thus, we are considering that inflation takes place exactly
in the concave part of the potential. Notice that here all the parameter space allows for
a graceful exit, and T and T/H always increase for all space of parameters. Finally, it
deserves to be noticed that exponential potentials such as

V(φ) = V0 exp(−αφ/MPl), (23)

can lead to a power law inflation only for α <
√

2 in the CI scenario, while it does not
have a graceful exit for α ≥

√
2 [54]. However, looking at Equation (11), one can easily

observe that the exponential potential not only can result in an accelerated expansion even
for α >

√
2, but also it has a graceful exit as long as the dissipation ratio is decreasing

during inflation, i.e., when c > 2, regardless of the value of p for αφ/MPl > 1. This case
and other forms of primordial inflaton potentials have been studied in details in [51].

(a) 3d parameter space (c, p, n) in
weak dissipative regime

(b) 3d parameter space (c, p, n) in
strong dissipative regime

Figure 4. The parameter space in WI for the hilltop-like class of inflaton potentials. The shaded areas
indicate that WI has a graceful exit, while empty (white) space indicates where there is no graceful
exit. The shaded areas are classified based on the behavior of Q, T/H, and T during inflation when
all three increase (dark green), and Q decreases and both T/H and T increase (dark blue). Figure
based on [51].
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3. Deriving Dissipation Coefficients in WI

The dynamics in WI is intrinsically a result of particle production processes able to
happen during inflation. The generic idea is that as the inflaton evolves in time, moving
around its potential, it might excite any other fields that are coupled to it. This in turn can
produce relativistic particles and maintain a quasi-stationary radiation bath throughout
the inflationary regime. At the end of the accelerated inflationary regime, the universe can
then smoothly transit to the radiation-dominated regime.

Crucial to the idea of WI is then the role played by the dissipation coefficient Υ, e.g.,
in the inflaton effective evolution equation, Equation (5). As in any inflaton model, we
expect the inflaton to be necessarily coupled to other fields, which similar to the case of CI
are required for reheating, the energy density in the inflaton will eventually be transferred
to radiation. The emergence of dissipative processes in this case is reminiscent of the
so-called Caldeira and Leggett-type of models [55]. There is a relevant degree of freedom,
in which we are interested in the dynamics and which here is the background inflaton field.
The system (the inflaton background) is in turn coupled to other degrees of freedom, i.e.,
any other fields coupled to the inflaton, which are regarded as environmental degrees of
freedom. Below, we sketch the general idea for completeness, but which can also be found
in details in many other previous papers, in particular, in [4,52,53,56,57]. We can describe
the inflaton field and environment fields through a generic Lagrangian density of the form:

L[Φ, X, Y] = L[Φ] + L[X] + L[Y] + Lint[Φ, X] + Lint[X, Y], (24)

where here Φ is the inflaton field, or more specifically, its zero mode, represented by the
homogeneous background value, while X is describing any field or degrees of freedom
coupled directly to the inflaton field (such as fermion fields or other bosons that can
be scalars or vector fields), while Y can be any other fields not necessarily coupled to
the inflaton, such as additional bosons and/or fermions, but that can be coupled to X.
The different interactions are described by the terms in Equation (24), Lint[Φ, X], for the
interactions of the inflaton with the X fields, and Lint[X, Y], for the interactions between X
and Y, but not directly with the inflaton field.

The evolution of the inflaton field is then determined from Equation (24) by integrating
over the environment fields X and Y. This can be done, for example, in the context of
the in-in Schwinger closed-time path functional formalism (for a textbook account, see,
for example [58]) or, equivalently, through the influence functional formalism [59]. The
formal expression for the evolution for a background field value Φ(x) turns out to be in the
form of a stochastic equation of motion of the form [4,52,53]

∂2Φ + V′eff(Φ) +
∫

d4x′D(X)(x, x′)Φ̇c(x′) = ξ(x), (25)

where V′eff(Φ) = dVeff(Φ)/dΦ, with Veff(Φ) being the effective potential for Φ. The term
with D(X)(x, x′), defined as

Σ(X)
ρ (x, x′)sgn(t− t′) = − ∂

∂t′
D(X)(x, x′), (26)

describes the dissipative effects due to the interaction of the inflaton with the environment
fields, while ξ(x) represents stochastic noise fluctuations, which affect the dynamics of
Φc and describe Gaussian processes with the general properties of having zero mean,
〈ξ(x)〉 = 0, and two-point correlation function given by

〈ξ(x)ξ(x′)〉 = Σ(X)
F [Φc](x, x′). (27)

In Equations (26) and (27), Σ(X)
ρ and Σ(X)

F are the self-energy terms in the Schwinger–
Keldysh real time formalism of quantum field theory [59]. Furthermore, both noise and
dissipation terms are related to each other through a generalized fluctuation dissipation
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relation [4], as expected for a Langevin-like evolution describing a stochastic process under
both dissipation and noise terms.

If the field Φ is slowly varying on the response timescale 1/Γ, with the Γ derived from
the self-energies terms coming from the X and Y, then Φ̇/Φ� Γ. Under these conditions,
which are typically referred to as the adiabatic approximation, a simple Taylor expansion
of the non-local terms in Equation (25) can be performed. Furthermore, if Γ > H, the
produced radiation through the dissipative processes can be thermalized sufficiently fast.
Under the further adiabatic condition that Γ � Ṫ/T, it is expected that the produced
radiation can be maintained in a close to thermal equilibrium state at a temperature T.
These conditions provide a clear separation of timescales in the system, which allows to
approximate Equation (25) in the form of a local, Markovian equation of motion [60], with
a local dissipation coefficient Υ defined by

Υ =
∫

d4x′ ΣR[Φ](x, x′) (t′ − t), (28)

where Σ(X)
R (x, x′) = Σ(X)

ρ (x, x′)θ(t − t′) is a retarded self-energy term. Overall,
Equation (25), when working in a Friedmann–Lemaître–Robertson–Walker (FLRW) back-
ground metric, then becomes of the form[

∂2

∂t2 + (3H + Υ)
∂

∂t
− 1

a2∇
2
]

Φ +
∂Veff(Φ)

∂Φ
= ξT , (29)

where ξT describes thermal (Gaussian and white) noise fluctuations in the local approxima-
tion as defined above and it is connected to the dissipation coefficient through a Markovian
fluctuation–dissipation relation,

〈ξT(x, t)ξT(x′, t′)〉 = 2ΥTa−3δ(x− x′)δ(t− t′), (30)

where the average here is to be interpreted as been taken over the statistical ensemble.
Stochastic terms can also be ascribed for quantum contributions and will be important
when deriving the perturbations equations. This will be discussed in the next section,
Section 4.

The effective evolution equation for the inflaton, Equation (5), then follows from
the localized form for the effective equation of motion, Equation (29) by separating the
background field into its homogeneous term φ(t). On the other hand, the non-homogeneous
fluctuations over φ(t), denoted as δφ(x, t), will describe the fluctuations of the inflaton
and to be considered in the density perturbation equations (see next section). The latter
are explicitly dependent on the stochastic noise term. From the above definitions, once a
particular interaction Lagrangian density is given, the corresponding dissipation term Υ
can be computed explicitly. Various examples of interactions and the resulting dissipation
terms have been derived and given, e.g., in [61].

Below, we summarize some of the most important microscopic particle physics con-
structions considered for WI. As already explained before, the particle physics implemen-
tation for WI seeks models for which a significant dissipation can be generated during
inflation and, at the same time, the radiative and thermal corrections for the inflaton poten-
tial are kept under control, such that the flatness of the inflaton potential is not spoiled. The
first particle physics model constructions in WI achieved this using quantum field theory
models in supersymmetry (SUSY). This is the case of the first two models described below.

3.1. The Distributed Mass Model

In the distributed mass model (DMM) [3], there are a set of scalar χj and fermionic
ψj fields coupled to the inflaton through a series of couplings of the form g2(φ−Mj)

2χ2
j

and h(φ−Mj)ψ̄jψj, respectively. The idea is that as the inflaton is evolving, eventually the
inflaton satisfies φ ∼ Mj. At this point, the masses of the fields coupled to it can become very
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light. In particular, as these masses become smaller than the temperature, those fields will
get thermally excited and the inflaton will be able to decay into those fields. A sequence of
mass distributions Mj can then be constructed in such a way that as the background inflaton
field evolves, it is able to dissipate energy into these fields throughout the inflationary
regime. This process can then be described by a dissipative term in the inflaton evolution
equation [53]. The idea is reminiscent of string theory model constructions [62]. In this
case, the inflaton is interpreted as an excited string zero mode. This string mode can then
be interacting with massive string levels. As the string levels can be highly degenerate, a
distribution of mass states can emerge as a type of fine structure splitting of those levels.
The DMM realization for WI was also revised more recently in [63]. Both radiative and
thermal corrections coming from the large set of bosonic and fermionic fields coupled to the
inflaton can be well controlled by constructing the DMM in the context of SUSY. Despite
the inflaton background field and thermal effects both break supersymmetry, there are
still large cancellations between fermion and boson contributions [64]. The DMM can be
implemented by a superpotential in the context of SUSY, given by

W = ∑
j

[
g
2
(Φ−Mj)X2

j +
h
2

XjY2
j

]
, (31)

where Φ, Xj, and Yj chiral superfields, with (complex) scalar and fermion components ϕ
and ψϕ for Φ, χj and ψχj for Xj, and σj and ψσj for Yj. The inflaton is associated with the
real component of ϕ. The g and h are coupling constants and the sum is taken over an
arbitrary distribution of supermultiplets Xj and Yj. From Equation (31), we can derive
the scalar LS and fermionic LF Lagrangian density interaction terms, which are defined,
respectively, as [64]

−LS = |∂ΦW|2 + ∑
j
|∂XjW|

2 + ∑
j
|∂YjW|

2, (32)

and

−LF =
1
2 ∑

n,m

∂2W
∂ξn∂ξm

ψ̄nPLψm +
1
2 ∑

n,m

∂2W†

∂ξ†
n∂ξ†

m
ψ̄nPRψm, (33)

where ξn is a superfield: Φ, Xj, Yj and PL = 1− PR = (1 + γ5)/2 are the chiral projection
operators acting on Majorana 4-spinors. Equations (32) and (33) then lead to the explicit
Lagrangian density relevant contributions that are given by [63]

−LS = g2 ∑
j

(
φ−Mj

)2|χj|2 +
gh
2 ∑

j

(
φ−Mj

)[
χj(σ

†
j )

2 + χ†
j σ2

j

]
+h2 ∑

j
|χj|2|σj|2 +

g2

4 ∑
j
|χj|4 +

h2

4 ∑
j
|σj|4, (34)

and

−LF =
g
2 ∑

j

(
φ−Mj

)
ψ̄χj PLψχj +

g
2 ∑

j

(
φ−Mj

)
ψ̄χj PRψχj

+
h
2 ∑

j
χjψ̄σj PLψσj +

h
2 ∑

j
χ†

j ψ̄σj PRψσj + h ∑
j

σjψ̄σj PLψχj + h ∑
j

σ†
j ψ̄σj PRψχj . (35)

From the interactions terms in Equations (34) and (35), we can determine the dissipa-
tion coefficient Υ, which will receive contributions both from the scalar bosons [3,53] (see
also [63] for details)
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ΥS(φ, T) =
Nth

∑
j=1

32g4

πh2
(

16
m2

χj

m̃2
χj
+

m̃2
χj

T2

) ln

(
2T
m̃χj

)(
φ−Mj

)2

m̃χj

, (36)

and from the fermions [16],

ΥF(T) =
Nth

∑
j=1

CF
TT , CF

T '
3g2

h2[1− 0.34 ln(h)]
, (37)

where in the above equations, the sum runs over the number Nth of thermally excited
field modes and the masses mχj and m̃χj are defined, respectively, as mχj = g

(
φ−Mj

)
and

m̃2
χj

= m2
χj
+ g2T2/12 + h2T2/8. One notes that the dissipation coefficient in the DMM

depends on the mass distribution Mj. Assuming [63] Mj = φ + j∆M(φ, T, m, g), where ∆M
denotes the mass gap in the tower of states, different functional forms for the dissipation
coefficient in the DMM can be generated through different choices of ∆M(φ, T, m, g). This
motivates the parametric choice Equation (16) adopted in many works in WI.

3.2. The Two-Stage Mechanism Model

Without a way of controlling the thermal corrections of the radiation fields that are
directly coupled to the inflaton, it is expected that the finite temperature of the radiation
bath will induce large thermal corrections to the inflaton mass, leading to mφ ∼ T > H. If
this occurs, successful realizations of WI in the simplest models are jeopardized. In this
case, the additional friction caused by the dissipation effects through Υ cannot overcome
the increase in the inflaton’s mass. In the DMM discussed above, even though there are
couplings of the inflaton directly to the radiation fields, it is able to evade this problem by a
judicious choice of the mass distribution function. However, in other model realizations,
this is not a simple task to achieve, as discussed originally in [53,65]. However, we also
recall that fields that are directly coupled to the inflaton will tend to acquire large masses
during inflation due to the large background field value φ. This then suggests that WI
can be better implemented in scenarios where the inflaton does not couple directly to the
radiation fields, but instead to heavy intermediate fields, which can be either bosons or
fermions, with masses such that mχ, mψ > T. This naturally leads to thermal corrections
to the inflaton potential that are Boltzmann suppressed. Furthermore, once again, we can
use SUSY to control potentially large radiative corrections to the inflaton. In turn, the
heavy fields can be made coupled to the radiation fields, which remain decoupled from the
inflaton sector. Once again, as the inflaton dynamics change the masses of the heavy fields,
these can decay into the light radiation fields. These processes provide a way through
which the inflaton can dissipate its energy into radiation. A significant dissipation can be
generated depending on the field multiplicities. This is the two-stage decay mechanism
model for WI.

The two-stage mechanism for WI can be implemented through a supersymmetric model
with chiral superfields Φ, X and Yi, i = 1, . . . , NY, and described by the superpotential

W =
g
2

ΦX2 +
hi
2

XY2
i + f (Φ) , (38)

where a sum over the index i is implicit. The scalar component of the superfield Φ describes
the inflaton field, with an expectation value φ/

√
2, which we assume to be real, and the

generic holomorphic function f (Φ) describes the self-interactions in the inflaton sector. The
superpotential Equation (38) leads to the Lagrangian density describing the interactions
between the inflaton field φ with the other scalars and fermions as given by [12]:
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Lscalar = V(φ) +
1
2

g2φ2|χ|2 + g
2

√
V(φ)

(
χ2 + χ†2

)
+

g2

4
|χ|4 +

+
hi
2

gφ√
2

(
χσ†2

i + χ†σ2
i

)
+

hihj

4
σ2

i σ†2
j + h2

i |χ|2|σi|2 , (39)

and

L f ermion =
gφ√

2
ψ̄χPLψχ + hiχψ̄σi PLψσi +

hi
2

σiψ̄σi PLψχ + h.c. , (40)

where the scalar components of the superfields X and Yi were denoted by χ and σi, re-
spectively, the fermionic components by ψχ and ψσi , respectively, V(φ) = | f ′(φ)|2 is the
potential driving the inflaton and PL = (1− γ5)/2 is the left-handed chiral projector.

The leading dissipation coefficient obtained for this model and using the quantum
field theory expression Equation (28), can be explicitly derived and it is given by [61]:

Υ =
4
T

(
g2

2

)2

ϕ2
∫ d4 p

(2π)4 ρ2
χnB(1 + nB) , (41)

where nB(p0) = [ep0/T − 1]−1 is the Bose–Einstein distribution and ρχ is the spectral
function for the χ field,

ρχ(p0, p) =
4ωpΓχ

(p2
0 −ω2

p)
2 + 4ω2

pΓ2
χ

, (42)

with Γχ denoting the decay width for the heavy fields χ, which includes contributions

from both the bosonic and fermionic final states in the Yi multiplets, ωp =
√

m̃2
χ + p2

for modes of 3-momentum |p| = p and energy p0, while the thermal mass for the χ
fields is m̃2

χ = m2
χ + h2NYT2/8 (where here we are assuming all couplings hi = h) and

mχ = gφ/
√

2. For larger values of the mass and effective coupling, the main contribution
to the dissipation coefficient comes from virtual χ modes with low momentum and energy,
p, p0 � mχ, such that one can use the approximation (p2

0 −ω2
p)

2 ' m̃4
χ. In the case where

these modes also have a narrow width and thermal mass corrections can be neglected,
Γχ � m̃χ ∼ mχ, then the spectral function Equation (42) can be simply expressed as [4,61]
ρχ ' 4Γχ/m3

χ. Under these circumstances, the dissipation coefficient Υ describing the
dissipation mediated by the decay of virtual scalar modes χ → light radiation fields, is
given by [12]:

Υ = Cφ
T3

φ2 , Cφ '
1
4

αhNX , (43)

for αh = h2NY/4π . 1 and NX,Y are the chiral multiplets.
To obtain sufficient dissipation in these models, it is usually required large values for

the numbers of multiplets NX,Y. While these can be seen as a possible drawback for this
model, there are well-motivated scenarios where this can be naturally achieved, such as
in [13] using brane constructions, or in [14], where large field multiplicities can be allowed
due to a Kaluza–Klein tower in extra-dimensional scenarios.

Instead of relying on SUSY as a way to suppress radiative corrections, we can try
to arrange for special interactions of the inflaton with the environment fields such as to
be able to control the thermal corrections to the inflaton potential. This can also be used
to avoid the large multiplicities that would otherwise be required to produce sufficiently
large dissipation, such that WI can be realized. To avoid these complications, we can
make use of other simpler models exploring well-motivated symmetry properties for the
interactions. This is the case for the next three particle physics model constructions for WI
to be discussed below.
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3.3. The Warm Little Inflation Model

In the warm little inflation (WLI) model, first introduced in [16], the inflaton is assumed
to be a pseudo-Nambu–Goldstone boson (PNGB) of a gauge symmetry that is collectively
broken. The idea is reminiscent of the “Little Higgs” models of electroweak symmetry
breaking [66–68], where the Higgs boson is also considered to be a PNGB coming from a
collectively broken global symmetry. A feature displayed by the type of construction in
these type of models is that the PNGB has a mass that is naturally protected against large
radiative corrections (for a review, see, e.g., [69]).

The construction of the WLI model uses a very minimum set of ingredients. There
are two complex scalar fields, φ1 and φ2, which share the same U(1) symmetry. The
scalar potential for them allow both fields to have a nonzero vacuum expectation value,
〈φ1〉 ≡ M1/

√
2 and 〈φ2〉 ≡ M2/

√
2, where M1 can be taken to be equal to M2 without loss

of generality, M1 = M2 ≡ M. With both fields sharing the same Abelian charge, after the
Higgs mechanism, only one the phases of the complex scalar fields (the Nambu–Goldstone
boson), or a linear combination of them, is absorbed as the longitudinal component of
the U(1) gauge boson, providing mass to it. The other phase (or linear independent
combination of the phases) remains, however, as a physical degree of freedom, becoming,
e.g., a singlet. The two complex scalar fields, in the broken phase, can then be expressed in
the form

φ1 =
M√

2
eiφ/M , φ2 =

M√
2

e−iφ/M. (44)

The radial modes in Equation (44) decouple when M & T and the singlet φ, the
PNBG, is taken to be the inflaton. One notes that as such, we can assume for φ an arbitrary
scalar potential that can be sufficiently flat to sustain the inflaton. Dissipation in the model
comes from the coupling of φ1 and φ2 to other fields. For example, they can be coupled to
left-handed fermions ψ1 and ψ2 with the same U(1) charge of the scalar fields. The right-
handed components of these fermion fields, ψ1R and ψ2R, can be taken to be gauge singlets,
in a construction similar as in the Glashow–Weinberg–Salam of the standard model of
particle physics. A decay width for these fermions, which will contribute to the dissipation
coefficient, can be generated by coupling them to additional Yukawa interactions, involving
a scalar singlet σ and chiral fermions ψσR, carrying the same charge of ψ1 and ψ2, and
ψσL, with zero charge. For all these fields, we impose an interchange symmetry for the
complex scalars φ1 and φ2, φ1 ↔ iφ2, and also for the fermions ψ1 and ψ2, ψ1L,R ↔ ψ2L,R.
The overall interaction Lagrangian density is [16]

Lint = Lφψ + Lψσ, (45)

with

Lφψ = − g√
2
(φ1 + φ2)ψ̄1Lψ1R + i

g√
2
(φ1 − φ2)ψ̄2Lψ2R, (46)

and

Lψσ = −hσ ∑
i=1,2

(ψ̄iLψσR + ψ̄σLψiR), (47)

which respects the symmetries imposed on the model. Due to the symmetries, and using
Equation (44), the masses for the fermions ψ1 and ψ2, m1 and m2, respectively, are then
given by

m1 = gM cos(φ/M), m2 = gM sin(φ/M), (48)

and, hence, they remain always bounded, m1,2 ≤ gM, and they can be arranged to remain
light during inflation if gM . T . M. The advantage of the interactions in Equation (46) is
that they lead to no quadratic corrections for φ in the inflaton potential, thus, the inflaton



Universe 2023, 9, 124 16 of 34

mass does not receive neither radiative nor thermal corrections. The inflaton potential is
only affected by subleading Coleman–Weinberg corrections, as it was demonstrated in [16].

With the above interactions, the dissipation coefficient for the WLI model becomes [16]

Υ = CTT , CT ' α(h)g2/h2 , (49)

where α(h) ' 3/[1− 0.34 ln(h)].
The model has also been shown to produce a well-motivated dark matter candi-

date [70]. This can be possible because soon after inflation, the fermions coupled to the infla-
ton field are no longer light. The dissipation coefficient Equation (49) becomes Boltzmann-
suppressed. For an inflaton potential augmented by a quadratic term with a mass term
mφ, then, when H < mφ, the inflaton field is underdamped and it will oscillate around the
minimum of its potential. The equation of state oscillates around wφ = 0, and the energy
density scales as ρφ ∝ 1/a3. This is the same behavior as ordinary matter. Due to the
symmetries of the model, the inflaton rarely decays and an abundance of inflaton energy
density can remain in the coherent oscillating state. This makes the inflaton in the WLI
model to be a possible valid dark matter candidate.

3.4. The Warm Little Inflation Model—Scalar Version

A variant [17] of the WLI model discussed above is when the complex scalar fields φ1
and φ2 are now coupled directly to two other complex scalar fields χ1 and χ2, instead of
fermions. As in the previous model, it is also imposed the discrete interchange symmetry
φ1 ↔ iφ2, χ1 ↔ χ2. The complex scalar fields χ1,2 can also have a Yukawa interaction
to fermions, self-interact, and also interact between each other. Then, the interacting
Lagrangian density can now be expressed as [17]

Lint = Lφχ + Lχψ, (50)

with
Lφχ = −1

2
g2|φ1 + φ2|2|χ1|2 −

1
2

g2|φ1 − φ2|2|χ2|2, (51)

and

Lχψ = ∑
i 6=j=1,2

(
hχiψ̄LψR + h.c.− λ

2
|χi|4 − λ′|χi|2|χj|2

)
. (52)

One notes that under the parameterization given by Equation (44), the masses for
the scalar fields χ1 and χ2 are still of the same form as in Equation (48). Hence, they are
still bounded and can be light with respect to the temperature just the same way as in the
previous model. In the high temperature regime, m1,2 � T, the inflaton potential receives
leading order thermal corrections of the form m2

1(φ)T
2/12 + m2

1(φ)T
2/12 = g2M2T2/12

and, thus, the inflaton mass here also does not receive any thermal corrections, while also
not receiving any important radiative contributions.

In this scalar field variant of the WLI model, the dissipation coefficient now be-
comes [17]

Υ ' 4g4

h2
M2T2

m̃3
χ

[
1 +

1√
2π

(
m̃χ

T

)3/2
]

e−m̃χ/T , (53)

where we have taken the average of the oscillatory terms for field excursions ∆φ � M
and m̃χ is the thermal mass for the χ1,2 fields, which, under the same average over the
oscillatory terms, is the same for both scalars and given by m̃2

χ ' g2M2/2 + α2T2, where
α2 '

(
h2 + 2λ + λ′

)
/12 when taking the interactions in Equation (52). It is noticed that

when considering the leading thermal contribution in m̃χ, i.e., m̃χ ∼ αT, the dissipation
coefficient (53) varies with the temperature as Υ(T) ∝ T−1, realizing the case with c = −1,
p = 0 in Equation (16). On the other hand, as the temperature of the thermal bath drops
and the vacuum term gM/

√
2 in m̃χ starts no longer to be negligible, it effectively would

correspond to values of c > −1, with a limiting case of c = 2 when gM/
√

2� αT and with
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an exponentially suppressed dissipation. As shown in [17], this more complex behavior for
the dissipation coefficient with the temperature of the environmental radiation bath makes
it possible to produce a large dissipative regimes for WI, in which Q� 1 can be achieved
in this model, with perturbations still consistent with the CMB measurements. On the
other hand, the dissipation coefficient in the previous model, Equation (49), in general can
only produce perturbations consistent with the CMB observations in the weak dissipative
regime of WI, i.e., Q� 1 (see, e.g., [35]). As this version of the WLI allows WI to be realized
in the strong dissipative regime, the cosmological phenomenology that it allows is much
richer and has quite appealing features, as we will see in the next section, Section 5.

3.5. The Axion-like Warm Inflation Model

A Goldstone boson φ enjoys a shift symmetry, with only derivatives of φ appearing in
the action. This symmetry can still be softly broken such as to give φ an ultraviolet (UV)
potential and the Goldstone boson becoming a PNGB, like in axion-like models. However,
even with the soft breaking of the shift symmetry, radiative and thermal corrections to the
axion potential are naturally suppressed by the symmetry properties. This is how axions,
for instance, can have very small masses, but that are still protected from large quantum
corrections (for a general review on axions and their properties, see, e.g., [71]). Thus, it
is natural to try to construct WI by taking the inflaton as an axion-like field. One such
successful construction was given in [18]. The relevant interaction of the inflaton φ in this
case is as in an axion interacting with a Yang–Mills field Aa

µ and with Lagrangian density
given by

Lint =
αg

8π

φ

f
F̃a µνFa

µν, (54)

where F̃a µν is the dual gauge field strength, F̃a µν = 1
2 εµναβFa

αβ, Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ +

gCabc Ab
µ Ac

ν, with g the Yang–Mills coupling and Cabc is the structure constant of the non-
Abelian group. The coupling constant αg is αg ≡ g2/(4π) with f denoting a scale analogous
to the axion decay constant in axion-like models [71].

The interaction term Equation (54) leads to a dissipation coefficient that has been
shown to be related to the Chern–Simons diffusion rate [72,73] and given by

Υ = CΥ
T3

f 2 , CΥ = κ(αg, Nc, N f )α
5
g, (55)

where Nc is the dimension of the gauge group, N f is the representation of the fermions if
any, and κ is a dimensional quantity depending on Nc, N f , and αg.

Successful WI dynamics have been shown to be possible in this model [18,74–76].
These studies have also shown the generality of WI in this type of model. Even by starting
with quantum initial conditions for the inflaton, e.g., like in CI, the dissipative effects
naturally drive the production of a radiation bath and that can thermalize during inflation
in these axion-type of models. Hence, a WI dynamics naturally emerges given appropriate
parameters in the model [75,76]. Besides of these attractive features, like in the scalar field
variant of the WLI model, the dissipation coefficient Equation (55) has the appeal of leading
to WI in the strong dissipative regime Q� 1, yet, still being fully consistent with the CMB
perturbations for many different potentials (for a recent exposition on this and a detailed
computation of relevant observable quantities, see, e.g., [77]). This will be explicitly shown
in the next section. Moreover, it has a minimum setting of parameters and field ingredients
that are necessary to lead to WI. This makes this construction specially attractive from the
point of view of model building in WI, as far as its simplicity is concerned.

4. Cosmological Perturbations in WI

As we discussed previously in Section 2, when T > H, thermal fluctuations of the
inflaton field will become dominant. As a consequence of this, the source of density
fluctuations in the WI scenario is the thermal fluctuations in the radiation field, which are
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then transferred to the inflaton field as adiabatic curvature perturbations. This is much
different than in the CI case, where quantum fluctuations are responsible for generating
the seeds for large-scale structure formation. We will discuss here how dissipative effects
change the dynamics of inhomogeneous fluctuations of the inflaton field. To study the
scalar perturbations for WI, we start with the fully perturbed FLRW metric (here, we are
including only scalar perturbations), which is given by

ds2 = −(1 + 2α)dt2 − 2a∂iβdxidt + a2[δij(1 + 2ϕ) + 2∂i∂jγ
]
dxidxj, (56)

where α, β, γ, and ϕ are the spacetime-dependent perturbed-order variables. Moreover,
one needs to expand the inflaton field, the radiation energy density, and also the radiation
pressure around their background values in the FRLW metric, such that

φ(x, t) = φ̄(t) + δφ(x, t), (57)

ρr(x, t) = ρ̄r(t) + δρr(x, t), (58)

pr(x, t) = p̄r(t) + δpr(x, t), (59)

where φ̄(t), ρ̄r(t), and p̄r(t) are the background values for the inflaton field, the radiation
energy density, and the pressure, while δφ(x, t), δρr(x, t), and δpr(x, t) are, respectively,
their corresponding perturbations. Since the dissipation coefficient is generally a function
of φ and T, Equation (16), it must be treated similarly, i.e., Υ(x, t) = Ῡ(t) + δΥ(x, t). Hence,
working in momentum space, defining the Fourier transform with respect to the co-moving
coordinates, the equation of motion for the radiation and momentum fluctuations with
co-moving wavenumber k are found to be given by [42]:

δρ̇r + 3(1 + ωr)Hδρr = (1 + ωr)ρr(κ − 3Hα) +
k2

a2 Ψr + δQr + Qrα , (60)

Ψ̇r + 3HΨr = −ωrδρr − (1 + ωr)ρrα + Jr, (61)

where Ψr is the momentum perturbation, ωr is the equation of state for the radiation
fluid, χ = a(β + aγ̇), κ = 3(Hα− ϕ̇) + k2χ/a2, and Jr = −Υφ̇δφ is the momentum source.
Furthermore, Qr = Υφ̇2 and its perturbation δQr is given by

δQr = δΥφ̇2 + 2Υφ̇δφ̇− 2αΥφ̇2 . (62)

In addition to Equations (60) and (61), one also has the evolution equation for the
inflaton field fluctuations δφ. Assuming the universe remains near thermal equilibrium
during WI, the fluctuations of the inflaton field obey a fluctuation–dissipation relation [52].
Therefore, the evolution of the inflaton fluctuations is achieved by perturbing the inflaton
field equation, and adding stochastic quantum and thermal white noise terms, following
the fluctuation–dissipation theorem, as follows (for further details, see also [78]):

δφ̈ + 3Hδφ̇ +

(
k2

a2 + V,φφ

)
δφ

= ξq + ξT − δΥφ̇ + φ̇(κ + α̇) + (2φ̈ + 3Hφ̇)α− Υ(δφ̇− αφ̇) , (63)

where ξq,T are stochastic Gaussian sources related to the quantum and thermal fluctuations
with zero mean, 〈ξT〉 = 〈ξq〉 = 0, and with appropriate amplitudes, which are defined by
the two-point correlation functions:

〈ξT(k, t)ξT(k′, t′)〉 =
2ΥT

a3 δ(t− t′)(2π)3δ(k + k′), (64)

〈ξq(k, t)ξq(k′, t′)〉 =
H2(9 + 12πQ)1/2(1 + 2n∗)

πa3 δ(t− t′)(2π)3δ(k + k′), (65)
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where n denotes the inflaton statistical distribution due to the presence of the radiation bath.
For a thermal equilibrium distribution3, it assumes the Bose–Einstein distribution form,
i.e., n = 1/[exp(H/T)− 1]. To find the complete evolution of perturbations, one needs
to specify the fluctuation of the dissipation coefficient. Considering the parameterization
defined by Equation (16), δΥ can be written as

δΥ = Υ
[

c
δT
T

+ p
δφ

φ

]
. (66)

Although dissipation implies departures from thermal equilibrium in the radiation
fluid, the system has to be close-to-equilibrium for the calculation of the dissipative coeffi-
cient to hold, therefore, pr = ρr/3, ρr ∝ T4 and δT/T = δρr/(4ρr). Hence, the δQr term in
Equation (60) can be explicitly written as

δQr = 3HQφ̇2
(

cδρr

4ρr
+

pδφ

φ

)
+ 6HQφ̇δφ̇− 6HQφ̇2α . (67)

From the above relations, the complete system of first-order perturbation equations
for WI are given by

δφ̈ = −3H(1 + Q)δφ̇−
(

k2

a2 + V,φφ +
3pHQφ̇

φ

)
δφ + ξq + ξT −

cH
φ̇

δρr + φ̇(κ + α̇)

+ [2φ̈ + 3H(1 + Q)φ̇]α, (68)

δρ̇r = −H
(

4− 3cQφ̇2

4ρr

)
δρr +

k2

a2 Ψr + 6HQφ̇δφ̇ +
3pHQφ̇2

φ
δφ +

4ρr

3
κ

− 3H
(

Qφ̇2 +
4ρr

3

)
α, (69)

Ψ̇r = −3HΨr − 3HQφ̇δφ− 1
3

δρr − 4ρr
α

3
. (70)

One can immediately realize from Equations (68) and (69) that the inflaton fluctuations
δφ are coupled to the radiation fluctuations δρr when c 6= 0. As first realized in [80], such
coupling results in a growing mode, if c > 0 or a decreasing mode for c < 0 in the curvature
power spectrum as the dissipation ratio Q increases. In other words, dissipation will
increase the temperature more in regions where it is already higher than average making
the power spectrum scale-dependent and blue (red) for c > 0 (c < 0). The effect of this
coupling between inflaton and radiation perturbations in WI is typically modeled by a
function G(Q), as we will show below.

The sets of perturbation Equations (68)–(70) are gauge-ready equations. Hereafter,
one can rewrite these equations in terms of gauge-invariant quantities (see [42]) or use an
appropriate gauge choice [81,82]. Although any appropriate gauge can be chosen, here we
will make use of the zero-shear gauge, i.e., χ = 0. This in particular has been shown to be
more advantageous, as far as numerical stability is concerned when solving the complete
system of equations. Thus, in the zero-shear gauge, the relevant metric equations become:

κ =
3

2M2
Pl
(φ̇δφ−Ψr) , (71)

α = −ϕ , (72)

ϕ̇ = −Hϕ− 1
3

κ . (73)
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Once all the relevant perturbation equations have been defined, the power spectrum
is determined from the definition of the co-moving curvature perturbation [83]:

∆R(k) =
k3

2π2 〈|R|
2〉 , (74)

where 〈. . .〉means here the ensemble average over different realizations of the noise terms
in Equation (68) and which satisfy Equations (64) and (65). Finally, the general expression
forR is composed of contributions from the inflaton momentum perturbations and from
the radiation momentum perturbations [42]:

R = ∑
i=φ,r

ρ̄i + p̄i
ρ̄ + p̄

Ri , (75)

Ri = −ϕ− H
ρ̄i + p̄i

Ψi , (76)

with p̄ = p̄φ + p̄r, ρ̄φ + p̄φ = φ̇2 and ρ̄r + p̄r = 4ρ̄r/3 = Qφ̇2. As we have already
mentioned, the inflaton field fluctuations and the radiation field fluctuations are coupled
together in the case when c 6= 0. Therefore, to obtain the power spectrum for the inflaton
fluctuations, one typically needs to numerically solve Equations (68)–(70) along with the
appropriate set of metric perturbation equations. However, an explicit analytic expression
for the scalar of curvature power spectrum can be obtained for dissipation coefficients
which are independent of temperature, i.e., when c = 0. In this case, the equations for the
inflaton and the radiation fluctuations become decoupled and one can obtain the curvature
power spectrum using Green function techniques (see [78,80] for details). This leads to the
explicit result for the curvature perturbation,

∆R
∣∣
c=0 =

H3
∗T∗

4π2φ̇∗
2

 3Q∗
2
√

π
22α Γ(α)2Γ(ν− 1)Γ(α− ν + 3/2)

Γ
(

ν− 1
2

)
Γ(α + ν− 1/2)

+
H∗
T∗

coth
(

H∗
2T∗

)]
, (77)

where ν = 3(1 + Q)/2, α =
√

ν2 + 3βV Q/(1 + Q)− 3ηV , with βV and ηV as already
defined before, e.g., below Equation (12). In Equation (77), we also have that Γ(x) is the
Gamma-function, while the subindex ∗means that all quantities are to be evaluated at the
Hubble crossing time, e.g., when k∗ = a∗H∗. This specific point during inflation and where
the relevant modes crosses the Hubble radius can be defined as follows. First we note that
we can relate the mode with co-moving wavenumber k∗ that crossed the Hubble horizon,
a∗H∗ = k∗, with the one at present time, a0H0, as [84]

k∗
a0H0

=
a∗

aend

aend
areh

areh
a0

H∗
H0

, (78)

where a∗/aend = exp(−N∗) and N∗ is the number of e-folds lasting from the point where
the modes left the Hubble radius until the end of inflation, where the scale factor is aend.
Now, as we have already seen in Section 2, WI ends when the radiation energy density
takes over and starts dominating. Since in WI there is no need for a reheating phase after
the end of inflation, this removes a significant source of uncertainty that is present in CI
models, which is related the specific duration of the reheating phase and which affects the
predictions that (cold) inflation can make regarding observables, such as, for instance, the
tensor-to-scalar ratio and the spectral tilt of the spectrum. Hence, in WI, we can simply set
aend/areh = 1 in Equation (78). This uniquely specifies the relevant number of e-folds N∗
in WI, which from Equation (78), can be shown to be obtained through the relation [27]:

k∗
a0H0

= e−N∗
[

43
11gs(Tend)

]1/3 T0

Tend

H∗
H0

, (79)
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where Tend is the temperature at the end of WI and gs(Tend) is the number of relativistic
degrees of freedom at that temperature.

Thus, by returning again to Equation (77) and dropping the slow-roll coefficients
as a first-order approximation, we have that α ' ν and Equation (77) can be very well
approximated by the result4:

∆R
∣∣
c=0 '

(
H∗
φ̇∗

)2(H∗
2π

)2
(

1 + 2n∗ +
2
√

3πQ∗√
3 + 4πQ∗

T∗
H∗

)
. (80)

In the case of dissipation coefficients that have an explicit temperature dependence,
one needs to solve Equations (68)–(70) to fully determine what is the effect of the coupling
to radiation on the inflaton power spectrum. This then leads to a change of the result
given by Equation (80), which is usually parameterized by a multiplicative function of the
dissipation coefficient, G(Q), in Equation (80), such that

∆R
∣∣
c 6=0 = ∆R

∣∣
c=0G(Q∗). (81)

Neglecting both the metric perturbations and the slow-roll parameters and also the field
dependence in Equation (66), in [80], it was found that G(Q) has an asymptotic behavior
for Q � 1 given by G(Q) ∼ (Q/Qc)3c, where Qc is a constant depending on the value
of c. Later, in [42], it was shown that accounting for the neglected slow-roll first-order
quantities as considered in [80] could actually overestimate the growing function G(Q)

by many orders of magnitude at large Q values5. For now, we only know how to obtain
the growing function G(Q) by numerically solving the full set of coupled background and
perturbation equations and then numerically fitting the spectrum for a given form of the
dissipation coefficient. For some specific representative cases of dissipation coefficients,
for instance, for those with powers in the temperature c = 3 (cubic), c = 1 (linear), and
c = −1 (inverse), the function G(Q) for not too large values of Q, Q∗ . 200, can be well
approximated by6:

Gcubic(Q∗) ' 1 + 4.981Q1.946
∗ + 0.127Q4.330

∗ , (82)

Glinear(Q∗) ' 1 + 0.335Q1.364
∗ + 0.0185Q2.315

∗ , (83)

Ginverse(Q∗) '
1 + 0.4Q0.77

∗
(1 + 0.15Q1.09∗ )2

. (84)

Once the growing function G(Q) is specified, then from the expression for the power
spectrum in WI, we can, for instance, obtain the scalar spectral index ns, which is defined
in general as

ns − 1 ≡ lim
k→k∗

d ln ∆R
d ln k

' lim
k→k∗

d ln ∆R
dN

. (85)

Using that
d ln k
dN

≈ 1− εV/(1 + Q), (86)

we obtain, for instance, that [77]

ns = 1 +
(1 + Q)

1 + Q− εV

d ln
(

T
H

)
dN

+
d ln Q

dN
(
−3 + Q

{
3 + 2π

[
−1 + Q

(
3 +
√

9 + 12Qπ
)]})

(1 + Q)
[
3 + Qπ

(
4 +
√

9 + 12Qπ
)]

+
d ln Q

dN
A(Q) +

−6εV + 2ηV
1 + Q

]
, (87)
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where the function A(Q) is given by:

A(Q) =
3 + 2πQ
3 + 4πQ

+ Q
d ln G(Q)

dQ
, (88)

and the derivatives with respect to the number of e-folds appearing in Equation (87) are
given by Equations (18) and (19). One can easily observe from Equation (87) that it reduces
to the spectral index for CI, i.e., ns − 1 = −6εV + 2ηV , when Q→ 0 and T → 0.

Precise expressions for the spectral tilt and also for the running, αs = dns(k)/d ln(k),
and for the running of the running, βs = dαs(k)/d ln(k), have been given in [77] and which
are specially useful to analyze WI in the strong dissipative regime.

While the curvature power spectrum is significantly modified by dissipative effects,
the tensor power spectrum remains unaffected since the gravitational interaction is weak7.
Therefore, we can write the tensor power spectrum as in CI,

∆T =
8

M2
Pl

(
H∗
2π

)2
. (89)

From Equation (89), one can define the tensor spectral index similar to the scalar
spectral one,

nt ≡ lim
k→k∗

d ln ∆T
d ln k

' −2εV . (90)

Finally, the tensor-to-scalar ratio r is given by:

r =
∆T
∆R

=
16εV
1 + Q

F−1, (91)

from which one can see that the CI result gets suppressed in WI by the factors 1 + Q and F ,
where

F =

(
1 + 2n∗ +

2
√

3πQ∗√
3 + 4πQ∗

T∗
H∗

)
G(Q∗). (92)

In particular, as a consequence of this, WI can produce a much reduced tensor-to-scalar
ratio as compared to CI for the same type of primordial inflaton potentials. In particular,
well-motivated potentials that became excluded in CI, such as the simple quadratic and
quartic power law inflaton potentials, can be made perfectly consistent with the CMB
data, e.g., from Planck (see, for instance [22,35]). Equation (91) also implies that the Lyth
bound [83] found in the context of CI and which relates the inflaton field excursion to
the tensor-to-scalar ratio, ∆φ/MPl ∼

√
r, will be violated in the WI scenario. Similarly,

the dissipative effects will violate the consistency relation of CI where r = −8nt. The
violation of this relation happens in WI even in the weak dissipative regime, Q < 1, since
the fluctuations are in a thermally excited state for T > H, i.e., n∗ 6= 0. We will see below, in
Section 5, that such smoking gun features, together with the much richer dynamics allowed
by WI, can make WI to satisfy the swampland conjectures inspired from string theory.

It is useful to compare the typical energy scales from WI with those from CI8. We note
that the amplitude of gravitational wave perturbations, as well as the potential energy scale
of CI, is constrained by the CMB. In particular, in CI, we can relate the energy scale of the
inflaton potential V∗ directly in terms of the tensor-to-scalar ratio as

VCI
∗ =

3π2∆R
2

rM4
Pl <

(
1.4× 1016GeV

)4
, (93)

where we have used Equation (89), with the value for the amplitude of the scalar power
spectrum [93], ln

(
1010∆R

)
' 3.047 (TT,TE,EE-lowE+lensing+BAO 68% limits), i.e.,
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∆R ' 2.1× 10−9, and that r < 0.036, from the combined BICEP/Keck and Planck re-
sults [94]. In WI, from Equation (91), we have that

∆T =
16εwi

V
1 + Q

F−1∆R. (94)

Using once again Equation (89) and the first Friedmann equation in the slow-roll limit,
we can find the energy scale in the case of WI (at pivot scale k∗) as

VWI
∗ =

3π2

2
M4

Pl
16εci

1 + Q∗
F−1∆R. (95)

This can be compared with the equivalent result in CI9,

VCI
∗ =

3π2

2
M4

Pl16εci
V∆R. (96)

Thus,

VWI
∗

VCI∗
= F−1, (97)

which means that the energy scale for the inflaton in WI is always smaller than the one
expected from CI, Equation (93). Likewise, we have for the ratio between Hubble scales in
WI and in CI is given by:

HWI
∗

HCI∗
=

1√
F

. (98)

As WI tends in general to predict a smaller tensor-to-scalar ratio than that of CI, this then
translates in smaller energy scales in WI than in CI.

To conclude this section, let us briefly discuss the amount of non-Gaussianity that
is produced by dissipative effects during WI. The first rigorous attempt to estimate the
nonlinearity effects by WI was done in [95]. In that reference, by considering the dissi-
pation coefficient just as a function of the inflaton field (c = 0), it was found that the
nonlinearity parameter could be approximated as f warmS

NL = −15 ln(1 + Q/14)− 5/2 in
the strong dissipative regime. Then, the results were later generalized in [96] for the case
of temperature-dependent dissipation coefficients (c 6= 0), while still in the strong dissi-
pative regime. It was also realized that the coupling of inflaton and the radiation field
fluctuations due to the temperature-dependent dissipation coefficient would potentially
make the nonlinearity effects stronger. In fact, it was found that the nonlinearity parameter
will be larger for larger values for the exponent c, the power of the temperature in the
dissipation coefficient. However, the most concrete results were obtained in [97]. Through
a numerical method developed in [97], the nonlinearity parameter was calculated for the
general form of the dissipation coefficient and in both weak and strong dissipative regimes.
The results obtained for the nonlinearity parameter turned out to be smaller than what was
found originally in [95] for the strong dissipative regime. According to the results reported
in [97], the non-Gaussianity parameter can significantly depend on the values of T/H and
also Q in the weak dissipation regime, i.e., for Q < 0.1 and it reaches its maximum at
Q ∼ 10−3, when the thermal fluctuations start to become dominant. However, when the
dissipation ratio is large, Q > 1, the nonlinearity parameter is independent of T/H and it
only mildly depends on Q. This happens because of the existence of the growing mode
in the power spectrum, which enhances the amplitude of the power spectrum by a factor
Qα and modifies the bispectrum by a factor Q2α, while the effects partially cancel out in
the fNL. Furthermore, the nonlinearity parameter is larger for large value of c in the weak
dissipation regime. However, as the dissipation ratio increases, it results in comparable
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nonlinearity parameters in the strong dissipative regime. Apart from the magnitude of the
nonlinearity parameter, it was also found in [97] that WI predicts two distinct shapes for
the nonlinearity, depending whether WI happens in the weak or in the strong dissipative
regime. This in particular makes WI distinguishable from CI if non-Gaussianities are
detected in the near future10.

5. Swampland Criteria, Observational Constraints, and Other Applications

In this section, we briefly review the implications of the swampland conjectures that
have been discussed recently and put forward when applied to inflation models. We
discuss how the swampland constraints are indicative of ruling out most, if not all, single
field CI models, while WI is able to be in accordance with these swampland constraints and,
at the same time, also satisfy all current observational constraints. Finally, we conclude
the section by discussing some of the recent applications concerning WI and the efforts to
using it to elucidate some of the outstanding pre/post-inflationary phenomena.

5.1. WI and Swampland Conjectures

It is always assumed that inflation can be described using low energy effective field
theory (EFT), since the energy scale of inflation is below the Planck scale when the currently
observable scale exits the Hubble horizon. However, this does not mean that any infla-
tionary model can be ultraviolet-complete. Therefore, it is important to try to distinguish
those EFTs that can be consistently embedded into a quantum theory of gravity from
those that cannot. This was the starting point of the swampland program and aiming at
distinguishing those EFTs, which belong to the landscape of string theory, from those that
inhibit in the swampland. By having the correct criteria to identify the boundary between
the landscape and the swampland, this resulted in a series of conjectures known as the
swampland conjectures (see, e.g., [99], for a review of these ideas). In fact, these conjectures,
although speculative, are the very first theoretical constraints originating from string theory
that can have direct implications on the inflationary cosmology.

As discussed in [100], low-energy EFTs can become inapplicable during compacti-
fication in string theory. This is because the mass of quantum gravity states decreases
exponentially rapid as the field excursion in the moduli space increases, i.e., a tower of
massive states becomes exponentially light as exp(−α∆φ/MPl), with α ∼ O(1). As a result,
if the scalar field has excursions beyond the Planck scale, ∆φ > MPl, a large number of new
light states must be considered. Thus, it has then been speculated that the change of any
scalar field arising in the EFT in its field space is confined by a positive constant number of
order one,

∆φ

MPl
< c1. (99)

The above constraint (99) is called the swampland distance conjecture (SDC). This bound
arises from the fact that if the scalar field moves by a range that is larger than the upper
bound given by Equation (99), thus making a super-Planckian field excursion, then a
tower of new string states becomes light, as said above, and they must be included in
the low-energy EFT. The SDC has an immediate implication for inflation models. In fact,
SDC indicates that large field inflationary models, which generically are known to lead
to super-Planckian field excursions in the context of CI (we will see below how WI can
evade the constraint given by Equation (99)), tend to be ruled out as a consistent EFT model.
Since the field excursion is related to the tensor-to-scalar ratio through the Lyth bound,
hence, one may infer that SDC is indicating that the Lyth bound should be violated in a
non-trivial way such as to make inflation consistent with SDC and the observational data.
As we have already discussed in the previous Section 4, WI naturally violates the Lyth
bound. Furthermore, in WI the inflaton field can be slowed down not only because of the
Hubble friction but also from the explicit dissipation term. If the dissipation term is large
enough, in particular in the strong dissipative regime Q� 1, the inflaton excursions can
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be made sufficiently short such as to satisfy Equation (99). This feature of WI in the strong
dissipative regime has been observed by many recent realizations of this regime (see, for
instance, [25,27,88]).

Several years after introducing the SDC, it was discussed that constructing a metastable
de Sitter vacuum is notoriously difficult in string theory. This has lead to the conjecture that
metastable de Sitter vacua should belong to the swampland rather than to the landscape of
string theory. As a consequence of this difficulty in building appropriate de Sitter vacua,
it can then be translated in conditions that potentials for scalar fields should satisfy and
which are known as the swampland de Sitter conjecture (SdSC). These conditions imply in
bounds on the slope of the scalar potentials in an EFT and which can be expressed in the
form [37,101],

| ∇V |
V

≥ c2

MPl
, (100)

or

min(∇i∇jV)

V
≤ − c3

M2
Pl

, (101)

where ∇ is the gradient in field space, c2 and c3 are universal and positive constants
of order one, and min(∇i∇jV) is the minimum eigenvalue of the Hessian ∇i∇jV in an
orthonormal frame. The conditions given by Equations (100) and (101) mean that either a
useful potential has to be sufficiently steep, or else sufficiently tachyonic near its maximum,
if it has one. It was shown in [37] that the first de Sitter condition, given by Equation (100),
is related to the distance condition, Equation (99), in the weak coupling regime and which
can be demonstrated by using Bousso’s covariant entropy bound [102]. Looking at the
conditions given by Equations (100) and (101), one can easily realize that these conditions
can be translated into conditions on the slow-roll coefficients εV and ηV , such that they
must satisfy [101]:

εV ≡
M2

Pl
2

(
V,φ
V

)2
≥

c2
2

2
, or ηV ≡ M2

Pl
V,φφ

V
≤ −c3, (102)

thus, requiring the potential slow-roll parameters to be of order unity. This is obviously
in contrast to the slow-roll conditions imposed in CI models, where εV � 1 and ηV � 1.
Hence, the first condition rules out all single field CI models, while the second condition is
still consistent with those inflationary potential with tachyonic instability, such as hilltop
potentials [103]. Recalling that εH = −Ḣ/H2, and that in the context of CI εH ' εV , hence,
in the CI scenario one cannot achieve slow-roll inflationary phase for steep potentials.
Moreover, the SdSC also excludes any extrema of scalar field potentials in field space,
i.e., |∇φV|/V → 0. This is in clear contrast with the reheating phase after the end of
inflation, which requires the inflaton potential to have a minimum. Therefore, the SdSC
also indicates that the inflaton should terminate using a new mechanism rather than the
so-called reheating phase in the CI scenario. Both of these issues are again possible to be
overcome in the context of WI. Recalling again that in WI both slow-roll parameters εV and
ηV are replaced by εH ' εwi = εV/(1 + Q) (see, e.g., Equation (11)) and ηwi = ηV/(1 + Q).
Hence, in WI, there is no problem of having εV and ηV larger than 1, provided that Q� 1.
WI in the strong dissipative regime comes again to the rescue, making the inflaton perfectly
consistent with the SdSC as shown explicitly in the models worked out in [25,27,88],
for example.

It is also important to note that the so-called η-problem of cold inflation [104] is
reminiscent of the SdSC. The η-problem is related to the fact that to have inflation, one
requires Vφφ ≡ m2

φ � H2, such that Hubble friction dominates during inflation. However,
the inflaton potential is prone to receive large corrections and which can drive the inflaton
mass above the Hubble scale H. This is the “eta-problem”, which appears in, e.g., F-term
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supergravity and string theory. If the inflaton mass is driven to super-Hubble values, we
have a tension with the slow-roll conditions. As argued a long time ago already [5,19,20],
WI in the strong dissipative regime provides a natural solution for the η-problem, as we
have seen also here when the SdSC constraint is satisfied by WI.

As WI intrinsically leads to entropy production as a consequence of particle production,
it might change the above swampland conditions. This is specially for the case of the de
Sitter conjecture, which, as mentioned above, can be related to entropic phenomena. It
has been shown in [26] that extra entropy produced as a result of particle production in
the context of WI has a negligible effect and WI remains fully consistent with the SDC
and SdSC.

In addition to the above swampland conjectures, very recently, another conjecture
called the Trans-Planckian censorship Conjecture (TCC) has also been proposed [39,41]. The
TCC proposal is based on the trans-Planckian problem of inflationary models, which
severely constrain inflationary models. The TCC requests that the Hubble horizon must
hide sub-Planckian modes during the early stages of accelerated expansion,( a f

ai

)
`Pl <

1
H f

, (103)

where ai and a f are, respectively, the scale factors at the beginning and at the end of the
evolution, H f is the Hubble parameter at the end of that evolution, and `Pl is a length scale
of the order of the Planck scale11. The TCC bound can be translated into an upper bound on
the duration of inflation. If we assume a constant Hubble horizon, or a period of quasi-de
Sitter inflation and instant reheating phase at the end of inflation, the TCC implies an upper
limit for the energy scale of inflation [41]:

V
1
4 < 6× 108GeV ∼ 3× 10−10MPl, (104)

which, in turn, it can be translated to an upper bound on the tensor-to-scalar ratio parameter,

r < 10−31. (105)

The result given by Equation (105) tightly constrains the slow-roll epoch needed to
resolve the shortcomings of the standard big bang cosmology according to the standard
CI picture. In fact, to make CI models compatible with the TCC, one needs to modify the
dynamics of the CI scenario in such a way that the tensor-to-scalar ratio can be suppressed
significantly. By accounting for a non-standard evolution after the end of inflation, it has
been shown [106] that it can lead to a more accessible result for r, r < 10−8, which is weaker
than the upper bound given by Equation (105). However, the result is still very constraining
on the energy scale of inflation. Turning now to WI, one can see how it can evade the TCC
bound discussed here. As explained in Section 4, the dissipative effects in WI produce
a modified primordial scalar of the curvature power spectrum, Equation (80), which is
enhanced by the dissipation and thermal effects. Again, for Q� 1, this results in a highly
suppressed tensor-to-scalar ratio, Equation (91), which can make WI also consistent with
the TCC [25,27,88]. All of this is achieved with WI also leading to consistent results for the
spectral tilt ns and also for its runnings [77], thus consistent with the current results from
Planck [108].

There have been also discussions concerning eternal inflation and the swampland
and whether eternal inflation would be in the landscape or in the swamp of EFTs in the
context of quantum gravity theories (see, e.g., [103,109,110]). Interestingly, WI, again, here
seems to play a significant role. The dissipative and thermal characteristics of WI have
been shown to provide a way of suppressing the emergence of eternal inflation and, in the
strong dissipative regime, even possibly avoiding it to happen [111].
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Although all these swampland conjectures explained above are speculative and there
is no strong evidence to strengthen them, it is worth noting that WI is able to satisfy and to
be consistent with all of the constraints that these conditions bring, in a natural way.

5.2. Other Applications and Recent Results in WI

As we have discussed in Sections 2 and 4, WI enlarges the class of potentials that can be
made observationally consistent with the observational data in comparison to CI scenario.
For instance, simple potentials for the inflaton, such as the quadratic and quartic monomials
potentials, the Higgs-like symmetry breaking potential and the Coleman–Weinberg-type
of potentials, which are all well motivated in the context of particle physics, have been
shown to the excluded by the Planck data in the context of CI [108]. However, in WI,
because of the different dynamics resulting from the dissipative effects, they can all be
made fully consistent with the observations and this can happen for a large range of space
of parameters, as discussed, e.g., in [35].

Considering also the natural inflaton potential [112], i.e., V(φ) = Λ4[1 + cos(φ/ f )] in
the WI scenario, it was found that although in CI the model is now borderline-consistent
with the observations for super-Planckian values for the decay constant f , it can become
consistent with the observations even in the case of sub-Planckian values for f in the
context of the WI picture, as shown in case of a simplified constant dissipation coefficient
form [113–115]. A sub-Planckian value for f is favorable from a model building and EFT
perspective. However, very recently [116], this model was again reconsidered in WI in
the cases of linear and cubic temperature-dependent dissipation coefficients and it was
found that due to the growing mode function G(Q), the model is not consistent with the
observations in the case of sub-Planckian values for f .

The results and studies in WI can also be extended to the case of non-canonical type
of models. For instance, it has been shown that for the quartic potential, V = λφ4, the
combination of dissipative effects with G-inflaton makes this potential consistent with
observations even for large values for the self-coupling λ [89].

Moreover, there are several papers in the literature which studied WI using some
quasi-de Sitter form of scale factor, e.g., intermediate and logamediate inflation, and
other non-canonical versions of field theory, e.g., tachyonic fields, in the high dissipative
regime [117–125], while there have been also many studies involving different forms of
inflaton potentials and in other interesting contexts [79,111,126–144].

The analysis of the dynamics from the point of view of a dynamical system realization
is important for many reasons. It not only can bring general information about the dynamics
that the system can present but also regarding its stability. In this context, several studies
have analyzed WI from a dynamical system perspective, as, for example, in [43–45,145–147].
WI has also been contrasted with the observational data through explicit statistical analysis,
as in [35,148–151]. The inflaton itself in WI can be a source and responsible for cosmic
magnetic field generation [152], and in combination with the intrinsic dissipative effects
lead to a successful baryogenesis scenario [153–155]. Moreover, the gravitino problem was
also considered in the context of WI [156,157]. More recently, a focus has been given to WI
in topics such as dark energy [158–163], dark matter [70,164–167], and in problems related
to primoridial black hole formation and in providing additional sources of gravitational
waves [168–172], just to cite a few of the many recent developments in the context of WI.

6. Conclusions

Warm inflation provides a framework for understanding the dynamics of the early
universe from a perspective that differs from that of the standard cold inflation. Warm
inflation accounts for the explicit dissipative effects that are expected to be present in any
dynamical physical theory with interacting particles and fields. When these dissipative
effects are strong enough to overcome the dilution of the radiation during the rapid
expansion in the primordial inflation epoch, a rich dynamics and new phenomena emerge
that are not present during the usual cold inflation picture.
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In warm inflation, the generation of density perturbations can be entirely classical,
formed by thermal fluctuations instead of quantum fluctuations in the case of cold inflation.
This overcomes several issues related to classicalization of perturbations in the case of cold
inflation. Furthermore, warm inflation predicts a very small, if not substantially small,
tensor-to-scalar ratio due to the thermal and dissipative effects. As a result, simple inflaton
potential models that are well motivated in the context of renormalizable quantum field
theory and particle physics can be made fully consistent with the cosmological observations
from Planck. On the other hand, in cold inflation, all these simple potentials and models
are ruled out by the current cosmological data.

The advent of the use of the swampland conjectures, which are derived from string
theory and give indications of what a consistent effective field theory should satisfy to
be able to descent from a quantum gravity theory, have posed strong constraints on cold
inflation models. Warm inflation is also here shown to solve these issues. Warm inflation, in
particular in the regime of strong dissipation, provides a way to overcome all the constraints
brought by the swampland conjectures. Thus, warm inflation provides a viable solution
for resolving the tension between quantum field theory and quantum gravity. From the
swampland perspective, warm inflation is then more natural and less prone to falling into
the swampland.

At its conception about 28 years ago, warm inflation appeared to be an amusement,
not expected to have any significant protagonism in cosmology when compared to the
mainstream cold inflation picture. Since then, the warm inflation idea has evolved and
moved to a mature and relevant subject, providing a picture towards which an under-
standing of some of the fundamental problems in cosmology might have a better chance to
be understood than in terms of the cold inflation scenario. Ideas in the context of warm
inflation have been developing rapidly in the recent years, as this review tried to demon-
strate. These have been happening both from a more fundamental quantum field theory
perspective, but also from the wealth of applications that have now been considered. Warm
inflation has now become a promising and growing area of research, with the potential to
provide new insights into the physics of the early universe.
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Notes
1 For an earlier review on the microphysics of warm inflation, see [4], while for its phenomenology, see [5].
2 See also [44,45] for the stability analysis in the presence of radiation viscous effects and also [46–50] for generalizations into

non-canonical kinetic terms.
3 As a note concerning the emergence of a thermal equilibrium radiation bath during WI, this problem has been studied in the

context of the solution of the Boltzmann equation in [79]. Likewise, the generality of formation of a thermalized radiation bath
and that it can be maintained during inflation, has as been demonstrated recently in [75,76] in the context of the model described
in Section 3.5.

4 One should note that there is another implementation for calculating the curvature power spectrum first developed in [85] where
the velocity field was used instead of momentum perturbation. In [86], it was shown that the power spectrum obtained in [85]
differs by a factor Q/4 from the result mentioned here. However, in [86], it was discussed that such discrepancy comes from
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the fact that [85] did not consider the variation of momentum perturbation with expansion. Once this is done, the discrepancy
disappears and both approaches are consistent.

5 We note here that taking into account viscosity effects that can be present in the radiation fluid, the growing mode can suffer
considerable damping [42,87]. Similar damping effects were also reported in [88,89] when perturbations propagate with small
sound speed, which is typical for non-canonical kinetic terms.

6 See also [25,27] for more specific forms of G(Q) valid for higher dissipation values and which can be used for more precise
estimation of cosmological parameters.

7 See, however, Ref. [90], where it was discussed that the radiation thermal bath can also produce gravitational waves and this
production would enhance the tensor power spectrum. See also [91], in which thermal corrections to tensor power spectrum
were computed and it was found that these corrections are, however, small for Q < 100.

8 Similar to the discussions, e.g., in [92], which compares the scales of standard gravity with some alternatives.
9 Note, as already emphasized in Section 2, εwi

V is related to εci by εci ' εwi
V /(1 + Q).

10 Recently, the non-Gaussianity has also been investigated in [98] in an axion-type of model and it was pointed out some distinct
features in the squeezed and folded limits.

11 One should also note that there are modified versions of the TCC, as, e.g., in [105], and which can allow for larger values of
H f than the suggested from Equation (103), which alleviates appreciably the TCC bound. Additionally, there are other recent
discussions in the literature concerning the TCC bound, e.g., in [28,29,106,107] on how it also be relaxed.
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