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Abstract: Bayesian evidence is a key tool in model selection, allowing a comparison of models with
different numbers of parameters. Its use in the analysis of cosmological models has been limited
by difficulties in calculating it, with current numerical algorithms requiring supercomputers. In
this paper we give exact formulae for the Bayesian evidence in the case of Gaussian likelihoods
with arbitrary correlations and top-hat priors, and approximate formulae for the case of likelihood
distributions with leading non-Gaussianities (skewness and kurtosis). We apply these formulae
to cosmological models with and without isocurvature components, and compare with results we
previously obtained using numerical thermodynamic integration. We find that the results are of
lower precision than the thermodynamic integration, while still being good enough to be useful.
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1. Introduction

Model selection refers to the statistical problem of deciding which model description
of observational data is the best [1,2]. It differs from parameter estimation, where the
choice of a single model (i.e., choice of parameters to be varied) has already been made and
the aim is to find their best-fitting values and ranges. While there have been widespread
applications of parameter estimation techniques, usually likelihood fitting, to cosmological
data, there has so far been quite limited application of model selection statistics [3–12]. This
is unfortunate, as model selection techniques are necessary to robustly distinguish between
models with different numbers of parameters, and many of the most interesting issues in
cosmology concern the desirability or otherwise of incorporating additional parameters to
describe new physical effects.

Within the context of Bayesian inference, model selection should be carried out using
the Bayesian evidence [1,2], which measures the probability of the model in light of the
observational data (i.e., the average likelihood over the prior distribution). The Bayesian
evidence associates a single number with each model, and the models can then be ranked in
order of the evidence, with the ratios of those values interpreted as the relative probability
of the models. This process sets up a desirable tension between model simplicity and the
ability to fit the data.

Use of the Bayesian evidence has so far been limited by difficulties in calculating it.
The standard technique is thermodynamic integration [13,14], which varies the temperature
in a Monte Carlo Markov Chain (MCMC) approach in order that the distribution is sampled
in a way covering both posterior and prior distributions. However, in recent work [12]
we showed that in order to obtain sufficiently-accurate results in a cosmological context,
around 107 likelihood evaluations are required per model. Such analyses are CPU-limited
by the time needed to generate the predicted spectra to compare with the data, and this
requirement pushes the problem into the supercomputer class (for comparison, parameter
estimation runs typically employ 105 to 106 likelihood evaluations).

In this paper, we propose and exploit a new analytic method to compute the evidence
based on an expansion of the likelihood distribution function. The method pre-supposes
that the covariance of the posterior distribution has been obtained, for instance via an
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MCMC parameter estimation run, and in its present form requires that the prior distribu-
tions of the parameters are uniform top-hat priors.1 While the method will not be applicable
for general likelihood distributions, we include the leading non-Gaussianities (skewness
and kurtosis) in approximating the likelihood shape, with the expectation of obtaining
good results whenever the likelihood distribution is sufficiently simple. Cosmological
examples commonly exhibit likelihood distributions with only a single significant peak.

We apply the method both to toy model examples and to genuine cosmological
situations. In particular, we calculate the evidences for adiabatic and isocurvature models,
which we previously computed using thermodynamic integration in ref. [12]. We find
that the discrepancies between the methods are typically no worse than 1 in ln(Evidence),
meaning that the analytical method is somewhat less accurate than would be ideal, but is
accurate enough to give a useful indication of model preference.

2. The Bayesian Evidence

The posterior probability distribution P(θ,M|D) for the parameters θ of the model
M, given the data D, is related to the likelihood function L(D|θ,M) within a given set of
prior distribution functions π(θ,M) for the parameters of the model, by Bayes’ theorem:

P(θ,M|D) =
L(D|θ,M)π(θ,M)

E(D|M)
, (1)

where E is the Bayesian evidence, i.e., the average likelihood over the priors,

E(D|M) =
∫

dθ L(D|θ,M)π(θ,M) , (2)

where θ is a vector with n-components characterising the n independent parameters. The
prior distribution function π contains all the information about the parameters before
observing the data, i.e., our theoretical prejudices, our physical understanding of the model,
and input from previous experiments.

In the case of a large number of parameters (n� 1), the evidence integral cannot be
performed straightforwardly and must be obtained either numerically or via an analytical
approximation. Amongst numerical methods the most popular is thermodynamic integra-
tion [13,14] but this can be computationally intensive [12]. An alternative is the application
of the nested sampling algorithm [15,16] and Monte Carlo methods with the stepping-stone
sampling algorithm [17,18]. On the other hand, the simplest analytical approximation is the
Laplace approximation, valid when the distribution can be approximated by a multivariate
Gaussian. This may hold when the quantity and quality of the data is optimal, but is likely
to be valid only in limited cosmological circumstances.

The Bayesian evidence is of interest because it allows a comparison of models amongst
an exclusive and exhaustive set {Mi}i=1...N . We can compute the posterior probability for
each hypothesis given the data D using Bayes’ theorem:

P(Mi|D) ∝ E(D|Mi)π(Mi) , (3)

where E(D|Mi) is the evidence of the data under the modelMi, and π(Mi) is the prior
probability of the ith model before we see the data. The ratio of the evidences for the two
competing models is called the Bayes factor [19]

Bij =
E(D|Mi)

E(D|Mj)
, (4)

and this is also equal to the ratio of the posterior model probabilities if we assume that we
do not favour any model a priori, so that π(M1) = π(M2) = . . . = π(MN) = 1/N.

The Bayes factor Equation (4) provides a mathematical representation of Occam’s
razor, because more complex models tend to be less predictive, lowering their average
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likelihood in comparison to simpler, more predictive models. More complex models can
only be favoured if they are able to provide a significantly improved fit to the data. In
simple cases where models give vastly different maximum likelihoods there is no need to
employ model selection techniques, but they are essential for properly discussing cases
where the improvement of fit is marginal. This latter situation is more or less inevitable
whenever the possibility of requiring an additional parameter arises from new data, unless
the new data is of vastly greater power than that preceding it; cosmological examples
include the inclusion of spectral tilt, dark energy density variation, or trace isocurvature
perturbations, explored later in this paper.

In this paper we will obtain analytical formulae which approximates the Bayesian
evidence by considering the higher-order cumulants of the distribution in a systematic way.
The advantage is that with these analytical formulae one can compute the evidence for a
given model with an arbitrary number of parameters, given the hierarchy of cumulants
of the distribution, assumed previously computed for the likelihood distribution function
within the parameter estimation programme.

The evidence needs to be calculated to sufficient precision for robust conclusions to be
drawn. The standard interpretational scale, due to Jeffreys [1] and summarized in ref. [12],
strengthens its verdict roughly each time the difference in ln(Evidence) increases by one.
The evidence therefore needs to be computed more accurately than this, with an uncertainty
of 0.1 in ln(Evidence) easily sufficient, and a factor two worse than that acceptable. This
accuracy requirement ensures that the relative model probabilities are changed little by
the uncertainty.

The first thing needed is to characterize the distribution function for the model with n
parameters. Let f (x) be this function, and let us assume that it is properly normalized,∫ ∞

−∞
dnx f (x) = 1 . (5)

Then, the p-point correlation function is given by

〈xi1 . . . xip〉 =
∫ ∞

−∞
dnx xi1 . . . xip f (x) . (6)

From this distribution function one can always construct the generating functional, φ(u),
as the Fourier transform

φ(u) =
∫ ∞

−∞
dnx ei u·x f (x) . (7)

This function can be expanded as

φ(u) = exp

[
∞

∑
p=1

ip

p!
Ai1 ...ip ui1 . . . uip

]
, (8)

where Ai1 ...ip are totally symmetric rank-p tensors. For instance, if we restrict ourselves to
order 4, we can write

φ(u) = exp
[

i µiui −
1
2!

Cij uiuj −
i

3!
Bijk uiujuk +

1
4!

Dijkl uiujukul + · · ·+
in

n!
Ai1 ...in ui1 . . . uin

]
, (9)

where µi is the mean value of variable xi; Cij is the covariance matrix; Bijk is the trilinear
matrix associated with the third cumulant or skewness; Dijkl is the rank-4 tensor associated
with the fourth cumulant or kurtosis; and Ai1 ...in is the rank-n tensor associated with the
n-th cumulant. Their expressions in terms of n-point correlation functions can be obtained
from Equation (7), by realising that

〈xi1 . . . xin〉 = (−i)n ∂nφ(u)
∂ui1 . . . ∂uin

∣∣∣∣
u=0

. (10)



Universe 2023, 9, 118 4 of 20

For instance, the first-order term gives

〈xi〉 = (−i)
∂φ(u)

∂ui

∣∣∣∣
u=0

= µi . (11)

The second-order correlation function gives

〈xixj〉 = (−i)2 ∂2φ(u)
∂ui∂uj

∣∣∣∣∣
u=0

= Cij + µiµj , (12)

such that the covariance matrix is obtained, as usual, from

Cij = 〈xixj〉 − 〈xi〉〈xj〉 .

The third-order correlation function gives

〈xixjxk〉 = (−i)3 ∂3φ(u)
∂ui∂uj∂uk

∣∣∣∣∣
u=0

= Bijk + µiCjk + µjCki + µkCij + µiµjµk , (13)

such that the skewness matrix is obtained from

Bijk = 〈xixjxk〉 − 〈xi〉〈xjxk〉 − 〈xj〉〈xkxi〉 − 〈xk〉〈xixj〉+ 2〈xi〉〈xj〉〈xk〉 . (14)

The fourth-order correlation function gives

〈xixjxkxl〉 = (−i)4 ∂4φ(u)
∂ui∂uj∂uk∂ul

∣∣∣∣∣
u=0

= Dijkl + CijCkl + CikCjl + CilCjk (15)

+ Bijkµl + Bijlµk + Bjklµi + Biklµj

+ Cijµkµl + Cikµjµl + Cilµjµk

+ Cjkµiµl + Cjlµiµk + Cklµiµj

+ µiµjµkµl ,

such that the kurtosis matrix is obtained from

Dijkl = 〈xixjxkxl〉 − 〈xixj〉〈xkxl〉 − 〈xixk〉〈xjxl〉 − 〈xixl〉〈xjxk〉 (16)

− 〈xixjxk〉〈xl〉 − 〈xixjxl〉〈xk〉 − 〈xixkxl〉〈xj〉 − 〈xjxkxl〉〈xi〉

+ 2 〈xixj〉〈xk〉〈xl〉+ 2 〈xixk〉〈xj〉〈xl〉+ 2 〈xixl〉〈xj〉〈xk〉+ 2 〈xjxk〉〈xi〉〈xl〉

+ 2 〈xjxl〉〈xi〉〈xk〉+ 2 〈xkxl〉〈xi〉〈xj〉 − 6 〈xi〉〈xj〉〈xk〉〈xl〉 ,

and so on, for the higher-order cumulants.

3. The Gaussian Approximation

Let us first evaluate the evidence for a multivariate Gaussian distribution, that is, one
in which all the cumulants are zero except the covariance matrix Cij and the means µi. In
this case, the generating functional and the distribution are given by 2
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φ(u) = exp
[
− iµiui −

1
2

Cij uiuj

]
, (17)

f (x) =
1

(2π)n

∫ ∞

−∞
dnu e−i u·x φ(u) (18)

=
1

(2π)n/2
√

det C
exp

[
− 1

2
C−1

ij (xi − µi)(xj − µj)
]

, (19)

which satisfies

〈xi〉 = µi , 〈xixj〉 = Cij + µiµj , 〈xixjxk〉 = µ(iCjk) + µiµjµk , . . . (20)

where the sub-indices in parenthesis, (ijk), indicate a cyclic sum. Notice that all the n-point
correlation functions can be written in terms of the first two moments of the distribution,
and all the higher-order cumulants vanish.

3.1. Centred Priors

For initial calculations, we assume a top-hat prior and make the unrealistic assumption,
to be lifted later, that it is centred at the mean value:

π(x, a) ≡
{

(2a)−1 −a < x− µ < a ,

0 otherwise .
(21)

Since the Fourier transform of a top-hat function is∫ ∞

−∞
dx eiux π(x, a) =

sin au
au

exp[iµu] ,

we can write the evidence either way

E(a1, . . . , an) =
∫ ∞

−∞
dnx f (x)

n

∏
i=1

π(xi, ai) =
n

∏
i=1

(2ai)
−1
∫ a1

−a1

dx1· · ·
∫ an

−an
dxn f (x̃) (22)

=
1

(2π)n

∫ ∞

−∞
dnu φ(u)

n

∏
i=1

sin aiui
aiui

. (23)

In Equation (22) we integrate over the displaced coordinate, x̃i ≡ xi − µi, such that 〈x̃i〉 = 0
and 〈x̃i x̃j〉 = Cij. From now on, we ignore the tildes, and assume we have moved to those
coordinates. Note that the choice of prior is not crucial. We could have chosen a Gaussian
prior, and the result would not be very different, except that the window functions, sin z/z,
would then be Gaussian. Let us now perform the integration Equation (22) in the case of
one, two and then n variables.

One variable. Suppose the covariance is just C = σ2. The evidence is then

E(a) =
1

2a σ
√

2π

∫ a

−a
dx e−

x2

2σ2 =
1

2π

∫ ∞

−∞
du

sin au
au

e−
1
2 σ2u2

=
1
2a

Erf
[ a

σ
√

2

]
, (24)

where Erf[x] is the error function, which asymptotes very quickly to one for x ≥ 2, or
a ≥ 3σ. Therefore, the evidence of a model with centred top-hat prior of width 2a is
well approximated by (2a)−1. Note that the Bayesian evidence depends very strongly
on the prior chosen for the model, and often choosing this prior is crucial for model
specification [20].
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Two variables. Suppose we have two correlated variables, x1 and x2, with covari-
ance matrix

C =

(
C11 C12

C12 C22

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. (25)

where the cross-correlation ρ is defined by

ρ =
〈x1x2〉√
〈x2

1〉〈x2
2〉

=
〈x1x2〉
σ1σ2

,

with σ1 and σ2 as the corresponding quadratic dispersions. In this case, the normalized
two-dimensional distribution function is

f (x) =
1

2πσ1σ2
√

1− ρ2
exp

[ −1
1− ρ2

( x2
1

2σ2
1
− ρx1x2

σ1σ2
+

x2
2

2σ2
2

)]
, (26)

which has the property that integrating (“marginalizing”) over one of the two variables,
leaving a properly-normalized Gaussian distribution for the remaining variable,

∫ ∞

−∞
dx2 f (x) =

1
σ1
√

2π
e
− x2

1
2σ2

1 . (27)

Let us now evaluate the evidence Equation (22) by integrating first over the prior in x2,

1
2a2

∫ a2

−a2

dx2 f (x) =
e
− x2

1
2σ2

1

σ1
√

2π
· 1

4a2

[
Erf
[ a2σ1 + ρσ2 x1

σ1σ2
√

2(1− ρ2)

]
+ Erf

[ a2σ1 − ρσ2 x1

σ1σ2
√

2(1− ρ2)

]]
. (28)

The first term is the result we would have obtained if we had been marginalizing over
x2; the second is a sum of error functions that still depend on x1, and modulates the
marginalization. We can use the series expansion of the error function to second order,

1
2

(
Erf[a + x] + Erf[a− x]

)
= Erf[a]− 2a x2

√
π

e−a2
+O(x4) ,

to write Equation (28) to order x2
1 as

1
2a2

∫ a2

−a2

dx2 f (x) =
e
− x2

1
2σ2

1

σ1
√

2π

 1
2a2

Erf
[ a2

σ2
√

2(1− ρ2)

]
−

ρ2 x2
1 e
− a2

2
2σ2

2 (1−ρ2)

2σ2
1 σ2(1− ρ2)

√
2π(1− ρ2)

 . (29)

Integrating now over the x1 prior, we finally obtain the evidence

E(a1, a2) =
1

4a1a2

∫ a1

−a1

dx1

∫ a2

−a2

dx2 f (x)

=
1

4a1a2
Erf
[ a2

σ2
√

2(1− ρ2)

]
Erf
[ a1

σ1
√

2

]
(30)

− ρ2 e
− a2

2
2σ2

2 (1−ρ2)

2σ1σ2(1− ρ2)
√

2π(1− ρ2)

Erf
[

a1
σ1
√

2

]
2a1

+
ρ2 e
− a2

2
2σ2

2 (1−ρ2)
− a2

1
2σ2

1

4πσ2
1 σ2
√

1− ρ2
.
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Note that in the limit of no cross-correlations, ρ → 0, the integral factorizes and we
can write an exact expression for the evidence,

E(a1, a2) =
1

4a1a2

1
2πσ1σ2

∫ a1

−a1

dx1

∫ a2

−a2

dx2 e
− x2

1
2σ2

1
− x2

2
2σ2

2 (31)

=
1

4π2

∫ ∞

−∞
du1

∫ ∞

−∞
du2

sin a1u1

a1u1

sin a2u2

a2u2
e−

1
2 σ2

1 u2
1−

1
2 σ2

2 u2
2 (32)

=
1

4a1a2
Erf
[ a1

σ1
√

2

]
Erf
[ a2

σ2
√

2

]
. (33)

It happens, however, that even in the presence of cross-correlations, if the prior is wide
(ai ≥ 2σi), then the terms proportional to exponentials are negligible and the evidence
becomes, to a very good approximation,

E(a1, a2) =
1

4a1a2
Erf
[ a2

σ2
√

2(1− ρ2)

]
Erf
[ a1

σ1
√

2

]
. (34)

Moreover, in that case, the error functions are approximately given by 1.

n variables. Suppose we have n correlated variables, x = (x1, . . . , xn), with covariance
matrix

Cn =


C11 C12 . . . C1n

C12 C22 . . . C2n

...
...

. . .
...

C1n C2n . . . Cnn

 . (35)

In this case, the probability distribution function can be expressed as

f (x) =
1

(2π)n/2
√

det Cn
exp

[
− 1

2
xT C−1

n x
]

, (36)

which has the property that marginalizing over the last variable, xn, we obtain a correlated
probability distribution function for the n− 1 variables, x = (x1, . . . , xn−1),

f (x) =
1

(2π)(n−1)/2
√

det Cn−1
exp

[
− 1

2
xT C−1

n−1x
]

, (37)

where the Cn−1 covariance matrix is given by Equation (35) without the last column and
last row.

We will now evaluate the evidence Equation (22) for this multivariate Gaussian,
starting with the integration over the last variable, xn,

1
2an

∫ an

−an
dxn f (x) =

1
(2π)(n−1)/2

√
det Cn−1

exp
[
− 1

2
xT C−1

n−1x
]

×
{

1
2an

Erf

[
an√

2

√
det Cn−1

det Cn

]
+O

(
e−

a2
n det Cn−1

2 det Cn

)}
. (38)

Integrating now over the next variable, xn−1, we find
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1
4anan−1

∫ an

−an
dxn

∫ an−1

−an−1

dxn−1 f (x) =
1

(2π)(n−2)/2
√

det Cn−2
exp

[
− 1

2
xT C−1

n−2x
]

×
{

1
4anan−1

Erf

[
an√

2

√
det Cn−1

det Cn

]
Erf

[
an√

2

√
det Cn−2

det Cn−1

]
+O

(
e−

a2
n det Cn−1

2 det Cn

)}
. (39)

Continuing the integration over the priors, we end up with the evidence for the n-dimensional
distribution,

E(a1, . . . , an) =
1

∏n
p=1 2ap

∫ a1

−a1

· · ·
∫ an

−an
dnx f (x)

=
n

∏
p=1

1
2ap

Erf

[
ap√

2

√
det Cp−1

det Cp

]
+O

(
exp

[
−

n

∑
p=1

a2
p det Cp−1

2 det Cp

])
, (40)

where the covariance matrices Cp are constructed as above, by eliminating the n− p last
rows and columns, until we end up with C0 ≡ 1. Note that the approximation is very good
whenever ∑n

p=1(a2
p det Cp−1)/(2 det Cp) � 1, which is often the case. Note also that we

recover the previous result Equation (34) for the particular case n = 2.
In the limit that the cross-correlation between the n variables vanishes, the evidence (40)

reduces to the exact result

E(a1, . . . , an) =
n

∏
p=1

1
2ap

Erf

[
ap

σp
√

2

]
. (41)

Note that the evidence Equation (40) correctly reflects the limit in which we eliminate the
need for a new variable xn, by making its prior vanish,

lim
an→0

E(a1, . . . , an) = E(a1, . . . , an−1)
1√
2π

√
det Cn−1

det Cn
, (42)

and thus we recover in that limit a properly normalized distribution, f (x1, . . . , xn) →
f (x1, . . . , xn−1), while the inspection of the likelihood function alone would not have been
able to give a reasonable answer.

On the other hand, in the case that our theoretical prejudice cannot assign a concrete
prior to a given variable, we see that the evidence decreases as 1/2a as a increases. Therefore,
the Bayesian evidence seems to be a very good discriminator between theoretical priors,
and penalizes including too many parameters, a la Occam’s razor.

3.2. Uncentred Priors

It is unlikely that the priors will actually be centred on the mean of the distribution,
as the priors are not supposed to know what the data will tell us. We therefore need
to generalize the above for uncentred priors. We continue to assume that the priors are
top hats.

We also continue to assume for the moment that the probability distribution is well-
approximated by a Gaussian with mean value µ. We will then use displaced variables
x̃i = xi − µi, and write the Gaussian distribution function as in Equation (36). The normal-
ized top-hat prior is now uncentered with respect to the mean value,

π(x̃; a, b) ≡
{

(a + b)−1 −a < x̃ < b ,

0 otherwise .
(43)
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For a single variable, the result is exact,

E(a; b) =
∫ ∞

−∞
dx f (x)π(x; a, b) =

1
2a + 2b

(
Erf
[

a
σ
√

2

]
+ Erf

[
b

σ
√

2

])
. (44)

where we are integrating over the displaced variable x̃, from now on renamed as x. Note
that we recover the result Equation (24) for the centred prior case in the limit b→ a.

For two variables, with distribution function Equation (26), the uncentred Bayesian
evidence is

E(a1, a2; b1, b2) =
1

(a1 + b1)(a2 + b2)

∫ b1

−a1

dx1

∫ b2

−a2

dx2 f (x1, x2) (45)

=
1

(2a1 + 2b1)(2a2 + 2b2)

{(
Erf
[

a1

σ1
√

2

]
+ Erf

[
b1

σ1
√

2

])
(46)

×
(

Erf

[
a2

σ2
√

2(1− ρ2)

]
+ Erf

[
b2

σ2
√

2(1− ρ2)

])

− ρ

2π
√

1− ρ2

e
− a2

1
2σ2

1 − e
− b2

1
2σ2

1

e
− a2

2
2σ2

2 (1−ρ2) + e
− b2

2
2σ2

2 (1−ρ2)


The evidence for the multiple-variable case Equation (36) is

E(a, b) =
∫ ∞

−∞
dnx f (x)

n

∏
i=1

π(xi; ai, bi) =
n

∏
i=1

(ai + bi)
−1
∫ b1

−a1

dx̃1· · ·
∫ bn

−an
dx̃n f (x̃) . (47)

Let us now evaluate it for the multivariate Gaussian Equation (36), starting with the
integration over the last variable, xn,

1
an + bn

∫ bn

−an
dxn f (x) =

1
(2π)(n−1)/2

√
det Cn−1

exp
[
− 1

2
xT C−1

n−1x
] 1
(2an + 2bn)

×
{

Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

]
+O

(
e−

a2
n det Cn−1

2 det Cn + e−
b2
n det Cn−1

2 det Cn

)}
(48)

Integrating now over the next variable, xn−1, we find

1
(an + bn)(an−1 + bn−1)

∫ bn

−an
dxn

∫ bn−1

−an−1

dxn−1 f (x) =

1
(2π)(n−2)/2

√
det Cn−2

exp
[
− 1

2
xT C−1

n−2x
] 1
(2an + 2bn)(2an−1 + 2bn−1)

(49)

×
{(

Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

])
(50)

×
(

Erf

[
an−1√

2

√
det Cn−2

det Cn−1

]
+ Erf

[
bn−1√

2

√
det Cn−2

det Cn−1

])
(51)

+ O
(

e−
a2
n det Cn−1

2 det Cn + e−
b2
n det Cn−1

2 det Cn

)
×
(

e
−

a2
n−1 det Cn−2

2 det Cn−1 + e
−

b2
n−1 det Cn−2

2 det Cn−1

)}
.

Continuing the integration over the priors, we end up with the evidence for the n-dimensional
distribution,
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E(a, b) =
1

∏n
p=1(ap + bp)

∫ b1

−a1

· · ·
∫ bn

−an
dnx f (x)

=
n

∏
p=1

1
(2ap + 2bp)

(
Erf

[
ap√

2

√
det Cp−1

det Cp

]
+ Erf

[
bp√

2

√
det Cp−1

det Cp

])
(52)

+ O
(

n

∏
p=1

[
exp

(
−

a2
p det Cp−1

2 det Cp

)
+ exp

(
−

b2
p det Cp−1

2 det Cp

)])
,

where the covariance matrices Cp are constructed as above, by eliminating the n− p last
rows and columns, until C0 ≡ 1. Note that the approximation is very good whenever the
exponents are large, ∑n

p=1(a2
p det Cp−1)/(2 det Cp)� 1, which is often the case. Note also

that we recover the expression of the evidence for the centred priors Equation (40) in the
limit b→ a.

Let us now evaluate the evidence for a distribution normalized to the maximum of
the likelihood distribution,

f (x) = Lmax exp
[
− 1

2
xT C−1

n x
]

(53)

In this case, the evidence is given by Equation (52), multiplied by a factor Lmax × (2π)n/2
√

det Cn from the normalization. We can then evaluate the logarithm of the evidence,
ignoring the exponentially small corrections, as

ln E = lnLmax +
n
2

ln(2π) +
1
2

ln det Cn −
n

∑
p=1

ln(2ap + 2bp)

+
n

∑
p=1

ln

(
Erf

[
ap√

2

√
det Cp−1

det Cp

]
+ Erf

[
bp√

2

√
det Cp−1

det Cp

])
. (54)

Uncorrelated case. Suppose we have a multivariate Gaussian distribution without
correlations between variables, i.e., Cij = σ2

i δij is a diagonal matrix; then the evidence
reads exactly,

E(a, b) =
1

∏n
p=1(ap + bp)

∫ b1

−a1

· · ·
∫ bn

−an
dnx f (x) =

n

∏
p=1

1
2(ap + bp)

(
Erf

[
ap

σp
√

2

]
+ Erf

[
bp

σp
√

2

])
, (55)

where σp are the dispersions of each variable x̃p, and thus the logarithm of the evidence be-
comes

ln E = lnLmax +
n
2

ln(2π) +
n

∑
p=1

ln σp −
n

∑
p=1

ln(2ap + 2bp) +
n

∑
p=1

ln

(
Erf

[
ap

σp
√

2

]
+ Erf

[
bp

σp
√

2

])
(56)

Laplace approximation. The Laplacian approximation to the evidence assumes the
distribution is a correlated Gaussian, and that the priors are large enough so that the whole
distribution fits easily inside them, in which case the error functions are approximately in
unity and do not contribute to the evidence; from Equation (54) we now have

ln E = lnLmax +
n
2

ln(2π) +
1
2

ln det Cn −
n

∑
p=1

ln ∆θp , (57)
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where ∆θp = ap + bp is the parameter interval associated to the prior. In the next section
we will compare the different approximations.

4. Non-Gaussian Corrections

The advantage of this method is that one can perform a systematic computation of
the evidence of a given model with its own priors, given an arbitrary set of moments of
the distribution. Here we will consider the first two beyond the covariance matrix, i.e., the
skewness and kurtosis terms, see Equation (9).

4.1. Skewness

Let us start with the first correction to the Gaussian approximation, the trilinear term
Bijk. For this, we write the generating functional (9) as

φ(u) = exp
[

i µiui −
1
2!

Cij uiuj −
i

3!
Bijk uiujuk

]
. (58)

By performing a change of variable, ui = yi − i C−1
ik (xk − µk), we can evaluate the Fourier

transform integral and obtain the properly-normalized probability distribution function

f (x) =
1

(2π)n/2
√

det Cn
exp

[
− 1

2
xT C−1

n x
]

×
(

1− 1
2

Bijk C−1
ij C−1

kl xl +
1
6

Bijk C−1
il C−1

jm C−1
kn xl xmxn

)
, (59)

where xk are the displaced coordinates (xk− µk). This skewed distribution function satisfies

〈xi〉 = 0 , 〈xixj〉 = Cij , 〈xixjxk〉 = Bijk , 〈xixjxkxl〉 = 0 , . . . (60)

as can be confirmed by direct evaluation. Let us now compute the evidence Equation (22)
for this skewed model. Since the extra terms in the parenthesis of Equation (59) are both
odd functions of x, when integrating over an even range like that of the centred top-hat
prior Equation (21), their contribution to the evidence vanish, and thus the final evidence
for the skewed model does not differ from that of the Gaussian model Equation (40). In case
the prior is off-centred with respect to the mean, e.g., in Equation (43), then the contribution
of the odd terms to the evidence would not vanish. Let us evaluate their contribution.

For a single variable (n = 1), the correctly normalized likelihood function can be
written as

f (x) =
e−x2/2σ2

σ
√

2π

(
1− B x

2σ4 +
B x3

6σ6

)
,

satisfying 〈x〉 = 0, 〈x2〉 = σ2, 〈x3〉 = B, and the Bayesian integral can be computed
exactly as

E(a, b) =
1

2a + 2b

(
Erf
[

a
σ
√

2

]
+ Erf

[
b

σ
√

2

])
− Bσ−3

6
√

2π

[(
1− a2

σ2

)
e−

a2

2σ2 −
(

1− b2

σ2

)
e−

b2

2σ2

]
1

a + b
. (61)

Note that for even (centred) priors, with b = a, the evidence reduces to Equation (24).
For an arbitrary number of variables the computation is more complicated. Let

us start with the n-th variable and, in order to compute the integral, let us define the
auxiliary function
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g(λ) =
∫ bn

−an
dxn xn

exp
[
− λ

2 xT C−1
n x

]
(2π)n/2

√
det Cn

=
exp

[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

×

× 1
λ
√

2π

(
exp

[
−λa2

n
2

det Cn−1

det Cn

]
− exp

[
−λb2

n
2

det Cn−1

det Cn

])
, (62)

such that, using Erf′[x] = 2√
π

e−x2
,

−2g′(λ = 1) =
∫ bn

−an
dxn xn

(xT C−1
n x) exp

[
− 1

2 xT C−1
n x

]
(2π)n/2

√
det Cn

=
exp

[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

×

× 1√
2π

{(
2 + a2

n
det Cn−1

det Cn

)
exp

[
− a2

n
2

det Cn−1

det Cn

]
−
(

2 + b2
n

det Cn−1

det Cn

)
exp

[
− b2

n
2

det Cn−1

det Cn

]}
. (63)

Therefore, with the use of Equation (63), the integral of the skewness-corrected distribution
function Equation (59) over the xn uncentred prior becomes

∫ bn

−an
dxn f (x) =

exp
[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

{
1
2

(
Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

])

− 1
6

Bijn C−1
ij

1√
2π

√
det Cn−1

det Cn

[(
1− a2

n
det Cn−1

det Cn

)
e−

a2
n det Cn−1

2 det Cn −
(

1− b2
n

det Cn−1

det Cn

)
e−

b2
n det Cn−1

2 det Cn

]}
. (64)

Let us define two new functions,

Ei(ai, bi) =
1
2

(
Erf

[
ai√

2

√
det Ci−1

det Ci

]
+ Erf

[
bi√

2

√
det Ci−1

det Ci

])
, (65)

Fi(ai, bi) =
1

6
√

2π

√
det Ci−1

det Ci

[(
1− a2

i
det Ci−1

det Ci

)
e
−

a2
i det Ci−1

2 det Ci −
(

1− b2
i

det Ci−1

det Ci

)
e
−

b2
i det Ci−1

2 det Ci

]
.

Integrating iteratively over xn−1, . . . , x1, we end up with the Bayesian evidence for the
third-order-corrected probability distribution function f (x),

E(a, b) =
n

∏
p=1

Ep(ap, bp)

(ap + bp)

[
1−

n

∑
k=1

Bijk C−1
ij

Fk(ak, bk)

Ek(ak, bk)

]
. (66)

Unless Bijk C−1
ij is very large, the correction to the error function is exponentially suppressed,

and we do not expect significant departures from the Gaussian case Equation (40). Note
also that if the prior is symmetrical, it is easy to see that the skewness part of the integral
vanishes, Fk(ak, bk)→ 0, as can be checked explicitly by taking bk → ak.

4.2. Kurtosis

The next correction beyond skewness is the fourth-order moment or kurtosis, given
by the Dijkl term in Equation (9). Let us ignore for the moment the third-order skewness
and write

φ(u) = exp
[

i µiui −
1
2!

Cij uiuj +
1
4!

Dijkl uiujukul

]
. (67)

By performing the same change of variables, ui = yi− i C−1
ik (xk− µk), we can now compute

the Fourier transform and obtain the properly normalized probability distribution function
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f (x) =
1

(2π)n/2
√

det Cn
exp

[
− 1

2
xT C−1

n x
](

1 +
1
8

Dijkl C−1
ij C−1

kl

−1
4

Dijkl C−1
ij C−1

km C−1
ln xmxn +

1
24

Dijkl C−1
im C−1

jn C−1
kp C−1

lq xmxnxpxq

)
. (68)

Performing the integrals, it is easy to see that this distribution satisfies

〈xixj〉 = Cij , 〈xixjxkxl〉 = Dijkl + CijCkl + CikCjl + CilCjk , . . . (69)

Note that in order for the new likelihood distribution (68) to be positive definite, it is
required that DijklC−1

ij C−1
kl < 4, and if we impose that there is only one maximum at the

centre, then it must satisfy DijklC−1
ij C−1

kl < 2. These conditions impose bounds on the
maximum possible deviation of the evidence from a that of a Gaussian.

Let us now compute the evidence Equation (22) for this kurtosis model. The extra
terms in the parenthesis of Equation (68) are both even functions of x, and we cannot ignore
them, even for centred priors.

For a single variable (n = 1), the correctly normalized likelihood function can be
written as

f (x) =
e−

x2

2σ2

σ
√

2π

(
1 +

D
8σ4 −

D x2

4σ6 +
D x4

24σ8

)
,

satisfying 〈x〉 = 0, 〈x2〉 = σ2, 〈x3〉 = 0, 〈x4〉 = D + 3σ4, etc. The Bayesian integral can be
computed exactly as

E(a, b) =
1

2a + 2b

(
Erf
[

a
σ
√

2

]
+ Erf

[
b

σ
√

2

])
+

Dσ−4

8
√

2π

(
a
σ

(
1− a2

3σ2

)
e−

a2

2σ2 +
b
σ

(
1− b2

3σ2

)
e−

b2

2σ2

)
1

a + b
. (70)

For an arbitrary number of variables, the computation is again much more complicated.
Let us start with the n-th variable and, in order to compute the first integral, let us define a
new auxiliary function

h(λ) =
∫ bn

−an
dxn

exp
[
− λ

2 xT C−1
n x

]
(2π)n/2

√
det Cn

=
exp

[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

×

× 1
2
√

λ

(
Erf

[
an
√

λ√
2

√
det Cn−1

det Cn

]
+ Erf

[
bn
√

λ√
2

√
det Cn−1

det Cn

])
, (71)

such that,

−2h′(λ = 1) =
∫ bn

−an
dxn

(xT C−1
n x) exp

[
− 1

2 xT C−1
n x

]
(2π)n/2

√
det Cn

=
exp

[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

×

×
{

1
2

(
Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

])
(72)

− 1√
2π

√
det Cn−1

det Cn

(
an exp

[
− a2

n
2

det Cn−1

det Cn

]
+ bn exp

[
− b2

n
2

det Cn−1

det Cn

])}
.
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4h′′(λ = 1) =
∫ bn

−an
dxn

(xT C−1
n x)2 exp

[
− 1

2 xT C−1
n x

]
(2π)n

√
det Cn

=
exp

[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

×

×
{

3
2

(
Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

])
(73)

− 3√
2π

√
det Cn−1

det Cn

(
an exp

[
− a2

n
2

det Cn−1

det Cn

]
+ bn exp

[
− b2

n
2

det Cn−1

det Cn

])

− a2
n√
2π

(
det Cn−1

det Cn

)3/2(
an exp

[
− a2

n
2

det Cn−1

det Cn

]
+ bn exp

[
− b2

n
2

det Cn−1

det Cn

])}
.

Therefore, with the use of Equations (72) and (73), the integral of the kurtosis-corrected
distribution function (68) over the xn prior becomes

∫ bn

−an
dxn f (x) =

exp
[
− 1

2 xT C−1
n−1x

]
(2π)(n−1)/2

√
det Cn−1

{
1
2

(
Erf

[
an√

2

√
det Cn−1

det Cn

]
+ Erf

[
bn√

2

√
det Cn−1

det Cn

])
+ (74)

+
1
8

Dijkl C−1
ij C−1

kl
1√
2π

√
det Cn−1

det Cn

[
an

(
1− a2

n
3

det Cn−1

det Cn

)
e−

a2
n det Cn−1

2 det Cn + bn

(
1− b2

n
3

det Cn−1

det Cn

)
e−

b2
n det Cn−1

2 det Cn

]}
.

We can now define a new function

Gi(ai, bi) =
1

8
√

2π

√
det Ci−1

det Ci

[
ai

(
1−

a2
i

3
det Ci−1

det Ci

)
e
−

a2
i det Ci−1

2 det Ci − bi

(
1−

b2
i

3
det Ci−1

det Ci

)
e
−

b2
i det Ci−1

2 det Ci

]
. (75)

Integrating iteratively over xn−1, . . . , x1, we end up with the Bayesian evidence for the
fourth-order-corrected probability distribution function f (x),

E(a, b) =
n

∏
p=1

Ep(ap, bp)

(ap + bp)

[
1 + Dijkl C−1

ij C−1
kl

n

∑
m=1

Gm(am, bm)

Em(am, bm)

]
. (76)

so, unless Dijkl C−1
ij C−1

kl is very large, the correction to the error function is exponentially sup-
pressed, and we do not expect significant departures from the Gaussian case, Equation (40).

In order to compare models it is customary to compute the logarithm of the evidence.
Let us assume that we are given a likelihood distribution function normalized by the
maximum likelihood, and with corrections up to the fourth order,

f (x) = Lmax exp
[
− 1

2
xT C−1

n x
](

1 +
1
8

Dijkl C−1
ij C−1

kl

)−1(
1− 1

2
Bijk C−1

ij C−1
kl xl +

1
6

Bijk C−1
il C−1

jm C−1
kn xl xmxn

+
1
8

Dijkl C−1
ij C−1

kl −
1
4

Dijkl C−1
ij C−1

km C−1
ln xmxn +

1
24

Dijkl C−1
im C−1

jn C−1
kp C−1

lq xmxnxpxq

)
. (77)

Note that it is normalized so that the maximum corresponds to the mean-centred distribu-
tion, i.e., x = 0. In this case, the evidence of the normalized distribution is given by
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E(a, b) = Lmax (2π)n/2
√

det Cn

(
1 +

1
8

Dijkl C−1
ij C−1

kl

)−1
× (78)

n

∏
p=1

Ep(ap, bp)

(ap + bp)

[
1−

n

∑
k=1

Bijk C−1
ij

Fk(ak, bk)

Ek(ak, bk)
+ Dijkl C−1

ij C−1
kl

n

∑
m=1

Gm(am, bm)

Em(am, bm)

]
.

We can then evaluate the logarithm of the evidence by

ln E = lnLmax +
n
2

ln(2π) +
1
2

ln det Cn − ln
(

1 +
1
8

Dijkl C−1
ij C−1

kl

)
−

n

∑
p=1

ln(2ap + 2bp)

+
n

∑
p=1

ln

(
Erf

[
ap√

2

√
det Cp−1

det Cp

]
+ Erf

[
bp√

2

√
det Cp−1

det Cp

])
(79)

+ ln

(
1−

n

∑
k=1

Bijk C−1
ij

Fk(ak, bk)

Ek(ak, bk)
+ Dijkl C−1

ij C−1
kl

n

∑
m=1

Gm(am, bm)

Em(am, bm)

)
.

Note that the condition DijklC−1
ij C−1

kl < 2 constrains the maximum amount that the kurtosis
corrections can contribute to the evidence.

Uncorrelated case. In the case where the likelihood distribution has no correlations
among the different variables, the exact expression for the Bayesian evidence is

ln E = lnLmax +
n
2

ln(2π) +
n

∑
p=1

ln σp −
n

∑
p=1

ln(2ap + 2bp) +
n

∑
p=1

ln

(
Erf

[
ap

σp
√

2

]
+ Erf

[
bp

σp
√

2

])
(80)

− ln
(

1 +
1
8

Diijj σ−2
i σ−2

j

)
+ ln

(
1−

n

∑
k=1

Biik σ−2
k

Fk(ak, bk)

Ek(ak, bk)
+ Diijj σ−2

i σ−2
j

n

∑
m=1

Gm(am, bm)

Em(am, bm)

)
,

where σp are the corresponding dispersions of variables xp, and the functions Ei, Fi and Gi are
the corresponding limiting functions of Equations (65) and (75) for uncorrelated matrices.

5. Model Comparison

Finally we turn to specific applications of the formalism discussed above. Initially we
will carry out some toy model tests of its performance, and then examine real cosmological
applications for which we previously obtained results by thermodynamic integration [12].

5.1. A Baby-Toy Model Comparison

We begin with a very simple two-dimensional toy model. The purpose of this section is
to illustrate the ineffectiveness of the thermodynamic integration and to give an indication
of the performance of the method we propose here. In addition, the two-dimensional model
is simple enough to allow a brute-force direct numerical integration of evidence allowing
us to check the accuracy at the same time. We use the following two forms of likelihood:

Lg(x, y) = exp
[
−2x2 − 2(y− 1)2 − xy

2

]
(81)

Lng(x, y) = exp
[
−2x2 − 2(y− 1)2 − xy

2

]
+ exp

[
−2x2 − 2y2 − 3xy

2

]
(82)

The subscripts g and ng indicate the Gaussian and non-Gaussian cases, respectively.
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Firstly, we calculate the evidence by the analytical method using Equations (56) and (80)
and covariance matrices inferred from sampling the likelihood using the vanilla Metropolis–
Hastings algorithm with fixed proposal widths. Chains ranging from a few to several
millions of samples were used. We also calculate evidence using thermodynamic algorithm
explained in ref. [12]. Again, we vary algorithm parameters to obtain evidence values
of varying accuracy. The resulting evidence as a function of the number of likelihood
evaluations is plotted in the Figure 1, together with the correct value inferred by direct
numerical integration. The number of likelihood evaluations is crucial as this is the time-
limiting step in the cosmological parameter estimation and model comparison exercises. The
results are what could have been anticipated. We note that the size of the prior does not seem
to be of crucial importance. This is comforting, given that the analytical method requires
the knowledge of the true covariance information, while we can only supply a covariance
matrix estimated from the prior-truncated likelihood. We also note that the thermodynamic
integration converges to the correct value in all cases. However, it does so after very many
likelihood evaluations; typically about a million or so even for a two-dimensional problem.
The analytical method already becomes limited by systematics by the ten-thousand samples.
For the Gaussian case, there is no systematic by construction, while the non-Gaussian case
suffers a systematic of about 0.1 in ln E. The non-Gaussian correction reduces the error by
about half and thus correctly estimates the uncertainty associated with the purely Gaussian
approximation. In the case of wide priors, the only non-Gaussian correction of appreciable
size is the ln(1 + DijklC−1

ij C−1
kl /8).

Figure 1. This figure shows the calculated evidence as a function of the number of likelihood
evaluations. Note that the horizontal axis is logarithmic. The star-centred line corresponds to the
thermodynamic integration. The cross-centred lines are the analytical methods with (upper panels)
and without (lower panels) non-Gaussian corrections applied. The horizontal dashed line is the
number obtained by the direct integration. The upper two panels correspond to Lg, while the
lower two to Lng. The left-hand side panels correspond to wide flat priors of (−7, 10) on both
parameters, while the right-hand side to the narrow priors of (−2, 3) on both parameters. The error
bars correspond to the dispersion due to the number of likelihood evaluations.
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5.2. A Toy Model Comparison

We now proceed by calculating the Bayesian evidence for simple toy models with
five and six parameters, shown in Table 1. The purpose is to compare results with those
obtained from thermodynamic integration again, but this time using a model that bears
more resemblance to a typical problem encountered in cosmology.

Table 1. The parameters used in the analytical evaluation of the toy model evidences, with five and
six parameters, respectively. The maximum likelihood of the toy models is taken (arbitrarily) to be
Lmax = 1.

Parameter Mean Prior Range Model

x1 0.022 [0.0001, 0.044] toy5, toy6
x2 0.12 [0.001, 0.3] toy5, toy6
x3 1.04 [0.8, 1.4] toy5, toy6
x4 0.1 [0.01, 0.3] toy5, toy6
x5 3.1 [2.6, 3.6] toy5, toy6
x6 0.98 [0.5, 1.5] toy6

Beginning with the five-parameter model, we first assume that it has an uncorrelated
multivariate Gaussian likelihood distribution. In this case the aim is to test the thermody-
namic integration method, which gives ln Enum

toy5 = −8.65± 0.03, while the exact expression
gives ln Eana

toy5 = −8.66. Therefore, we conclude that the thermodynamic integration method
is rather good in obtaining the correct evidence of the model. The Laplace approximation
Equation (57) also fares well for uncorrelated distributions, ln ELap

toy5 = −8.67.
We now consider a likelihood function with a correlated covariance matrix Cij, with

the same mean values and dispersions as the previous case, but with significant correlations.
The analytic formula needed, Equation (54), is no longer exact,3 and gives ln Eana

toy5c = −7.32.
For comparison thermodynamic integration gives ln Enum

toy5c = −7.28± 0.06, again in per-
fect agreement within errors. In this case the Laplace approximation fails significantly,
ln ELap

toy5c = −6.89, the reason being that the correlations chosen bring the posterior into
significant contact with the edges of the priors.

Let us now return to the uncorrelated case and include a new parameter, x6, as in
Table 1, and evaluate the different evidences that appear because of this new parameter, in
order to see the sensitivity to systematic errors in the evaluation of the Bayesian evidence
and their effects on model comparison. The numerical result is ln Enum

toy6 = −10.75± 0.03,
while the exact analytical expression gives ln Eana

toy6 = −10.74, in perfect agreement within
errors. The Laplace approximation Equation (57) again fares well for uncorrelated distribu-
tions, ln ELap

toy6 = −10.74.
When the likelihood function has large correlations, and the priors are not too large,

the naive Laplace approximation, Equation (57), fares less well than the analytical approxi-
mation, Equation (54).

5.3. A Real Model Comparison

In this subsection we will make use of the results obtained in ref. [12], where we
evaluated the evidence for 5- and 6-parameter adiabatic models, and for three 10-parameter
mixed adiabatic plus isocurvature models. The prior ranges used are given in Table 2.
The latter models give a marginally better fit to the data but require more parameters,
which is exactly the situation where model selection techniques are needed to draw robust
conclusions. In ref. [12] we used thermodynamic integration to compute the evidence and
showed that the isocurvature models were less favoured than the adiabatic ones, but only
at a mild significance level.4



Universe 2023, 9, 118 18 of 20

Table 2. The parameters used in the models; see ref. [12] for nomenclature and other details. For the
AD-HZ model ns was fixed to 1 and niso, δcor, α and β were fixed to 0. In the AD-ns model, ns also
varies. Every isocurvature model holds the same priors for the whole set of parameters.

Parameter Mean Prior Range Model

ωb 0.022 [0.018, 0.032] AD-HZ,AD-ns,ISO
ωdm 0.12 [0.04, 0.16] AD-HZ,AD-ns,ISO

θ 1.04 [0.98, 1.10] AD-HZ,AD-ns,ISO
τ 0.17 [0, 0.5] AD-HZ,AD-ns,ISO

ln[1010Rrad] 3.1 [2.6, 4.2] AD-HZ,AD-ns,ISO
ns 1.0 [0.8, 1.2] AD-ns,ISO

niso 1.5 [0, 3] ISO
δcor 1.5 [−0.14, 0.4] ISO√

α 0 [−1, 1] ISO
β 0 [−1, 1] ISO

Beginning with the simplest adiabatic model, which uses the Harrison–Zel’dovich
spectrum, we have used the analytical formulae above, Equation (54), together with the co-
variance matrix provided by the cosmoMC programme [21], and obtained ln Eana

ad = −854.07,
while the thermodynamic integration gave ln Enum

ad = −854.1± 0.1 [12]. The agreement is
excellent; this is because the distribution function for the adiabatic model is rather well-
approximated by a Gaussian, and the priors are rather large, so the formula Equation (54)
is very close to that obtained in the Laplace approximation, ln ELap

ad = −854.08.
However the analytic method fares less well for the adiabatic model with varying

ns, with both the analytical and Laplace methods giving ln EAD−ns = −853.4, while the
numerical method gives the smaller value −854.1, a discrepancy of near unity.

Turning now to the isocurvature cases, we found an extremely good result for the CDI
model, gaining from Equation (54) the value ln Eana

cdi = −855.08, while the thermodynamic
integration gives ln Enum

cdi = −855.1± 0.1. This is surprising, given the relatively large
non-Gaussianities for at least three variables: niso, β and δcor, whose priors are not centred
with respect to the mean. However the NID case shows much less agreement, with a
discrepancy of 0.6. This suggests that the closeness of the CDI comparison is to some extent
a statistical fluke, with the underlying method less accurate.

A summary of the different models can be found in Table 3.

Table 3. The different models, both toy and real, with their maximum likelihoods and evidences.

Model lnLmax ln Enum ln Eana ln ELap

toy5 0 −8.65± 0.03 −8.66 −8.67
toy5c 0 −7.28± 0.06 −7.32 −6.89
toy6 0 −10.75± 0.03 −10.74 −10.74
toy6c 0 −9.73± 0.06 −9.71 −9.63

AD −840.78 −854.1± 0.1 −854.1 −854.1
AD-ns −838.50 −854.1± 0.1 −853.4 −853.4
CDI −838.05 −855.1± 0.2 −855.1 −854.5
NID −836.60 −855.1± 0.2 −854.5 −854.5
NIV −842.53 −855.1± 0.3 −854.9 −854.9

5.4. Savage–Dickey Method

Another numerical method for evidence calculation is the Savage–Dickey method, first
described in ref. [22] and recently used in ref. [20]. This technique allows one to calculate the
evidence ratio of two models from a simple and quick analysis of the Markov chains used for
parameter estimation, provided that the models are nested; i.e., that one of them is included
in the parameter space of the other. For instance, the AD model is nested within the AD-ns
model, and the AD and AD-ns models are both nested within the CDI, NID and NIV ones.
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In the context of Markov chains, the Savage–Dickey method is essentially a measure of how
much time the sampler spends in the nested model, weighted by the respective volumes of the
two models. When the outer model has extra parameters, this method relies on approximating
the nested model as a model with negligibly narrow priors in directions of extra parameters.
We note, however, that when many extra parameters are present, this method must fail for
reasons similar to why those with grid-based parameter estimation approaches fail with
models with many parameters. The MCMC parameter estimation simply does not have high
enough dynamic range to probe the two models given the large prior volume ratio.

The AD and AD-ns models differ by one parameter. Using the same AD+ns samples
as for the analytical method (i.e., the samples from which we extracted the covariance
matrix), we obtained ln(EAD/EAD+ns) = 0.03. The result from the precise thermodynamic
integration, ln(EAD/EAD−ns) = 0± 0.1 is in excellent agreement. The AD-ns and CDI (or
NID, NIV) models differ by four parameters. With most simple choices of parametrization
(including in particular the isocurvature and cross-correlation tilts), the AD-ns is not a point,
but a hyper-surface within the parameter space of the isocurvature models (i.e., α = 0
and the other three parameters act as dummy, unconstrained, parameters which do not
affect the evidence). In these cases, the evidence ratios given by the Savage–Dickey method
do not converge as the priors of the extra parameters are tightened up around the nested
model, although they match thermodynamically determined values to within a unit of ln E.

6. Discussion and Conclusions

We have developed an analytical formalism for computing the Bayesian evidence in
the case of an arbitrary likelihood distribution with a hierarchy of non-Gaussian corrections,
and with arbitrary top-hat priors, centred or uncentred. This analysis can be of great help for
the problem of model comparison in the present context of cosmology where observational
data is still unable to rule out most extensions of the standard model based on the ΛCDM
inflationary paradigm.

As an application of the exact and approximate formulae obtained for the Bayesian
evidence of a model with approximately Gaussian likelihood distributions, we have com-
pared the value predicted analytically with that computed with a time-consuming algorithm
based on the thermodynamic integration approach. The values analytically obtained agree
surprisingly well with those obtained numerically. While one can estimate the magnitude of
the higher-order corrections for the analytical formulae, it is very difficult to estimate the
systematic effects of the numerical approach. Thus, with this analytical method we can test
for systematics in the thermodynamic integration approach. So far, the values obtained agree,
so it seems that the numerical approach is a good tool for estimating the evidence. However,
it takes considerable effort and machine time to do the correct evaluation, and therefore we
propose the use of the analytical estimate, whose corrections are well under control, in the
sense that one can compute the next order corrections and show that they are small.
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Notes
1 An extension to Gaussian priors should be feasible, but not one to arbitrary priors.
2 Note that, for scalar quantities, Einstein notation for the sum over free indices is assumed.
3 One could rotate the parameter basis to remove the correlations, but then the priors would not be top-hats.
4 Recently, Trotta [20] used a different technique to analyse a restricted class of isocurvature model featuring just one extra

parameter, and found it highly disfavoured. The different conclusion is primarily due to the very different prior he chose on
the isocurvature amplitude, such that almost all the models under the prior are dominated by isocurvature models and in poor
agreement with the data.
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