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Abstract: In this paper, we investigate the thermal stability and thermodynamic geometries of non-
rotating/rotating charged black holes. For these black holes, we apply barrow entropy to determine
the physical quantities such as mass and temperature of the system and find their stability through
first and second phase transitions of the heat capacity. We analyze the effects of scalar charge Q
and hair parameter λ on black holes properties by taking both positive and negative values of these
parameters. It is noted that heat capacity provide the stable, unstable regions and phase transition
points for both black holes. To investigate the thermodynamic geometry of these black holes, various
techniques such as Ruppeiner, Weinhold, Quevedo, and HPEM metrics are considered. It is observed
that Weinhold, Quevedo, and HPEM give attractive/repulsive behavior of particles in stable/unstable
regions of black holes.

Keywords: thermal stability; thermodynamic geometries; regular black holes; barrow entropy

1. Introduction

Black holes (BHs) are the most fundamental and important objects in the universe
[1,2]. Einstein proposed the theory of general relativity (GR) in 1915 and demonstrated
how gravity can impact light beams and consequently light trajectory [3,4]. In 1916,
Schwarzschild discovered the first simplest spherically symmetric metric that indicates
an uncharged black hole (BH), known as Schwarzschild BH [5]. Droste [6], after the
Schwarzschild solution, independently identified the same solution, which gives more
details regarding BHs. In 1918, Reissner and Nordström developed an electrically charged
vacuum BH solution called the Reissner-Nordström (R-N) BH [7]. In 1963, Kerr discovered
a more general and accurate solution for a rotating BH [8]. Later in 1963, Kerr proposed
the rotating BH solution with mass and angular momentum and named it Kerr BH, which
contributes to the discovery of many spinning BH solutions [9]. The existence of singularity
in BH was a major issue in GR and this was the common problem in most of the solutions
of the Einstein field equations.

Despite the efforts of Khalatnikov, Lifshitz, and Belinsky [10,11] to establish that
singularities would not exist in any general solution, Penrose [12] and Hawking [13]
demonstrated that singularities may appear in any generic solution [14]. Taking the
Kerr–Newman (K-N) metric as the most generic static BH, an inequality between three
microstates such as mass, angular momentum and electric charge can be obtained as
q2 + (J/M)2 ≤ M2. Extremal BHs are those with the minimum mass that satisfy this
inequality. However a solution for Einstein equations exist for a structure that violates this
inequality, and the cosmic censorship hypothesis will be disproved by such a solution [15],
implying that there is no event horizon encircling the postulated BH, which is known as
naked singularity [16].

Let us examine the thermal properties of BHs, which lead to the well-known BH
thermodynamics four laws [17,18]. The inverse of BH mass and heat capacity determines

Universe 2023, 9, 87. https://doi.org/10.3390/universe9020087 https://www.mdpi.com/journal/universe

https://doi.org/10.3390/universe9020087
https://doi.org/10.3390/universe9020087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0001-5249-803X
https://doi.org/10.3390/universe9020087
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe9020087?type=check_update&version=2


Universe 2023, 9, 87 2 of 23

the Hawking temperature [19]. Heat capacity is negative in the Schwarzschild case, which
implies the instability of the BH solution [20,21]. For the K-N and R-N BHs, the heat
capacity might be positive in certain intervals while it can be negative in other regions and,
interestingly, it can diverge in the middle area. This phenomenon is known as second-order
phase transition, which is proposed by Paul and Davies for the first time after receiving
Sciama’s suggestion [20]. After the introduction of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence analysis of the thermal aspects of BHs, the thermodynamics of
BHs have attracted a lot of attention [22,23]. Witten [24] demonstrated that the thermody-
namics of AdS space may be described by means of the dual CFT that exists on the AdS
space’s boundary. R-N metric in the AdS space [25], the Hawking phase transition [26], and
other thermodynamical features of phase transitions have been studied in the literature for
various scenarios.

The use of thermodynamical geometry to study the phase transition of BH has at-
tracted a lot of interest. In fact, Weinhold was the first to introduce the geometrical approach
for thermodynamics [27,28]. Weinhold proposed a metric for the space of equilibrium states
based on the second derivatives of internal energy with respect to entropy and other signif-
icant variables. The inverse second derivatives of entropy with respect to internal energy
and other extended quantities were developed by Ruppeiner [29,30]. Ruppeiner’s metric
was conformal to Weinhold’s metric with the inverse of the temperature as the conformal
factor [31]. According to the phase space and metric structures however, Weinhold’s and
Ruppeiner’s metrics are not consistent under Legendre transformations [32,33]. After that,
Quevedo [34] developed a new formalism that integrates the geometric features of the phase
space with the space of equilibrium states. In addition, a new metric, Hendi- Panahiyan-
Eslam Panah-Momennia (HPEM), was developed to construct a geometrical phase space
using thermodynamical quantities [35]. In terms of basic thermodynamic equilibrium,
a connection between thermodynamic system and differential geometry characteristics
has been proposed and in the latter metric due to the large number of thermodynamic
quantities, a geometrical phase space was effectively developed. Khuzani et al., Mansoori
et al., and Mustapha discussed the thermodynamic geometry of different BHs [36–39].

In recent years, different authors have worked on the characterization of Einstein
Maxwell (EM) dilation BH solutions. Zhang et al. [40] investigated the methodology of
entirely nonlinear dynamical scalarization in the EM dilation theory, beginning with a
charged BH flat spacetime. Haroldo et al. [41] studied the topological charge, lensing, and
shadows of EM dilation BHs in strong magnetic fields. Richarte et al. [42] studied focused
absorption and scattering of charged BH in the EM dilation theory. In order to determine
the deflection angle and the differential scattering bend in terms of electric charge, dilatonic
charge, and mass, they studied the classical analysis. Rogatko [43] classified the non
rotating BHs in different gravities such as anti-Maxwell, Einstein phantom, and EM dilation
gravity systems. In addition, several authors have worked on BHs with self-interacting,
massive scalar, and expansion of charged dilatonic BHs showing the Joule–Thomson effect
[44–46].

According to the classical relativistic model, if BHs genuinely had no entropy, then
every time an item went into BH, its entropy would be essentially destroyed, decreasing
the entropy of the universe and breaking the second law of thermodynamics. Bekenstein
proposed that BHs should contain entropy to solve this problem [47]. Hawking proved that
this hypothesis was valid using a semi-classical technique, finding that BHs radiate energy
and as a result, an external observer would link a temperature with the BH horizon [48]. The
horizon temperature is related to the surface gravity by the rules of thermodynamics. Then,
the BH entropy, also known as the Bekenstein–Hawking entropy, is given by SB = A/4,
where SB is the entropy and A is the BHs surface area (in units where h = G = c = 1).
Recently, Barrow proposed that quantum-gravitational forces create a fractal pattern on the
BH horizon, which gains a spatial dimension more than two but less than three, as measured
by the parameter ∆ [49]. Hence, such a complicated structure leads to a modification of the
BH entropy. This idea may have interesting consequences in cosmological and holographic
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applications [50,51]. Recently, Soroushfar et al. [52] discussed the thermodynamic stability
as well as thermodynamic geometries (using Ruppeiner, Weinhold, Quevedo and HPEM
formalisms) for conformal massive gravity (CMG) corrected static and rotating BHs and
found interesting results.

The above intriguing topics encouraged us to use a geothermodynamic technique
to examine so-called CMG of BHs through Barrow entropy. In this approach, both static
(non-rotating) and rotating BHs, the second phase transition and its features help us to
understand the physics of singularities. Interestingly, this method can also be used to
better understand the behavior of temperature, heat capacity, and other thermodynamic
parameters. We also discuss the thermodynamic geometry of the static and rotating BH
with Barrow entropy. The paper is organized as follows. In Section 2, we provide the basic
scenario of static regular BH in CMG setup along with Barrow entropy. In Section 3, we
explore the thermodynamic properties of above BH such as mass, temperature, and specific
heat with respect to various set of values of model constants. Section 4 is devoted to discuss
the thermodynamic geometry of static regular BH in CMG with Barrow entropy by taking
Ruppeiner, Weinhold, Quevedo, and HPEM metrics. Ins Section 5, we provide details of
rotating regular BH with CMG and Barrow entropy setups. Sections 6 and 7 provide the
thermodynamic properties and thermodynamic geometry discussions for rotating regular
BH. The last section provides detailed results for both BHs.

2. Non-Rotating Regular Black Hole in Conformal Massive Gravity

In this section, we give an overview of the metric of a static regular BH under CMG.
Fierz and Pauli were the first to examine the concept of MG and created a singularity-free
spherically symmetric BH solution [36]. By rescaling the metric with a scale factor, a new
method is presented for discovering regular BH solutions [53,54]. The resultant metric
becomes the solution of a theory having conformal symmetry and is regular everywhere.
The basic notion behind conformal gravity (CG) is that the space time singularities that
arise in gravity theories are simply display artifacts in CG that may be erased by a proper
gauge transformation. The behavior of the MG theory is explained by the following action

SMG =
∫ √

−g
[ R

16π
+ Λ4Γ(χ, Wi,j)

]
d4x, (1)

where

Wi,j =
∂µψi∂µψj

Λ4 −
∂µψi∂µψ0∂νψj∂νψ0

Λ4χ
, χ =

∂0ψi∂0ψi

Λ4 , (2)

and R stands for Ricci scalar. In Equation (1), the value of Λ =
√

mMP which is the order of
mass whereas m and MP are the graviton mass and Planck mass. We consider the function
Γ(χ, Wi,j), which depends on two specific combinations of four Goldstone fields ,ψi and
ψ0, and are minimally related to gravity through derivative coupling. At the action level,
this model is generally covariant and can satisfy the Lorentz symmetry condition [43]. For
instance, in Ref. [43], various analytical solutions are introduced for the function Γ(χ, Wi,j)
and among them, one is given by

Γ(χ, Wi,j) = c0

( 1
χ
+ ω1

)
+ c1(ω

3
1 − 3ω1ω2 − 6ω1 + 2ω3 − 12),

where ωn = TrWn, n = 1, 2, 3, c0 is a constant and c1 = ±1, or another example, as follows

Γ(χ, Wi,j) = c0

(
z1 + 2 +

z3
1 − 6z1z2 + 8z3

3

)
+ 2c1(z2

1 − 2z2)

− 2c1

(
1 + 2

z3
1 − 6z1z2 + 8z3

3

)
, (3)
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where zn = TrZn, n = 1, 2, 3, and Z ≡ χWi,j. In order to investigate the repercussions of
symmetry violation, one can use a background solution with the energy momentum tensor
being zero, such as

gµν = ηµν, ψ0 = αt, ψi = βxi,

for some constants α and β by taking α = β = Λ2 for this model of MG. Jusufi et al. [55]
discussed a static spherically symmetric BH along with CMG correction by applying a
conformal transformation with the help of Equation (3) as [43]

ds2 = −
(

1 +
L2

r2

) |λ|
2 +2(

1− 2M
r
− Q

rλ

)
dt2 +

(
1 +

L2

r2

) |λ|
2 +2

(4)

×
(

1− 2M
r
− Q

rλ

)−1
dr2 +

(
1 +

L2

r2

) |λ|
2 +2

r2(dθ2 + sin2 θdφ2).

Here, L stands for the CMG parameter, which was added for dimensional reasons
and λ, Q, which stands for the hair parameter and the scalar charge, respectively. In the
next sections, we analyze the geothermodynamics of a metric derived from CMG and
thermodynamic essential factors such as mass, temperature, and heat capacity.

Barrow Entropy

According to Barrow, quantum-gravitational forces create a fractal structure on the
BH horizon, which gains a spatial dimension of more than two but less than three, as
measured by the parameter ∆ [56]. As a result of this complicated structure, the BH
entropy is altered. In cosmological and holographic applications, this concept could
have fascinating implications [57,58]. However, it modifies the BH temperature and has
interesting consequences for its properties [59,60]. Barrow [56] proposed that quantum
gravitational effects could cause a complex fractal pattern on the BHs surface and modify
its actual horizon area. As a result, a new BH entropy relationship takes the form

S =

(
A
A0

)1+ ∆
2

, (5)

where A is the ordinary event horizon area, A0 is the Planck area, and ∆ is the new exponent.
The aforementioned deformed entropy differs from the standard “quantum-corrected” one
with logarithmic corrections [61,62], yet it resembles Tsallis non extensive entropy [63,64],
despite the fundamentally different physical principles. The new exponent ∆ specifies
the quantum gravitational distortion, which is limited to the range 0 ≤ ∆ ≤ 1 with
∆ = 0 corresponding to the conventional Bekenstein–Hawking entropy and ∆ = 1 to the
maximum deformation of the horizon structure. Here, we consider the Planck area as 4G
and A = 4πr2

+ where G is the gravitational constant (we take G = 1) and after replacing
these values in Equation (5), we get

S = (πr2
+)

1+ ∆
2 . (6)

3. Thermodynamic Quantities

Here, we will discuss mass, temperature, and heat capacity of non-rotating regular
BH in CMG in the presence of Barrow entropy.

3.1. Mass

We can write the mass of non-rotating BH in terms of Barrow entropy by replacing
Equation (6) in f (r+) = 0 as

1− 2M
r
− Q

rλ
= 0

After solving, we get
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M(S, Q) =
S

1
2+∆ (1− πλ/2QS

−λ
2+∆ )

2
√

π
. (7)

In Figure 1, we plot the above equation for various cases of a set of values of model
parameters such as Q, ∆ and λ to discuss the behavior of mass function for static BH
through CMG corrections. Plots (i) and (ii) show the behavior of mass for the fix value of
λ = 0.5, ∆ = 0.5 with (Q ≥ 0) and (Q < 0), respectively. For plot (i), the trajectory for
Q = 0 represents the positive behavior, which indicates the Schwarzschild BH solution.
The remaining curves express the negative behavior initially, which transit to positive
behavior with increasing values of r+ and decreasing values of Q. Thus the trajectories
of mass function for R-N BH solutions represent negative to positive behavior. In plot
(ii), we observe that all the trajectories show the positively increasing behavior of mass
function with respect to all values of horizon radius. This indicates that the Schwarzschild
BH solution for Q = 0 and R-N BH solutions (Q 6= 0) give positive behavior. Plots (iii) and
(iv) represent the evaluation of mass for specific amount of Q = 0.5, ∆ = 0.5 with (λ ≥ 0)
and (λ ≤ 0), respectively. In plot (iii), the curve related to λ = 0 shows positive behavior
for all the values of r+ while the remaining curves represent negative behavior initially as
we increase the value of λ. However, with the increasing values of r+, these curves become
positive. In plot (iv), we examine that all the curves indicate positive behavior initially,
which transit to negative behavior for λ = −0.5,−0.75,−0.95 and to positive behavior for
λ = 0,−0.25 with respect to the increasing horizon radius. Another notable behavior of the
mass function that appears in these plots is converging to a specific amount of M at r+ ≈ 1.
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Figure 1. Cont.
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Figure 1. Plot of mass M versus horizon radius r+ for non-rotating BH for various choices of λ, ∆
and Q.

Plots (v) and (vi) indicate the behavior of mass function for the fix value of λ = −0.5,
∆ = 0.5 with (Q ≤ 0) and the fix value Q = −0.5 along with (λ ≤ 0). The behavior of
mass for these plots demonstrate the overall positive values similar to the case of plot
(ii). Additionally, plot (vi) inherits the converging point for mass M at r+ ≈ 1. It is noted
that the plots (i) and (iii) for smaller values of horizon radius and plot (iv) for higher
values of horizon radius depict the negative behavior of mass function for a chosen set of
values. The possibility of a negative mass is one of the scenarios that has been thoroughly
investigated in Ref. [65,66]. The concept of a negative mass from a gravitational perspective
is widely examined in Ref. [65]. Although it is difficult to establish this argument in our
everyday lives, it may be essential to explain some key physics events such as Hawking
radiation. A claim was also done previously in Ref. [67] that a negative mass can act as
both dark matter and dark energy at the same time. According to Ref. [68], the negative
mass could be a potential candidate for dark matter, since it does not mix due to gravity
and the structures do not naturally form by preventing nuclear fusion and as a result,
electromagnetic radiation.

3.2. Temperature

The first law of BH thermodynamics is as follows

dM = TdS + ϕdQ, (8)

where ϕ = ∂M
∂Q is a scalar potential that is similar to the electrostatic potential and T stands

for temperature [69]. Taking the derivative of Equation (7) with respect to entropy S, we get

T =
∂M
∂S

= S−
(1+∆+λ)

2+∆

(π
1+λ

2 Q(λ− 1) +
√

πS
λ

2+∆

2π (2 + ∆)

)
. (9)

In Figure 2, we draw the aforementioned equation for different cases of model param-
eters such as Q, ∆ and λ to examine the behavior of temperature for static BH with CMG
corrections. Plot (i) shows the behavior of temperature for fixed values of Q = 0.5, λ = 0.5
with ∆ ≥ 0. In plot (i), the temperature first is in the negative regions for a specific range
of r+, representing the non-physical (T < 0) BH solution, then approaches to zero. After
that, the temperature goes up to the positive region and increases to reach a maximum
point, then it falls positively with respect to increasing r+, showing the physical (T > 0)
BH solution. Plots (ii) and (iii) specify the behavior of temperature for a particular value
of λ = 0.5, ∆ = 0.5, with (Q ≥ 0) and (Q ≤ 0), respectively. For plot (ii), the curve for
Q = 0 demonstrates the positive behavior that is a Schwarzschild-like physical BH solution
through CMG corrections. While for Q 6= 0, all the remaining trajectories show the same
behavior as of plot (i) (T < 0 for smaller values of r+ and T > 0 for higher values of r+). In
plot (iii), we note that all curves show the positively decreasing behavior by increasing the
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values of r+ and decreasing the values of Q, which indicate that physical BH solutions are
possible for a chosen set of values of constants.
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Figure 2. Plot of temperature T versus horizon radius r+ for non-rotating BH for various choices of
λ, ∆ and Q.

Plots (iv) and (v) reveal the nature of temperature for a fix value of Q = 0.5, ∆ = 0.5
with (λ ≥ 0) and (λ ≤ 0), respectively. From plot (iv), the curves for λ = 0, 0.5 represent
the decreasing positive behavior, which is a physically acceptable solution while all the
remaining trajectories show the same behavior as in plot (ii). In plot (v), the temperature
function shows the same behavior as in plot (iii). Plots (vi) and (vii) illustrate the behavior
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of temperature for specific values of Q = −0.5, δ = 0.5 with (λ ≤ 0) and λ = −0.5
with (Q ≤ 0), respectively. We can see that from these plots all curves represent identical
behavior, as we discussed in plots (iii) and (v). With respect to all chosen sets of parameters,
the hair parameter λ may be used as a charge parameter to analyze the evolution of the
temperature of BHs at some instances. In addition, it is interesting to mention here that the
curves of the temperature approaches zero with respect to the increasing values of horizon
radius, and the BH becomes cooler due to the lower temperature.

3.3. Heat Capacity

In BH thermodynamics, the quantity of heat required to alter a BH’s temperature is
called thermal capacity or heat capacity. Heat capacities are classified into two types: one
type counts the amount of heat transferred to the system while keeping the pressure Cp
and the other type examines the specific heat when heat is introduced to the system while
preserving the volume constant Cv. We determine the heat capacity at a fixed volume. The
heat capacity is defined by the ratio of temperature ∂M

∂S with its second derivative ∂2 M
∂S2 , i.e.,

∂M
∂S

∂2 M
∂S2

. These parameters individually represent the following outcomes [65]

∂M
∂S

= 0 ⇒ physical limitation points, (10)

∂2M
∂S2 = 0 ⇒ phase transition critical points.

These equations can be used to impose some limitations on the model in order to
differentiate between physical and non-physical outcomes. In other words, they state that
the root of heat capacity, i.e., (Cv = T = 0), denotes a physical (T > 0) and non-physical
(T < 0) BH boundary, which is referred to as a physical limiting point. Because of this fact,
one may normally predict a change in the sign of the heat capacity in the thermodynamic
system. Divergence of the heat capacity is also well-known to signify a BH phase transition
critical point. Taking into account Equation (9) and its derivative with respect to S and use
in heat capacity formula, we obtain

Cv = −
S(∆ + 2)

(√
πS

λ
2+∆ + π

1+λ
2 Q(λ− 1)

)
√

πS
λ

2+∆ + π
1+λ

2 Q(λ− 1)(1 + ∆ + λ)
. (11)

In Figure 3(i)–(vi), we interpret the performance of heat capacity of no-rotating BH
through Barrow entropy for various values of (Q ≥ 0, λ ≥ 0, ∆ ≥ 0. The heat capacity has
root points (T = 0 implies Cv = 0) and divergence points (∂T/∂S = 0 implies Cv → ∞),
which are related to the physical limitation and phase transition critical points, respectively.
Plot (i) and its close-up image (ii) reveal some entrusting physical features of heat capacity
for specific values of Q = 0.5, λ = 0.5, ∆ = 0.2. This plot indicates the variation of
heat capacity between the first and second phase transitions. It is also observed that heat
capacity gets negative values in the ranges r1 ' 0.012 ≤ r+ ≤ r2 ' 0.061, which leads to an
unstable region of BH. For r+ ≥ 0.061, it enters the positive region, which implies the stable
state of BH solution. The physical limitation points, r+ ' 0.012, r+ ' 0.061 and phase
transition critical point of the BH appears at r+ ' 0.18. Plot (iii) represents the behavior
of heat capacity for fixed values of λ = 0.5, ∆ = 0.5 with (Q ≥ 0). In this plot, the curve
for Q = 0 represents negative behavior, which implies that the system is totally unstable,
which is a Schwarzschild BH solution. While for R-N BH, the remaining trajectories show
the same behavior as plots (i) and (ii).
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Figure 3. Plot of heat capacity Cv versus horizon radius r+ for static regular BH in the presence of
CMG corrections.

Plots (iv) and (v) evaluate the nature of heat capacity for specific amounts of Q = 0.5
and ∆ = 0.5 with (λ ≥ 0). The system is totally unstable when λ = 0, while for remaining
values of (λ 6= 0), the heat capacity show the identical behavior as plots (i) and (ii). It is also
observed that the variation in phase transition points with respect to the horizon radius
r+ occur for increasing Q, which is similar behavior as seen in plot (iii) while for plots
(iv) and (v) by decreasing the values of λ, we get the same behavior as discussed in plot
(iii). Plot (vi) illustrates the behavior of heat capacity for constant values of Q = 0.5 and
λ = 0.5 with (∆ > 0). We have found the same behavior as we discussed above. In Figure
4, we investigate the behavior of heat capacity for the different values of model parameters
(Q ≤ 0, λ ≤ 0, ∆ ≥ 0). From plots (i)–(iv) heat capacity represents the negative behavior
and also does not display any phase transition for a CMG corrected non-rotating regular
BH. It means that the system is totally unstable for negative values of parameters Q and λ.
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Figure 4. Plot of heat capacity Cv versus horizon radius r+ for non-rotating BH for various choices
of λ, ∆ and Q.

4. Thermodynamic Geometries

In this part, we discuss the thermodynamic geometries such as Weinhold, Quevedo,
Ruppeiner, and HPEM for a CMG corrected regular BH. Weinhold proposed a new geo-
metric technique in 1975 [27] in which a metric is defined in the space of equilibrium states
of thermodynamic system. From Riemannian space to thermodynamic space, Weinhold
applied the concept of conformal mapping. The Weinhold geometry and its line element
are respectively expressed by [28]

gW
ij = ∂i∂j M(S, Q), (12)

and
ds2

W = MSSdS2 + MQQdQ2 + 2MSQdSdQ, (13)

where MSS ≡ ∂2M/∂S2, MQQ ≡ ∂2M/∂Q2 and MSQ ≡ ∂2M/∂S∂Q. The corresponding
metric tensor is given by

gW =

[
MSS MSQ
MQS 0

]
. (14)

We cannot characterize the phase transition of this thermodynamic system because of
the vanishing curvature scalar in the Weinhold formalism. There is no point that becomes
unique for this metric and therefore this system lacks interacting thermodynamics. There
are a few solutions to this problem, which we shall go over one by one. In 1979, Ruppeiner
[29] proposed a new metric, which is conformally connected to Weinhold’s metric as follows
[30,70,71]

ds2
R =

1
T

ds2
W . (15)

Dividing Equation (14) by (9), we obtain the appropriate matrix for Ruppeiner metric
as

gR =

(
2π(2 + ∆)S

(1+∆+λ)
2+∆

π
1+λ

2 Q(λ− 1) +
√

πS
λ

2+∆

)
gW , (16)
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and by using Equation (16), the Ruppeiner metric’s curvature scalar (which is also called
Ricci scalar) becomes

RRup =
λ

S(2 + ∆)
(

1 + πλ/2QS−
λ

2+∆ (λ− 1)
) . (17)

The corresponding curvature scalar plotted against the horizon radius by taking
appropriate values of constant parameters are shown in Figure 5(i)–(iv). It can be seen that
the divergence of the Ruppeiner metric’s curvature scalar overlaps with the zero points
(physical limitation point) of heat capacity. It is observed that the upper branch of the
curvature scalar crosses the heat capacity diagram in the stable regions of BH. It is also
mentioned here that curvature (RRup) show singularity, positive, and negative in certain
ranges of the horizon radius. It means that RRup exhibits the attractive as well as repulsive
behavior of BH.
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Figure 5. Plots of heat capacity Cv, curvature scalar of HPEM and Ruppeiner metrics versus horizon
radius r+ for CMG corrected non-rotating regular BH.

Let us now turn our focus to other geothermodynamic experiments that have yielded
more promising physical results. In this step, we describe the thermodynamic properties of
a CMG corrected non-rotating regular BH using the Quevedo and HPEM formalism. In
Quevedo formalism, the metric takes the following generic form [34]

g =
(

Ec ∂Φ
∂Ec

)(
ηabδbc ∂2Φ

∂Ec∂Ed dEadEd
)

, (18)

in which
∂Φ
∂Ec = δcb Ib, (19)



Universe 2023, 9, 87 12 of 23

where the extensive and intensive thermodynamic variables are Ea and Ib, respectively,
while the thermodynamic potential is Φ. In addition to the aforementioned, the HPEM
metric with n extensive variables (n ≥ 2) is [35,72,73]

ds2
HPEM =

SMS(
Πn

i=2
∂2 M
∂χ2

i

)3

( n

∑
i=2

(∂2M
∂χ2

i

)
dχ2

i −MSSdS2
)

, (20)

where χi(χi 6= S), MS = ∂M/∂S and MSS = ∂2M/∂S2 are the extensive parameters.
The Wienhold and the Ruppeiner thermogeometric metrics mentioned previously are not
Legendre-invariant. Furthermore, results obtained using the Ruppeiner and Weinhold
metrics may dispute one another. Moreover, Quevedo et al. asserted that the reasons
for these discrepancies are caused by the fact that these metrics are not really Legendre-
invariant, leading them to develop a Legendre invariant metric framework [34,74–76].
Following, we will go through two different kinds of Legendre invariant thermogeometrical
metrics. These are Quevedo I and II. The concept that we use was first created by Hermann
and Mrugala [77–79], and frequently used by Quevedo after that. Therefore, these two
metrics can be written as [35,72,73]

ds2 =



(SMS + QMQ)(−MSSdS2 + MQQdQ2) Quevedo Case I

SMS(−MSSdS2 + MQQdQ2) Quevedo Case II

SMS
(MQQ)3 (−MSSdS2 + MQQdQ2) HPEM

(21)

and their curvature scalar’s denominator is found in the following form [72,73]

denom(RQuevedo I) = 2M2
SS M2

QQ(SMS + QMQ)
3,

denom(RQuevedo II) = 2S3M2
SS M2

QQ M3
S,

denom(RHPEM) = 2S3M2
SS M3

S. (22)

In Figure 5, we plot the above equations for different values of parameters such as ∆, λ
and Q. Examining these equations reveals that the Quevedo formalism’s curvature scalar
provides no physical information about the system. However, as shown in plots (iii)–(iv),
the HPEM metric’s curvature scalar divergence points are in alignment with zero point
(physical limitation point) and divergence point (phase transition point) of heat capacity. It
is also mentioned here that curvature (RRup) shows singularity, positive, and negative in
certain ranges of the horizon radius. As, we can seen from Figure 5, the curvature scalar
of the Ruppeiner metric is in the positive and negative region, which indicates that RRup

exhibits the attractive as well as repulsive behavior of BH. We conclude that the positive
behavior of BH reveals the stability of BH.

5. Rotating Regular Black Hole in Conformal Massive Gravity

In this section, we study the singularity-free rotating BHs in the presence of CMG
corrections. Azreg [80] found the solutions of rotating BH without complexification, in
particular, by rescaling the Kerr–Newman metric, the singularity-free BH solutions have
been obtained. Such a metric can be expressed as [55]

ds2 = −
(

1 +
L2

ρ2

) |λ|
2 +2(

1− 2Mr + Qr2−λ

ρ2

)
dt2 +

(
1 +

L2

ρ2

) |λ|
2 +2 ρ2

∆
dr2

− 2
(

1 +
L2

ρ2

) |λ|
2 +2

a sin2 θ
(2Mr + Qr2−λ

ρ2

)
dtdφ +

(
1 +

L2

ρ2

) |λ|
2 +2
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× sin2 θ
[
r2 + a2 + sin2 θ

(2Mr + Qr2−λ

ρ2

)]
dφ2, (23)

where

ρ2 = r2 + a2 cos2 θ, δ(r) = r2 + a2 − 2Mr−Qr2−λ. (24)

In this metric, a = J
M , J stands for angular momentum and parameters L and λ occur

because of CMG corrections. In this case, the entropy-horizon radius relation takes the
form A = 4π(r2

+ + a2) and after substituting this value along with the Planck area in
Equation (5), we get the Barrow entropy for rotating BH as

S = [π
(

a2 + r2
+

)
]

∆+2
2 . (25)

6. Thermodynamic Properties

In this section, we examine the thermodynamics properties of rotating charged regular
BH such as mass, temperature, and heat capacity in the presence of CMG corrections
through Barrow entropy.

6.1. Mass

We obtain the mass function by considering the condition δ(r+) = 0 in terms of
entropy S to determine the mass function. Using Equation (25) to find the event horizon
radius relationship, one gets

M(S, Q, a) =
S

2
2+∆ −Qπ

λ
2

(
− πa2 + S

2
2+∆

) 2−λ
2

2
√

π
(
− πa2 + S

2
2+∆

) 1
2

. (26)

In Figure 6, we plot the aforementioned equation for various cases of model parameters
such as Q, λ, ∆ and a to discuss the behavior of mass function for rotating BH in the
presence of CMG corrections. Plots (i) and (ii) demonstrate the behavior of mass function for
fix values of (λ = 0.25, a = 0.15, ∆ = 0.5) with (Q ≥ 0) and (Q ≤ 0), respectively. For plot
(i), the trajectories for (Q = 0, Q = 0.25, Q = 0.5) show an initially positively decreasing
behavior for small values of r+, after that it becomes an increasing behavior by increasing
r+. The remaining curves represent an initially positively decreasing behavior, then enter
the negative region, and after that show a positively increasing behavior. Furthermore,
in plot (i), when Q = 0, it is a Kerr BH solution. In plot (ii), the curves show a positively
decreasing behavior first then a positively increasing behavior by increasing r+. In both
plots by increasing the values of Q, minimum points decrease by increasing r+. Plots (iii)
and (iv) represent the nature of mass for constant values of Q = 0.25, a = 0.15, ∆ = 0.5
with (λ ≥ 0) and (λ ≤ 0), respectively.

For plot (iii), the curve for λ = 1.25 describes the initially positively decreasing
behavior, while for smaller values of r+, it shows negative behavior. After that, it enters
the positive region by indicating positively increasing behavior. The remaining trajectories
display the same behavior as in plots (i) and (iii). In plot (iv), the curves for λ = −0.75, λ =
−1.25 initially describe a positive behavior, which go to the negative region by increasing
the values of r+. Plot (v) describes the evaluation of mass function for specific values of
Q = 0.25, λ = 0.25, ∆ = 0.5 with (a ≥ 0). For a = 0, the curve represents positively
increasing behavior, while the remaining trajectories show the same nature as plot (i). Plot
(vi) demonstrates the behavior of mass for fix values of λ = −0.25, a = 0.15, ∆ = 0.5 with
(Q ≤ 0). This plot shows the same behavior as plot (ii). Another notable behavior of the
mass function that appears in plots (iii) and (iv) is converging to a specific amount of M at
r+ ≈ 1.
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Figure 6. Plot of mass M versus horizon radius r+ for rotating regular BH in the presence of CMG
corrections.

6.2. Temperature

Taking the derivative of Equation (26) w.r.t S, the Hawking temperature becomes

T =
S−

∆
2+∆

[
− 2πa2 + S

2
2+∆ + π

λ
2 Q
(
− πa2 + S

2
2+∆

)1− λ
2
(λ− 1)

]
2
√

π
(
− πa2 + S

2
2+∆

)3/2
(2 + ∆)

. (27)

In Figure 7, we plot the equation of temperature for different cases of model parameters
such as Q, λ, ∆ and a for rotating BH in the presence of CMG corrections. Plots (i) and
(ii) describe the behavior of temperature for fix values of λ = 0.25, a = 0.15, ∆ = 0.5 with
(Q ≥ 0) and (Q ≤ 0), respectively. In plot (i), the temperature first is in the negative
region for a particular range of r+, representing the non-physical (T < 0) BH solution, then
approaches to zero. After that, the temperature goes up to the positive region and increases
to reach a maximum point, then it falls positively with respect to increasing r+ showing
physical (T > 0) BH solution, while all the curves in plot (ii) behave like plot (i). Plots (iii)
and (iv) describe the nature of temperature for constant values of Q = 0.25, a = 0.15, ∆ = 0.5
with (λ ≥ 0) and (λ ≤ 0), respectively. In plot (iii), we note that all the trajectories show
the same behavior as in plots (i) and (ii).
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In plot (iv), when λ = −1.15, the temperature shows initially negative behavior for
smaller values of r+, then gradually increasing. After that, the temperature represents
decreasing behavior by increasing r+. Meanwhile, all the remaining curves show identical
behavior to plots (i)–(iii). Plot (v) evaluates the nature of temperature for fix values of
Q = 0.25, λ = 0.25, ∆ = 0.5 with (a ≥ 0). We can see that temperature function shows
the same behavior as plots (i)–(iii). Furthermore, when a = 0, which corresponds to non
rotating R-N BH solution. Plots (vi) and (vii) demonstrate the behavior of temperature for
constant values of λ = −0.25, a = 0.15, ∆ = 0.5 with (Q ≤ 0) and for fix Q = −0.25, a =
0.15, ∆ = 0.5 with (λ ≤ 0), respectively. In these plots all the trajectories represent the same
behavior as of plots (i)–(iii).
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Figure 7. Plot of temperature T versus horizon radius r+ for CMG corrected rotating regular BH.
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6.3. Heat Capacity

Now by replacing the values of T and ∂S/∂T in the expressions Cv = T∂S/∂T, we get
the heat capacity as

Cv = −S(2 + ∆)
(Θ1

Θ2

)
, (28)

where

Θ1 = (−2πa2 + S
2

2+∆ )(−a2π + S
2

2+∆ )1+ λ
2 + π

λ
2 Q(−a2π + S

2
2+∆ )2(λ− 1),

Θ2 = a4π2∆(2(−a2π + S
2

2+∆ )
λ
2 + π

λ
2 Q(λ− 1)) + S

2
2+∆ [(−a2π + S

2
2+∆ )

λ
2

× (1 + ∆) + π
λ
2 Q(λ− 1)(1 + ∆ + λ)]− a2πS

2
2+∆ [(−a2π + S

2
2+∆ )

λ
2

× (4 + 3∆) + π
λ
2 Q(λ− 1)(1 + 2∆ + λ)].

We have plotted the heat capacity for various values of parameters like λ, ∆, Q, and
a in Figure 8(i)–(vii). Plot (i) and its close-up image (ii) represents the behavior of heat
capacity for specific amount of Q = 0.25, λ = 0.25, ∆ = 0.2, a = 0.15 and indicates
how and where heat capacity moves between the first and second phases transitions. For
r1 ≈ 0.023 < r+ < r2 ≈ 0.186, heat capacity gets negative values and it specifies that BH
will be in an unstable region. For r+ > r2, it enters to the positive region which implies the
stable state of BH solution. The physical limitation points, r+ ≈ 0.012, r+ ≈ 0.18 and phase
transition critical point of the BH identifies at r+ ≈ 0.3. In plots (iii) and (iv) heat capacity
shows the same behavior as of plots (i) and (ii). Plots (v) and (vi) indicate the behavior of
heat capacity for specific values of λ = 0.25, a = 0.15, ∆ = 0.5 with (Q ≥ 0), we can see the
trajectories represent the same behavior as of plots (i)–(iv). Plot (vii) show the behavior of
heat capacity for fix values of Q = 0.25, λ = 0.25, ∆ = 0.5 with (a ≥ 0). The curve for a = 0
shows negative behavior, its mean the system is totally unstable. While all the remaining
trajectories express the same behavior as of plots (i)–(vi).

The plot of heat capacity versus horizon radius for different appropriate choices of
Q, λ and ∆ is shown in Figure 9(i)–(vi) in the presence of Barrow entropy. This exhibits
positive behavior, however negative as well as phase transitions at certain values of horizon
radius. This behavior points out the stable as well as unstable regions of the rotating BH in
the presence of Barrow entropy.
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Figure 8. Plot of heat capacity Cv versus horizon radius r+ for rotating regular BH in the presence of
CMG corrections.
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Figure 9. Plot of heat capacity Cv versus horizon radius r+ for CMG corrected rotating regular BH.

7. Thermodynamic Geometries for Rotating Black Hole

For rotating BH, Ruppeiner, Weinhold, Quevedo, and HPEM metrics turn out to be
[30,35,72,73,81,82]

ds2 =



MgW
abdXbdXa, Weinhold

− T−1MgW
abdXbdXa, Roppeiner

(SMS + QMQ + aMa)(−MSS + MQQdQ2 + Maada2), Quevedo Case I

SMS(−MSSdS2 + MQQdQ2 + Maada2), Quevedo Case II

SMS
(MQQ Maa)3 (−MSSdS2 + MQQdQ2 + Maada2) HPEM

(29)

For their curvature scalars, these metrics have the following denominator [30,35,72,73,81,82]

denom(RWein) = −2M3(M2
Qa MSS + M2

SQ Maa + M2
Sa MQQ

− MSS Maa MQQ − 2MSQ MSa MQa)
2,
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denom(RRup) = −2M3T3(M2
Qa MSS + M2

SQ Maa + M2
Sa MQQ

− MSS Maa MQQ − 2MSQ MSa MQa)
2,

denom(RQuevedo I) = 2M2
SS M2

QQ M2
aa(SMS + QMQ + aMa)

3,

denom(RQuevedo II) = 2S3M2
SS M2

QQ M2
aa M3

S,

denom(RHPEM) = 2S3M2
SS M3

S. (30)

In the above equations, Quevedo formalism does not give any specific physical in-
formation about the system because the second derivative of mass function with respect
to Q is zero, this means that the curvature scalar of Quevedo is also zero. The obtained
curvature scalars for the remaining formalisms are shown in terms of horizon radius in
order to analyze the thermodynamic phase transition seen in Figure 10. In plot (i), we
can see that the singular point of the Weinhold curvature scalar does not overlap with the
heat capacity divergence points for fixed values of Q = 0.55, λ = 0.55 with ∆ = 0.5 and
a = 0.015. We can see that in plots (ii)–(v), the Ruppeiner and HPEM curvature scalar
divergence points align with the heat capacity zeros and divergence point, which is the
physical limitation points and phase transition point.
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Figure 10. Combine plots of heat capacity Cv and Ricci scalar R of Ruppeiner, Weinhold, and HPEM
metric versus event horizon radius r+.
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8. Concluding Remarks

In this paper, we have investigated the Barrow entropy effects on mass, temperature,
and heat capacity for CMG corrected non-rotating/rotating BHs. In addition, thermody-
namic geometries such as Ruppiner, Weinhold, Quevedo, and HPEM curvature scalars
have also been discussed for these BHs. Firstly, we have analyzed the behavior of ther-
modynamic properties such as M, T, and Cv of non-rotating BH with CMG corrections in
the presence of Barrow entropy. We have figured out that for ∆ 6= 0, λ 6= 0 and Q = 0,
the mass function shows only positive behavior, which is a Schwarzschild BH solution,
while for Q 6= 0, ∆ 6= 0, and λ 6= 0, mass function represents the initially negative behavior
for smaller values of r+. After that it goes to a positive region by increasing r+. When
λ = 0, Q 6= 0, the mass function demonstrated the positive behavior as well. For negative
values of Q ≤ 0, λ ≤ 0, the mass function shows positive behavior but in some cases
gets negative values. We have also investigated the behavior of temperature for different
values of model parameters Q, λ and ∆. For Q = 0, the curve of temperature represented
positively decreasing behavior with increasing r+, which is a Schwarzschild non-physical
(T < 0) BH solution. We have also noted that the trajectories for λ = 0 and λ = 0.15
indicated the same behavior as of when Q = 0. For R-N BH, as the curves for Q 6= 0, λ 6= 0,
and ∆ 6= 0, the temperature initially in the negative region for a particular range of r+ is
represented by a non-physical (T < 0) BH solution, and then approaches zero. After that,
the temperature goes up to the positive region and increases to reach a peak point, then it
falls positively with respect to the increasing r+ physical (T > 0) BH solution. The hair
parameter λ may be used as a charge parameter to analyze the evolution of the temperature
of BHs at some instances. For negative values of Q ≤ 0, λ ≤ 0 all the trajectories expressed
positively decreasing behavior.

We have also found that the curves of temperature approach zero with respect to the
increasing values of horizon radius, and the BH gets cooler due to the low temperature. We
have also discussed the stability of a BH, and we have observed that for r1 ' 0.012 ≤ r+ ≤
r2 ' 0.061, heat capacity gets negative values and it specifies that BH will be in an unstable
region. For r+ ' 0.061, it enters the positive region, which implies the stable state of the
BH solution. The physical limitation points, r+ ' 0.012, r+ ' 0.061 and phase transition
critical point of the BH appears at r+ ' 0.18. For Q = 0 and λ = 0 the curves of heat
capacity indicated negative behavior, which means that the system is totally unstable. The
divergence points of heat capacity shifted along the horizon radius r+ by increasing the
values of Q and decreasing the values of λ. For negative values of (Q ≤ 0, λ ≤ 0), heat
capacity showed only negative behavior, so the system is in an unstable state in this case.

In case of rotating BH with CMG corrections with Barrow entropy, we have observed
that the trajectories for Q ≥ 1 initially represented a positively decreasing behavior for
a smaller range of r+, after it showed negative behavior for a small interval of horizon
radius. It then entered the positive region and described the positively increasing behavior.
Meanwhile, for all remaining values of Q, mass function indicated positive behavior. Here,
λ = 1.25 expressed the same behavior as Q ≥ 1, while all other values of λ mass function
always demonstrated positive behavior. The trajectories for the variation of rotation
parameter a mass function indicated overall positive behavior. For negative values of
Q ≤ 0, λ ≤ 0, ∆ ≥ 0, showed the same behavior as we discussed above but in some cases
represented negative behavior by increasing r+. Another entrusting behavior of the mass
function converges to a specific amount of M at r+ ≈ 1.

Next we discussed the behavior of temperature. All the curves for Q ≥ 0, λ ≥
0, ∆ ≥ 0, and a ≥ 0 of the temperature are first in the negative region for a small range
of r+ represented non-physical (T < 0) BH solution, then approaches zero. After that,
the temperature goes up to the positive region and increases to reach a maximum point,
then it falls positively with respect to the increasing r+, showing the physical (T > 0) BH
solution. For negative values of Q ≤ 0, λ ≤ 0 and ∆ ≥ 0, the temperature indicated the
same behavior as we already discussed, while for λ = −1.15, the curve showed negative
to positive then positive to negative behavior. We also observed that by increasing the
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size of BH, the temperature of BH decreased, meaning that the BH becomes cooler. To
investigate the stability of a rotating BH one can consider heat capacity as one of the
important thermodynamic parameters. We have figured out that the BH is in an unstable
phase in this interval r1 ' 0.023 ≤ r+ ≤ r2 ' 0.186, while for r+ ≥ r2, which implies the
stable state of BH solution. The physical limitation points, r+ ≈ 0.012, r+ ≈ 0.18 and the
phase transition critical point of the BH is identified at r+ ≈ 0.3. For all other values of
Q, ∆, λ, and a, the same behavior as we discussed was shown and the phase transition
points shifted along the r+. The negative values of Q ≤ 0, λ ≤ 0 with a ≥ 0, ∆ ≥ 0
demonstrated the same behavior as we discussed above.

Moreover, thermodynamic geometries have shown attractive and repulsive behavior
in stable and unstable regions of non-rotating and rotating BH.
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