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Abstract: The concept of polaron quasiparticles was first introduced in the pioneering papers by
Landau and Feynman in the 1930s and 1940s. It describes the phenomenon of an external particle
producing a bound state in an embedded medium. Since then, the study of polaron quasiparticles
has been an active area of research in condensed matter physics, with a wide range of applications in
magnetic phenomena and lattice deformation properties. In this paper, we provide a comprehensive
review of the polaron quasiparticle phenomenon, including its historical origins, theoretical devel-
opments, and current research. We also study the various applications of polaron quasiparticles in
condensed matter physics, including in magnetic phenomena and lattice deformation properties. The
review concludes with an outlook on future directions of research in this field. In particular, we study
the motion of external embedded particles in a quasi-two-dimensional Bose–Einstein condensate
confined by the quantum harmonic oscillator. We found that the dynamics of attracting particles with
static Bose–Einstein condensate exhibit circular and precessional elliptic trajectories due to centripetal
force. Polaron-forming embedded particles in the condensate lead to a strongly nonlinear trajectory
of the polaron and dynamics of condensate depending on the initial parameters of the condensate
and polaron.

Keywords: polarons; Bose–Einstein condensate; Gross–Pitaevskii equation

1. Introduction

The concept of polaron quasiparticles was first introduced in the pioneering papers
by Landau [1,2] and Feynman [3] in the 1930s and 1940s. It describes the phenomenon of
an external particle producing a bound state in an embedded medium. This is a nonlin-
ear physics phenomenon and is considered one of the most interesting and applicable in
condensed matter theories. The polaron quasiparticles have a wide range of applications
in condensed matter physics, including magnetic phenomena [4] and lattice deformation
properties [5–7]. We first provide a comprehensive review of the polaron quasiparticle phe-
nomenon, including its historical origins, theoretical developments, and current research.

The theoretical developments of polaron quasiparticles have been a subject of active
research in recent years. The first theoretical description of polaron quasiparticles was given
by Landau and Feynman, who introduced the concept of an external particle producing a
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bound state in an embedded medium. Since then, many researchers have contributed to
the development of polaron quasiparticles theory. One of the most important contributions
has been the development of the Fröhlich Hamiltonian, which describes the interaction
between the external particle and the medium. This Hamiltonian has been used to study the
properties of polaron quasiparticles, including the polaron effective mass and the polaron
binding energy. Polaron quasiparticles have a wide range of applications in condensed
matter physics. One of the most important applications is in magnetic phenomena, where
polaron quasiparticles can be used to describe the behavior of electrons in magnetic mate-
rials. Another important application is in lattice deformation properties, where polaron
quasiparticles can be used to describe the behavior of electrons in solids. In recent years,
there has been a growing interest in the study of polaron quasiparticles in low-dimensional
systems, including in graphene and other two-dimensional materials.

The buried particle is forced to interact with a comparatively soft medium (with a
strong dependence on external forces) in order to generate a polaron quasiparticle. The for-
mation of polaron states can be realized in a quantum soft medium as Bose–Einstein
condensate (BEC). A massive bound state can be generated due to a change in density by
effect of an external particle embedded in the condensate [8–11]. The induced modification
can either be positive or negative depending on the nature of force (attraction or repulsion)
between the external particle and condensate. Different regimes of the coupled motion of
the condensate and the produced polaron can be induced by this variation. Apparently,
the dynamics as a whole is significally changed by the shift in the condensate’s form. The
Bose–Einstein condensate may be experimentally produced in a variety of dimensionalities
by optical confinement [12–15] which indicates the importance of the condensate’s dimen-
sion for the BEC polarons. The polaron states [16,17] can be produced in cold atomic Fermi
gases [18,19]. Attractive and repulsive Fermi polarons are experimentally extracted in two
dimensions [20]. The theory and nature of the polarons in the BEC are similar to some
versions of the quantum field theory (see, e.g., [21–23]). The study of several regimes of
the polaron properties [24–28] is based on the Gross–Pitaevskii equation (GPE) [8] for the
Bose–Einstein condensate. The reasonable relation between the experimental observation
of the dynamical process of the polaron and the condensate is found in the interesting
article [29].

Polaron dynamics in one-dimensional BEC are strongly confined by two directions
and demonstrate strong nonlinear oscillations along the coordinate [30] and unlike it, the
two-dimensional system opens wide avenues for polaron dynamics [20].

In this study, we focus on the dynamics of an externally embedded particle in a two-
dimensional BEC confined by parabolic potential, where interaction between particle and
condensate is attractive rather than repulsive [31]. Additionally, we only consider non-self-
interacting BEC to avoid the strong effect of repulsive interatomic interaction or collapse of
condensate caused by attractive interatomic interaction [32–34]. We concentrate on the
coupled nonlinear mechanics of the polaron and BEC confined in a parabolic potential, as
determined by the GPE. Instead of considering the specific microscopic properties of the
polaron, we focus on the coupled nonlinear mechanics of the polaron and BEC defined by
the GPE.

Here, we assume that the embedded particle is significantly heavier with compare
to the condensate particles, allowing us to view the embedded particle as a classical-like
particle and the condensate as a quantum soft matter for the embedded particle, which
can be characterized by a system of GPE and classical Newton equations [35,36]. This
assumption enables us to analyze the dynamics of the system and understand the behavior
of the particle and the condensate. Our main focus will be on particle dynamics with the
static density profile and polarons formation with a nonuniform density of the condensate.
Moreover, we assume that an embedded particle has an initial velocity v0 perpendicular to
the force that attracts the particle to the centre of mass of the condensate. The schematic
form of the initial state of the system is presented in Figure 1. If the interaction between
condensate and particle is considerably weak, then the condensate becomes a static potential
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for external particles leading to circular and precessional trajectories. If the interaction is
relatively strong, such that the particle can modify the shape and shift the center of mass
of the condensate from the origin of parabolic potential, then the condensate becomes
a time-dependent potential for polaron-forming particles. As a result, the condensate
deformation leads to highly nontrivial coupled dynamics of the particle and condensate.
To interpret the dynamical properties, we will demonstrate the 2D trajectory of particles,
the nontrivial interplay of the condensate position, angular momentum and forces for this
strongly nonlinear system.

V

Figure 1. The schematic form of a model in two-dimensional (a) and one-dimensional cross-section
(b) spaces. In panel (a) v0 is the initial velocity of embedded particle M. In panel (b) ψ(r, t) is
characterising the BEC density profile, V is an attractive potential of embedded particles with mass
M and the particle is located in some distance from the center of mass of the condensate. Red
dashed lines present parabolic potential and static condensate profile, blue line presents a deformed
condensate density profile for polaron-forming particles.

2. Model and Equations of the System

We consider a non-self-interacting quasi-two-dimensional BEC in a parabolic potential
to model the system. The BEC is described by the Gross–Pitaevskii equation, which
describes the time evolution of the condensate wavefunction. The embedded particle is
treated as a point particle and its dynamics are described by Newton’s equations of motion.
The interaction between the BEC and the embedded particle is modelled by a potential that
depends on the distance between the two.

In what follows, we set h̄ ≡ ω ≡ m ≡ 1, with ω being frequency of parabolic potential
and m being the condensate particle mass. We assume that the condensate wave function
ψ(r, t) (r = (x, y)) is normalized by 2π

∫ ∞
0 |ψ(r, t)|2rdr = N, with N � 1 being the total

number of atomic particles in the condensate. Below we rescale the wave function by a
factor 1/

√
N and use the GPE in the form:

i
∂

∂t
ψ(r, t) =

(
−1

2
∇2 +

r2

2

)
ψ(r, t) + V(r−R(t))ψ(r, t). (1)

Here V(r−R(t)) = V0 exp
(
−(r−R(t))2/2δ2) describes the time-dependent potential

of the particle locally interacting with condensate, where R(t) = (X(t), Y(t)) determines
trajectory of particle in plane (x, y). The amplitude is represented by a negative value,
V0 < 0, because the particle has an attractive interaction with the condensate, and the
width δ� 1 is much less than the condensate extension.

Since the mass of the condensate particle is equal to one then the total mass of the
condensate is equal to a number of condensate particles N. We take into consideration an
embedded particle with a mass equal to the mass of the condensate, that is M = 1 in the
chosen units. It indicates that the embedded particle is substantially heavier than the atoms
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forming the condensate, therefore the trajectory of the embedded particle is defined by the
classical Newton’s equation:

MR̈(t) = F(R(t)) , (2)

where F(R(t)) is the time-dependent force between condensate and external particle and it
is defined as Ref. [37]

F(R(t)) ≡ −∂R(t)

∫ ∞

−∞
V(r−R(t))|ψ(r, t)|2d2r . (3)

In order to characterize and describe all dynamics of the polaron-forming particles
and the condensate, we use the system of Equations (1)–(3) [35,36]. From Equation (3) one
can easily notice that the dynamics of polaron-forming embedded particles entirely depend
on the dynamics of the wave function of the condensate, ψ(r, t). The center of mass of the
condensate is an important dynamic parameter which is determined by the mean values of
(x, y) as:

〈x(t)〉 =
∫ ∞

−∞
x|ψ(r, t)|2d2r,

〈y(t)〉 =
∫ ∞

−∞
y|ψ(r, t)|2d2r.

(4)

Thus, the center of mass of the condensate is located at the point with coordinates
〈r(t)〉 = (〈x(t)〉, 〈y(t)〉).

For qualitative analysis, one can find the interaction energy between the particle and
the condensate in a very narrow potential of the embedded particles (δ� 1) compared to
the expansion of the condensate as

V(R(t)) = V0

∫ ∞

−∞
|ψ(r, t)|2 exp

(
− (r−R(t))2

2δ2

)
d2r ≈ 2πṼ|ψ(R(t))|2, (5)

where Ṽ ≡ V0δ2. In this approximation the force Equation (3) is determined by the gradient
of (5) as

F(R(t)) = −∂V(R(t))
∂R(t)

≡ −2πṼ
∂|ψ(R(t))|2

∂R(t)
. (6)

A solution of the GPE (Equation (1)), which describes the dynamics of the BEC,
can be represented in terms of the eigenfunctions of the parabolic potential, given by
Equation (A1). These eigenfunctions provide a complete set of basis functions that can be
used to express the wave function of the BEC, ψ(r, t), in terms of the eigenfunctions of the
parabolic potential.

To demonstrate the system parameters and study the dynamics of the polaron-forming
particle in the BEC, we solve the system of equations Equations (A3) and (A4) numerically.
The set of initial conditions for the system, {Ak′1,k2

(0)}, is determined by minimizing the
energy (Equation (A5)) for a given initial position R(0) of the embedded particle. This
approach allows us to study the behavior of the polaron-forming particle in the BEC under
a wide range of conditions and to explore how the confinement of the BEC by the parabolic
potential affects its dynamics.

3. Particle Dynamics in a Static BEC

To understand the dynamics of external particles in the condensate, we begin by
considering the condition of a static BEC. This means that the condensate is in a state of
equilibrium and is not undergoing any time-dependent changes. By starting with this
condition, we can better understand the behavior of the external particles in the presence of
the condensate, and how their dynamics change as the condensate is perturbed or excited.
This approach allows us to isolate the effect of the condensate on the external particles, and
to study their behavior in a controlled and well-defined system.
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We assume that the interaction between condensate and particle is weak (Ṽ � 1) and
the condensate is always at rest [38]. This assumption leads us to neglect the last term of
the GPE (1). Hence the energy of condensate (A5) occupies the lowest level of the harmonic
oscillator with n = 0.

Consequently, the wave function (A2) of the condensate takes the following form:

ψ(r, t) =
1√
π

exp
(
− r2

2a2

)
exp (−iµt) , (7)

where a =
√

h̄/mω ≡ 1 is the condensate extension, µ is the chemical potential of the
condensate. As a result, the dynamics of the particle will be governed only by the solution of
the Equation (2). By using the interaction energy approximation (5) with wave function (7)
we rewrite Equation (2) in the form

MR̈(t) = −2πṼ
∂|ψ(R(t))|2

∂R(t)
≡ 4ṼR(t) exp

(
−R2(t)

)
, (8)

where Ṙ(t) = v(t) ≡ (vx(t), vy(t)) stands for the velocity of the particle. The solution of
the non-linear Equation (8) presents the complete picture of the particle trajectory in a
static BEC.

Since the potential Equation (5) describes attraction between the particle and conden-
sate, Equation (6) can provide the centripetal force for the particle. From this, it follows that
for any initial velocity v(0) perpendicular to the vector R(0) the equation of the circular
trajectory of the particle is defined by

M
v2

0
R0

= F(R0), (9)

where v0 ≡ |v(0)| and R0 ≡ |R(0)|. Actually, due to the circular trajectory we have
v(t) ≡ v0 = const and R(t) ≡ R0 = const. Now by substituting Equations (6) and (7) to
the Equation (9) we derive an equation

Mv2
0 = 4|Ṽ|R2

0 exp
(
−R2

0

)
. (10)

As a result, Equation (10) determines the circular trajectory of the particle in a
static BEC. Now we assume that the given initial velocity, v(0), and position, R(0),
don’t satisfy Equation (10). In this case, if Mv2

0 < 4|Ṽ|R2
0 exp

(
−R2

0
)
, then the trajec-

tory of the particle demonstrates quasi-apsidal-precession inside the circular orbit or if
Mv2

0 > 4|Ṽ|R2
0 exp

(
−R2

0
)
, then the trajectory of the particle demonstrates quasi-apsidal-

precession outside the circular orbit. Figure 2 is presenting three particle trajectories:
circular, elliptic precession outside the circle, and elliptic precession inside the circle of
which each corresponds to a different initial velocity. In Figure 2a one can see that the
red dashed trajectory makes more than full rotation at one circular rotation time t0 of
the particle even though the initial velocity decreased to 0.5v0. Correspondingly, blue
dotted trajectory cannot make a full rotation even though its velocity is increased to 1.1v0.
Furthermore, from Equation (8) it follows that the velocity of particle v(0) with circular
trajectory strongly depends on interaction parameter Ṽ.

When the value of the interaction parameter, denoted as Ṽ, is increased, it can have
the effect of compensating for the precession trajectory of a particle. In other words, if
the precession of the particle’s trajectory is an undesired effect, increasing the value of Ṽ
can help to counterbalance it. This can be useful in situations where the precession of the
particle’s trajectory is causing problems or disrupting the desired behavior. By adjusting
the value of Ṽ, it is possible to exert more control over the motion of the particle and bring
it closer to the desired trajectory.
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From these results, we conclude that the condensate density distribution can change
the trajectory of particles. On the right panel of Figure 2, we present long-time trajectories
that correspond to the return time of the particle at the initial position. Figure 2 is plotted
from the numerical solution of the system of Equations (A3) and (A4).

When a particle has a relatively high velocity v(0) at its initial point, it can fly out
of the condensate. This is because the extension or size of the condensate is limited and
cannot accommodate the high velocity of the particle. In other words, the condensate may
not be able to contain the particle as it moves too quickly and exceeds the boundaries of
the condensate. This is an important consideration to keep in mind when studying the
behavior of particles within a condensate.

(a)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X (t)

Y
(t
)

(b)

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X (t)

Y
(t
)

Figure 2. Plot of an embedded particle trajectory in a plane (x, y) for a static BEC. Initial parameters
given by M = 1, R(0) = (1, 0), Ṽ = −10−2. The lines correspond to different initial velocities given
as v(0) = (0, 0.5v0)—red dashed, v(0) = (0, v0)—black solid and v(0) = (0, 1.1v0) -blue dotted.
Here, v0 = 2

(
|Ṽ|R2

0 exp
(
−R2

0
))1/2 ≈ 0.121 is a circular orbit velocity, and a rotation period of a

particle with a circular orbit is t0 = 2πR0/v0 ≈ 51.8. In plot (a) the trajectories correspond to the
time t0 and in plot (b) the trajectories correspond to the time t f when the particle return to the initial
position (blue point) R(t f ) ≈ R(0).

4. Polaron-Forming Particle and Condensate Dynamics

Here, we focus on the study of a specific type of external particle, known as a polaron-
forming particle, in a BEC confined by a parabolic potential. A polaron-forming particle
is a type of quasiparticle that forms when an external particle interacts with a medium
in a nonlinear manner, creating a bound state. In this case, the medium is a BEC, and
the external particle is the polaron-forming particle. The parabolic potential is used to
confine the BEC, which allows for better control and manipulation of the system. By
studying the behavior of the polaron-forming particle in this specific type of system, we
can gain a deeper understanding of how polaron quasiparticles form and interact with
their surrounding medium. Additionally, we can explore how the confinement of the BEC
by parabolic potential modifies the properties of the polaron-forming particle.

We assume that initially an embedded particle in some coordinate leads to the defor-
mation of density and displacement of the center of mass of the condensate. This static
state of condensate can be obtained by increasing the interaction parameter between the
particle and condensate. In a Figure 3 presented a ground state of quasi-two-dimensional
condensate numerically obtained by minimization of the energy (A5) [39]. In the figure,
black and grey points are the initial position of the embedded particle and condensate
center of mass, correspondingly. From the figure, one can see that, the value of interaction
parameter Ṽ = −0.1 is already enough to provide deformed nonuniform condensate
density with a considerable displacement of the center of mass.
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The trajectory of a rotating particle is heavily influenced by the various dynamical
parameters that define the condensate. These dynamical parameters can include things
such as the temperature, density, and overall structural characteristics of the condensate.
They can also include the properties of the particle itself, such as its mass, charge, and
velocity. The trajectory of the rotating particle is determined by the interplay between these
different parameters, which can lead to complex and varied behaviors. As these parameters
change, the trajectory of the particle will also change, and it can have a significant impact
on the overall dynamics of the system.

It is important to take into account the influence of these dynamical parameters when
trying to understand and predict the behavior of a rotating particle within a condensate.
As these parameters are precisely controlled, the behavior of the particle can be studied
in a controlled manner. In summary, the trajectory of a rotating particle is closely linked
to the dynamical parameters of the condensate. These parameters play a crucial role in
determining the particle’s motion and understanding how they interact is essential to gain
insight into the system.

0

0.2

0.4

0.6

0.8

1.0

Figure 3. Ground state deformation of two-dimensional BEC density for initial parameters: M = 1,
R(0) = (1, 0), Ṽ = −10−1. Here the condensate center of mass is displaced at point (〈x(0)〉, 〈y(0)〉) ≈
(0.184, 0) that fixed with gray point in the plot. The black point corresponds to the initial position of
the polaron.

To demonstrate the effect of the polaron, besides its trajectory, we consider a projection
of parallel and perpendicular unit vectors to interaction force (3) defined by

F‖(t) = F(R(t)) · n‖(t), F⊥(t) = F(R(t))× n‖(t). (11)

Here “·” - scalar and “×” - cross product of vectors, n‖ = R(t)/R(t). Moreover, we
consider the angular momentum of the rotating polaron defined by

Lz(t) = M|R(t)× v(t)|, (12)

From Equations (11) and (12) we have following relation with the polaron formation:

if F⊥(t) = 0 and Lz = const↔ no polaron,

if F⊥(t) 6= 0 and Lz 6= const↔ polaron.
(13)

From Equation (9) it follows that, for circular trajectory of particle F‖(t) = const,
Lz(t) = const and F⊥(t) = 0. Note that the total angular momentum of the system (BEC
together with embedded particle) is conserved.

Figure 4 demonstrates the trajectory of the polaron, center of mass of the condensate
Initial velocities of polaron v0 defined by Equation (10) for corresponding interaction pa-
rameter Ṽ = −0.1 that has to provide circular trajectory without polaron effect. Comparing
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the Figure 4a,c with black solid and red dashed lines of Figure 2b correspondingly, we see
the polaronic effect on the trajectories. In fact, these perturbations of polaron trajectories
strongly being interconnected with the irregular dynamics of the center of mass of the
condensate in Figure 4b,d. These interconnected nonuniform dynamics between the center
of mass of condensate and polaron arise from the following causes:

(i), due to the polaron formation, the center of mass of ground state condensate is
displaced at 〈r(0)〉 that shown with the green point in Figures 3 and 4b,c;

(ii), when the polaron starts motion with a given initial velocity, the condensate center
of mass follows the polaron due to attractive interaction. It follows that the center of mass
becomes a function of the state of the polaron as 〈r(R(t))〉. On the other hand 〈r(R(t))〉 is
the origin of the centripetal force (3) of R(t);

(iii), the parabolic potential confining the condensate induces an additional centripetal
force for 〈r(R(t))〉 defined by

Fc(t) = −
1
2

∂〈r(R(t))〉

∫ ∞

−∞
r2|ψ(r− 〈r(R(t))〉, t)|2d2r = −〈r(R(t))〉, (14)

where it is assumed that ψ(r−〈r(R(t))〉, t) is approximate ground state for polaron position
〈r(R(t))〉. As a result, the polaron velocity vt cannot resist the non-linearity between the
centripetal forces (14) attracting the condensate to the origin of the coordinate and (3)
attracting the polaron to the center of mass of the condensate. Eventually there arise strong
irregularities to the trajectories, presented in Figure 4a,b. Moreover, decreasing initial
velocity v0 by factor 0.5 increases these irregular dynamics that correspond to Figure 4c,d.
In Figure 4 red points present the final position of the particle and center of mass of the
condensate. Figure 5a,b is a plot of parameters (11) and (12) that compare the cases of the
static BEC with particle and displaced condensate with polaron. From the plots, it follows
that polaron formation leads to strongly nonlinear oscillation of forces (11) and angular
momentum (12). Furthermore, comparing to Figure 5a,b, one can see that decreasing of
initial velocity v0 increases the intensity of nonlinearity. Furthermore, Figure 5 completely
proves the conditions (13).

Since Equation (8) is correct only for static condensate, the trajectory of the polaron and
center of mass of the condensate cannot be in an equilibrium state. Figure 4 demonstrates
the nonuniform trajectory of the particle and irregular center of mass of the condensate
due to condensate dynamics caused by the polaron effect.

In order to determine the quasi-equilibrium dynamics of the condensate and polaron,
we assume that the approximate function of the ground state for the system is represented
by ψ(r− 〈r(0)〉, 0). By using this assumption, we can calculate the new centripetal force
experienced by the polaron with an origin located at 〈r(0)〉 and from Equation (9) we derive

M
v2

0
R0

= F(R0 − 〈r0〉) ≈ F(R0)− 〈r0〉
∂F(R0)

∂R0
. (15)

The Equation (15) determines a small correction for initial velocity v(0) to find quasi-
equilibrium dynamics between polaron and condensate, which is presented in Figure 6.
From Figure 6a,b, one can see the trajectories of polaron and center of mass of the condensate
presenting regular precession providing inner and outer circles. The distance between the
inner and outer circles of Figure 6a is of the order of 〈r0〉. One of the important dynamic
parameters of the BEC is a width [40] defined by

w(t) =
∫ ∞

−∞
(r− 〈r(t)〉)2|ψ(r, t)|2d2r. (16)

Comparing all dynamic parameters of Figure 6c and the condensate width (d) one can
conclude all parameters oscillate with the same frequency on average that corresponds to
the precession frequency of 〈r(t)〉. The small irregular oscillations observed in the plots (c)
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are caused by the deformation in the condensate density, which can be characterized by
analyzing the condensate width plot (d).

All demonstrated figures are given from the numerical solution of a system of
Equations (A3) and (A4).
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Figure 4. Plots of the polaron trajectories (a,c) and center of mass of the condensate (b,d) in a
plane (x, y). Initial parameters are given in the caption of Figure 3. The plots (a,b) correspond to
v(0) = (0, v0) and (c,d) correspond to v(0) = (0, 0.5v0) initial velocities. Corresponding circular orbit

velocity for polaron is v0 =
(
4|Ṽ|R2

0 exp
(
−R2

0
))1/2 ≈ 0.384. Plot times for (a,b) is t f = 133 and for

(c,d) is t f = 187.7 which is taken thus the R(t f )—red point becomes close to R(0)—initial blue point.
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Figure 5. Plots of the parameters defined by Equations (6) and (12) for the initial velocities
v(0) = (0, v0) (a) and v(0) = (0, 0.5v0) (b), correspondingly. All initial parameters are given in
the caption of Figure 3.
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Figure 6. Plots of a polaron trajectory (a), the center of mass of the condensate (b), parameters (c)
defined by Equations (11) and (12) and normalized condensate width (d). Here initial velocity of the
polaron is defined by Equation (15) as v(0) = (0, 1.1v0). All other initial parameters are the same
with ground state Figure 3.

5. Conclusions

In this paper, we have provided a comprehensive review of the polaron quasiparti-
cle phenomenon, including its historical origins, theoretical developments, and current
research. We also discussed the various applications of polaron quasiparticles in condensed
matter physics, including in magnetic phenomena and lattice deformation properties.
The polaron quasiparticles are considered one of the most interesting and applicable
in condensed matter theories, and the study of polaron quasiparticles will continue to
be intriguing.

We studied the nonlinear dynamics of the embedded particle in a two-dimensional
BEC confined by parabolic potential. We considered particle dynamics in a static BEC
and polaron dynamics in a deformed density of the BEC. We have shown that in the case
of weak interaction of the condensate with the particle, the condensate becomes a static
potential for the particle, leading to circular and quasi-periodic trajectories of the particle.

To study the behavior of the BEC and the embedded particle, we performed numerical
simulations of the system. We considered different initial conditions for the BEC and
the embedded particle and studied the effects of the interaction on the BEC. We also
investigated the role of the parabolic potential on the dynamics of the system. Our results
show that the BEC and the embedded particle can exhibit a range of behaviors depending
on the initial conditions and the strength of the interaction. In particular, we found that
the parabolic potential can greatly affect the dynamics of the system and can lead to the
formation of bound states between the BEC and the embedded particle.

If the interaction is relatively strong that can modify the density distribution and shift
the center of mass of the condensate from the origin of parabolic potential, then condensate
becomes a time-dependent potential for polaron-forming particles. As a result, a shift of the
center of mass of the condensate produces a small correction to the particle velocity and the
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non-static center of mass leads to highly nontrivial coupled dynamics of the particle and
condensate. Deformation of condensate density leads to the non-conservation of angular
momentum of the polaron.

We have studied the interaction of a non-self-interacting quasi-two-dimensional BEC
in a parabolic potential with an externally embedded particle. We have analyzed the
behavior of the BEC and the embedded particle under different conditions and studied
the effects of the interaction on the BEC. We also investigated the role of the parabolic
potential on the dynamics of the system. Our results have important implications for the
understanding of BECs and the behavior of particles embedded in them. In particular, our
results suggest that the parabolic potential can greatly affect the dynamics of the system
and can lead to the formation of bound states between the BEC and the embedded particle.
Future work could include the study of the system with different types of interactions,
different potentials, or in different dimensions.
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Appendix A. Expansion in the Harmonic Oscillator Basis

In one-dimensional systems eigenfunctions of the parabolic potential is defined by

ψk(z) =
Hk(z)

π1/4(2kk!)1/2 exp
(
− z2

2

)
, (A1)

with Hk(x) being the corresponding Hermite polynomial [30]. This implies the expansion
of the two-dimensional BEC wave function in the truncated basis 1, which is defined
as follows:

ψ(x, y, t) =
n

∑
k1=0

k1

∑
k2=0

Ak1−k2,k2(t)ψk1−k2(x)ψk2(y), (A2)

where n + 1 (n = 0, 1, 2, ...) determine energy levels of the parabolic potential in the plane
(x, y), that have relation with indexes are n = k1 + k2. In Equation (A2) the total number of
eigenfunctions is defined by N = ∑n+1

i=1 i and the time-dependent coefficients normalized

by ∑n
k1=0 ∑k1

k2=0

∣∣Ak1−k2,k2(t)
∣∣2 = 1. Below for simplicity we omit explicit t−dependencies

and introduce the notations k′1 ≡ k1 − k2, ∑{k1,k2} ≡ ∑n
k1=0 ∑k1

k2=0.
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The time-dependent coefficients of wave function Equation (A2) one can find by inte-
grating Equation (1)’s overall coordinate by multiplying both sides with a two-dimensional
basis of the harmonic oscillator eigenstates as:

i
∂Ak′1,k2

∂t
= Ak′1,k2

(k1 + 1)+

+ ∑
{k3,k4}

Ak′3,k4

∫ ∞

−∞
ψk′1

(x)ψk2(y)V(x− X(t), y−Y(t))ψk′3
(x)ψk4(y)dxdy,

(A3)

where k′3 = k3 − k4.
In the two-dimensional system a velocity is a vector (vx, vy), that components are

determined by vx(t) ≡ dX(t)/dt and vy(t) ≡ dY(t)/dt. Therefore Equation (2) can be
represented in a system of equations

M
dvx(t)

dt
=

− ∑
{k1,k2}

∑
{k3,k4}

A∗k′1,k2
Ak′3,k4

∂X(t)

∫ ∞

−∞
ψk′1,k2

(x)V(x− X(t), y−Y(t))ψk′3,k4
(x)dxdy,

M
dvy(t)

dt
=

− ∑
{k1,k2}

∑
{k3,k4}

A∗k′1,k2
Ak′3,k4

∂Y(t)

∫ ∞

−∞
ψk′1,k2

(x)V(x− X(t), y−Y(t))ψk′3,k4
(x)dxdy.

(A4)

Here “*” is a conjugate of complex numbers. As a result, a closed system of N + 4
first-order nonlinear differential equations is obtained.

The energy of the condensate interacting with the particle has the form:

EC = ∑
{k′1,k2}

∣∣∣Ak′1,k2

∣∣∣2(k1 + 1)

+ ∑
{k1,k2}

∑
{k3,k4}

A∗k′1,k2
Ak′3,k4

∫ ∞

−∞
ψk′1,k2

(x)V(x− X(t), y−Y(t))ψk′3,k4
(x)dxdy,

(A5)

and the total energy E = EC + M
(

v2
x(t) + v2

y(t)
)

/2 is conserved.
The force interaction between the condensate ground state and parabolic potential is

defined by

Fc(t) = −
1
2

∂〈r(t)〉

∫ ∞

−∞
r2|ψ(r− 〈r(t)〉, t)|2d2r

= −1
2

∂〈r(t)〉

∫ ∞

−∞
(r′ + 〈r(t)〉)2|ψ(r′, t)|2d2r′

= −
∫ ∞

−∞
(r′ + 〈r(t)〉)|ψ(r′, t)|2d2r′ = −〈r(t)〉.

(A6)

Note
1 The truncated basis is considered as sufficient if increasing its size does not lead to the change in the numerically calculated

results. For the systems considered here, sufficient basis contains N = 21 states and increasing it to 37 states produces no visible
changes in the results obtained.
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