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Abstract: We investigate natural inflation with non-minimal coupling to gravity, characterized either
by a quadratic or a periodic term, within the warm inflation paradigm during the slow-roll stage,
in both strong and weak dissipation limits; and show that, in the case of a T-linearly dependent
dissipative term, it can accommodate the spectral index ns and tensor-to-scalar ratio r observables
given by Planck 2018 constraints, albeit with a too-small value of the e-folding number to solve
the horizon problem, providing, thus, only a partial solution to natural inflation issues, assuming a
T-cubically dependent dissipative term can provide a solution to this e-folding number issue.

Keywords: warm inflation; natural inflation

PACS: 98.80Cq; 98.80-k

1. Introduction

Inflationary cosmology [1,2] is now the dominant perspective for explaining the
early universe’s physics, solving the flatness and homogeneity/unwanted relics problems,
and providing a mechanism to interpret the inhomogeneities in the cosmic microwave
background radiation (CMBR). In the standard slow-roll cold inflation models, the universe
experiences an exponential expansion, during which density perturbations are created
by quantum fluctuations of the inflation field, followed by the reheating stage, where a
temporarily localized mechanism must rapidly distribute sufficient vacuum energy.

Fang and Berera [3] realized that by combining the exponential accelerating expan-
sion phase and the reheating, one could resolve disparities assembled by each separately.
In [4], Berbera proposed a warm inflationary model in which thermal equilibrium is main-
tained during the inflationary phase and radiation production is started throughout it; i.e.,
relativistic particles are created during the inflationary period.

Many inflationary models inspired by particle physics, string theory, and quantum
gravity have been studied within the context of warm inflation. Visinelli [5] derived and
analyzed the experimental bounds on warm inflation with a monomial potential, whereas
Kamali in [6] investigated the warm scenario with non-minimal coupling (NMC) to gravity
with a Higgs-like potential. Warm inflation was constrained by CMB data in [7]. The
authors of [8] treated the warm scenario with NMC through modified gravity with a special
potential motivated by variation of constants. In [9], warm inflationary models in the
context of a general scalar-tensor theory of gravity were investigated within only the strong
limit of dissipation.

The natural inflation (NI) proposed by Freese, Frieman, and Olinto [10], with a cosine
potential, is a popular model due to its shift symmetry with a flat potential, preventing
significant radiative corrections from being introduced, which gives NI an ability to solve
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theoretical challenges inherent in slow-rolling inflation models. However, NI is disfa-
vored at greater than the 95% confidence level by current observational constraints from
Planck2018 of the scalar-tensor ratio r and spectral index ns [11,12]. Moreover, a more
recent analysis of BICEP/Keck XIII in 2018 (BK18) [13] has put more stringent bounds
on r, whereas the authors of [14] discussed a way to amend the discrepancies of NI with
data by non-minimally coupling the scalar fields to the Starobinski model ( f (R)) in the
Palatini formalism. In [15], it was shown that NMC to gravity within the f (R) setting was
enough to bring “cold” NI to within 95% confidence levels of the current observational
constraints represented by Planck2018 (TT, EE, TE), BK18, and other experiments (lowE,
lensing), separately or combined.

The study of warm NI was pioneered by Visinelli [16], and separately, by [17], and
then pursued by many others, such as [18]. When applied to primordial black holes
(gravitational waves), the setup was analyzed in many articles, say [19–23].

The aim of this work was to study NI with NMC to gravity within the warm paradigm,
in both the strong and weak limits of the dissipation term characterizing the warm scenario.
We study two forms for the NMC to the gravity term, which is generally produced at one-
loop order in the interacting theory for a scalar field, even if it is absent at the tree level [24].
Actually, in general, all terms of the form (Riφj, Rµν∂µφ∂νφ, . . .) are allowed in the action.
However, omitting the derivative terms and taking a finite number of loop graphs enforce
a polynomial form of the NMC term, and if one imposes CP symmetry on the action, the
term should include even powers of the inflaton field φ. For simplicity, we include only
the quadratic monomial (ξφ2R ) of dim-4. However, since some microscopic theories may
suggest the emergence of an NMC similar in the form of the original potential [25], we
also consider an NMC of a periodic form respecting the shift symmetry of the NI potential,
making it of the form (λ

(
1 + cos( φ

f )
)

).
We find that the NI with NMC to gravity within the warm paradigm, in the case

of a linear dissipative term, is able to accommodate the (ns, r) observable constraints,
but at the price of getting a small value for the e-folding number Ne ≈ 30 to solve the
horizon and flatness problems. However, one can make Ne acceptable (≥40), in this
T-linearly dependent regime, but for ns ≈ 0.98, just getting outside the admissibility
contours. Studying the case of T-cubically dependent dissipative term gave in the strong
limit scenario some benchmarks which satisfy the four constraints of ns, r, As and Ne in
both cases of quadratic or periodic non-minimal coupling to gravity.

The paper is organized as follows. In Section 2, we present the setup of the warm
paradigm, for general potentials, whereas in Section 3 we specify the study to NI. In
Sections 4 and 5, we study the strong (weak) limit (Q ≡ Γ

3H >> (<<)1) for both quadratic
and periodic NMC. In Section 6, we study briefly the strong limit scenario when the
dissipative term is proportional to the cubic power of the temperature, whereas we end up
with conclusions and a summary in Section 7.

2. Warm Inflation Setup
2.1. Arena

We consider the general local action for a scalar field coupled with radiation and
gravity within the Jordan frame:

S =
∫

d4x
√
−g
{

1
2

Ω2(φ)R + Lφ + Lγ + LInt

}
. (1)

where g is the determinant of the metric gµν, Lγ is the Lagrangian density of the radia-
tion field and LInt describes the interaction between the latter and the inflaton φ, whose
Lagrangian density, considered as that of a canonical scalar field, is given by

Lφ = −1
2

gµν∆µφ∆νφ−V(φ), (2)
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where V(φ) is the inflaton potential, whereas Ω2(φ) indicates the NMC between the scalar
field φ and the gravity described by the usual Einstein–Hilbert action rather than the
Starobinski f (R) gravity.

One can take the usual electromagnetic Lagrangian for Lγ, while we leave aside, for
now, the “unknown” interaction density LInt. By carrying out the usual action, optimiza-
tion, by changing with respect to metric and approximating the energy-momentum tensor
for both the inflaton and the radiation fields by perfect fluids characterized by energy
density ρ and pressure p, we get the following equation of motion:

ρ̇φ + 3H
(
ρφ + pφ

)
+

1
2
(Ω2)′φφ̇R + ρ̇γ + 4Hργ = 0, (3)

with (Ω2)′φ meaning a derivative with respect to φ. Some remarks are in order here. First,
the two terms—including the Hubble constant “H” terms, which are known to be related to
“total energy”, both that of radiation and that of the inflaton—represent a “direct” coupling
between the inflaton and radiation, in contrast to the “indirect” one via the gravity, which
couples to all fields. Second, Lint contributes an additional “direct” coupling. However, we
still assume that its contribution to the total energy density is negligible, such that

ρtot = ρφ + ργ (4)

There are in the literature some microscopic models for Lint (look for, e.g., [9]), but we
shall not dwell on their details, but rather assume that its effect is described phenomenolog-
ically by a term Γφ̇2, which can be motivated/justified in a field theory approach specific
to the considered microscopic model. As a matter of fact, the Γ factor embodies the mi-
croscopic physics resulting from the interaction between φ and other particles, where φ
can usually be assumed to couple to heavy intermediate fields that, in their turn, couple to
light radiation fields. As φ rolls slowly on its potential, it triggers the decay of the heavy
fields into the light ones, thereby generating a dissipative term [26,27]. Another method
adopted in warm scenarios is where φ is a Goldstone boson coupled directly to the light
radiation, but gets protected from large thermal corrections due to a symmetry imposed on
the model [26,28]. A supersymmetric model was studied in [29], whereas [30] conceived a
model, which is also supersymmetric, leading to a dissipative factor of the form Γ ∝ Tm

φm−1 .
We thus assume that these microscopic models lead to a phenomenological term

such that:

ρ̇γ + 4Hργ = Γφ̇2 (5)

whence from Equation (3) we have

ρ̇φ + 3H
(
ρφ + pφ

)
+

1
2
(Ω2)′φφ̇R = −Γφ̇2 (6)

Using

ρφ =
1
2

φ̇2 + V , pφ =
1
2

φ̇2 −V (7)

we get

φ̈ + 3Hφ̇V′φ +
1
2
(Ω2)′φR = −Γφ̇ (8)

Actually, although this “friction” term Γφ̇, describing phenomenologically the decay of
φ, may be inadequate to describe the energy transfer from φ from far out of the equilibrium;
it is however, suitable to describe the energy dissipated by φ into a thermalized radiation
bath [3]. We shall not discuss the nature of these particles into which φ decays [31,32];
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rather, we approximate them by thermal radiation (namely, of photons) such that energy is
still dominated by φ, and fluctuations are dominated by thermal, not quantum, ones.

We can see that Equation (3) expresses the conservation of total energy, in which one
neglects the contribution of Lint, which, meanwhile and through Equations (5) and (6),
affects individually both ργ and ρφ. There are many possibilities for the dissipative term,
but we shall study in this article mainly the case where it depends linearly on tempera-
ture (Γ = Γ0T), whereas we briefly study in the penultimate section the case of cubical
dependence on temperature (Γ = Γ0T3).

During warm inflation, we have T � H, and due to the inflaton interactions with
the matter/radiation, a bath of particles is continuously produced during the slow-roll
period, which transits the universe into a radiation-dominated phase through eliminating
of a smooth transition, hence the need for a reheating stage. Thermal fluctuations dominate
over quantum fluctuations, even though ργ is neglected compared to ρφ, which is reflected
through the factor

Q =
Γ

3H
=

Γ0T
3H

, (9)

so that the inflation is described to be in the strong (weak) limit regime when Q � 1
(Q� 1).

It is convenient to go from the Jordan frame to the Einstein frame, in which the grav-
itational sector of the action takes the form of the Hilbert–Einstein action, and the NMC
to gravity disappears. Consequently, in the Einstein frame, one is able to use the usual
equations of general relativity, the inflationary solutions, and the standard slow-roll analysis.

The conformal transformation is defined as:

g̃µν = Ω2(φ)gµν ⇒
√
−g̃ = Ω4√−g (10)

leading to the action expressed in the Einstein frame by

S =
∫

d4x
√
−g̃
{

1
2

R̃− 1
2

1 + 6(Ω′)2

Ω2 g̃µν∇̃µφ∇̃νφ− V(φ)

Ω4

}
+
∫

d4x
√
−g̃L̃γ + SInt. (11)

For the radiation field, and since the corresponding integrand in the action is invariant
under rescaling, by Equation (10) we find that the Lagrangian density (energy-momentum
tensor) is divided by Ω4 (Ω2) as:

Tγ
µν =

−2√−g
δ(
√−gLγ)

δgµν → T̃γ
µν =

−2√−g
δ
(√
−g̃L̃γ

)
δg̃µν =

Tγ
µν

Ω2 , (12)

and thus we conclude that the perfect fluid assumption for the radiation field will remain
valid in the Einstein frame with energy density (ργ = ργ

Ω4 ) and pressure (pγ = pγ

Ω4 ) . Taking
the definition of temperature:

ρ
γ
(γ)

= CγTγ
(γ)

4 : Cγ =
π2g∗

30
, (13)

with g∗ denoting the number of created massless modes, we see that the temperature scales
by 1/Ω going from the Jordan to the Einstein frame:

T
Jordan→Einstein−−−−−−−−−−−−→ T/Ω (14)
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As to the inflaton and gravity sector, we see that in the Einstein frame, there is a “pure”
GR gravity part, whereas we have a non-canonical kinetic term for the inflaton scalar field,
which can be put in a canonical form by defining a new field χ, related to φ by:(

dφ

dχ

)2

≡ 1
Z2 =

Ω2

1 + 6(Ω′φ)2 =
2Ω4

2Ω2 + 3((Ω2)′φ)
2 , (15)

so to get (from now on, we drop the tilde off, but we keep in mind that all calculations are
carried out in the Einstein frame):

S =
∫

d4x
√
−g
{

1
2

R− 1
2

gµν∇µχ∇νχ−U(χ)

}
+ Sγ + SInt, (16)

where

U(χ) =
V(φ(χ))

Ω4 (17)

A spatially flat Friedmann–Robertson–Walker (FRW) universe gives the energy density
ρχ and the pressure pχ of the inflaton field as

ρχ =
1
2

χ̇2 + U(χ) , pχ =
1
2

χ̇2 −U(χ) (18)

with Friedman equation given by

H2 =
1
3

ρtot =
1
3
(ρχ + ργ). (19)

For the interaction Lagrangian Lint, and while lacking a model-independent La-
grangian term leading to the RHS of (8), we shall argue by comparison to the cold inflation
scenario in order to find the corresponding equation in the Einstein frame. Note that,
unlike standard studies [6] where the damping term is introduced in the Einstein frame,
we espouse the viewpoint that the field approach models justifying the damping term
form are to be defined in the original Jordan frame. However, we shall show that under
an approximation, which we shall adopt, the form would be similar in the two frames.
Actually, the Hubble parameter transformation has an inhomogenous term [33]1:

H
Jordan→Einstein−−−−−−−−−−−−→ H/Ω +

_̇
log Ω

Ω
; (20)

then, by looking at Equation (14) and dropping/neglecting the inhomogeneous logarithmic
variation of Ω, we can see that T

H is conformally invariant, and likewise, the factor Q
(Equation (9)) is also invariant. In the Einstein frame, the field will undergo slow-roll
generation of inflation where one assumes approximate constancy for both H and T [29], so
one can consider Q as constant in the Einstein frame, and thus also in the Jordan frame. We
know that in cold inflation, including NMC to gravity, a Jordan-frame Euler–Lagrange-type
equation expressing metric stationarity:

ψ̈J + 3HJ ψ̇J + (VJ)
′
ψJ

+
1
2
(Ω2)′ψJ

R = 0 (21)

would lead in the Einstein frame to a standard GR inflationary equation:

ψ̈E + 3HEψ̇E + (VE)
′
ψE

= 0 (22)

We see now that using Equation (9) in Equation (8), we get an equation similar to
Equation (21), but with (3HJ) replaced by (3(1+Q)HJ), where Q is approximately constant.
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Then, we conclude that we get in the Einstein frame an equation similar to Equation (22)
with (HE) replaced by (HE(1 + Q)). By rewriting Q in the Einstein frame, we get (dropping
the subscript E) in the Einstein frame:

χ̈ + 3Hχ̇ + U′χ = −Γχ̇ = −Γ0Tχ̇ (23)

The upshot here is that we can use, under some approximation and for a damping
factor linearly proportional to temperature, the above standard form, albeit starting from a
free parameter Γ0 defined originally in the Jordan frame. By conservation of energy, we get:

ρ̇γ + 3H(ργ + pγ) = ρ̇γ + 4Hργ = +Γχ̇2 (24)

The fundamental equations for warm inflation within the slow-roll approximation
(χ̇2 � U, χ̈� χ̇, ρ̇γ � ργ) are:

H2 ≈ U/3 , Ḣ ≈ −1
2
(1 + Q)χ̇2, (25)

ργ ≈
3
4

Qχ̇2 , χ̇ ≈ −
U′χ

3H(1 + Q)
. (26)

Using Equation (13), we get

T =

(
1

4Cγ

Q
(1 + Q)2

(U′χ)2

U

) 1
4

(27)

2.2. Power Spectrum

We define the following slow-roll parameters:

ε =
1
2

(
U′χ
U

)2

= Z2εφ, (28)

η =
U′′χχ

U
= Z2ηφ + ZZ′φ

√
2εφ, (29)

β =
Γ′χU′χ
ΓU

= Z2βφ, (30)

where εφ, ηφ, βφ correspond to the same definitions with the derivative carried out with
respect to the field φ. One can show that the slow-roll regime is met provided we have

ε, η, β � 1 + Q (31)

The spectrum of the adiabatic density perturbations generated during inflation given
by [6] (the star * parameter denotes parameter at horizon crossing):

∆R(k) = As

(
k
k∗

)ns(k)−1
= P0(k/k∗)F (k/k∗) : (32)

P0(k/k∗) =
(

H2
∗

2πχ̇k

)2

, F (k/k∗) = (1 + 2νk + ωk)G(Q∗) : (33)

νk =
1

e
H
T − 1

, ωk =
T
H

2
√

3πQk√
3 + 4πQk

, (34)

As = ∆R(k∗) =
(

H2
∗

2πχ̇k∗

)2

(1 + 2νk∗ + ωk∗)G(Q∗), (35)
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where As represents the amplitude of the CMB fluctuations at the scale k∗, and where the
modification function G, which is due to coupling between the inflaton field and radiation
fluctuations, is given numerically for a linearly T-dependent dissipation by:

G(Q) = 1 + 0.335Q1.364 + 0.0815Q2.315. (36)

The curvature perturbation spectrum has been measured by PLANCK (WMAP) at the
68% confidence level at the fixed wave number k? = 0.05(0.002) Mpc−1 as [35,36]

As ∈ [2.136, 2.247]× 10−9 ,
(
∈ [2.349, 2.541]× 10−9

)
(37)

and thus the model seeks to reproduce these observational constraints, or at least to
reproduce their order of magnitude (10−9).

We see that the cold inflation is restored when (νk), the Bose–Einstein distribution in a
radiation bath of temperature T, and ωk, due to thermal effects, all go to zero:

(νk → 0 & ωk → 0) ⇒ cold inflation (38)

The observable spectral index is given by:

ns − 1 =
d log ∆R(k)

d log k

∣∣∣∣
k=k∗

=
1
H

d log ∆R(k)
dt

=
1

H∆R

d∆R
dt

(39)

whereas the observable r, the tensor-to-scalar ratio, is given by:

r =
∆T(k)

∆R
=

2H2

π2∆R
=

16ε

(1 + Q)2F
−1 (40)

We distinguish two limit regimes.

• Strong Limit Q� 1:
Here, using Equation (27), one can show that

T =

(
Z2(U′φ)

2

4HCγΓ0

)1/5

(41)

We have via Equation (34):

ωk = T

√
πΓ
H3 =

T
H

√
3πQ (42)

Thus, 1 + νk ≈ T
H � ωk, and one gets:

∆R = ∆Rs G : ∆Rs =

√
3TH

8
√

π
ε2Q

5
2 (43)

Thus, we get

ns − 1 =
1

H∆Rs

d∆Rs

dt
+

Q̇
H

G′Q
G

(44)

The first term will give, after lengthy calculations look at [5]:

1
H∆Rs

d∆Rs

dt
=

1
Q

(
−9

4
ε +

3
2

η − 9
4

β

)
(45)
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whereas we get for the second term:

Q̇
H

G′Q
G

=
2.315

Q
(ε− β) (46)

where we have used the identity:

Q̇
HQ

=
Γ̇

HΓ
− Ḣ

H2 =
−1

1 + Q
(β− ε) (47)

Thus, we get:

ns − 1 =
1
Q

(
−9

4
ε +

3
2

η − 9
4

β + 2.3ε− 2.3β

)
(48)

Note that ns involves the temperature T through the expression of Q = Γ0T
3H . Addition-

ally, T plays a role in determining the “end of inflation” field, φ f being the argument
of the slow-roll parameter (ε, η, β) when it equals 1 + Q = 1 + Γ0T

3H , whichever among
the three meets the equality first. Determining φ f allows one to compute the e-folding
number by:

Ne ≡ log
aend

ak
=
∫ t f

t
Hdt =

∫ χ f

χk

H
dχ

χ̇
≈
∫ χk

χ f

U
U′χ

(1 + Q)dχ =
∫ φk

φ f

U
U′φ

(1 + Q)Z2dφ (49)

The initial time when the inflation started is taken to correspond to the horizon
crossing when the dominant quantum fluctuations freeze, transforming into classical
perturbations with observed power spectrum.
As for the tensor-to-scalar ratio, we get

r =
H
T

16ε

Q5/2 G−1 =
H
T

16ε

0.0185Q4.815 (50)

• Weak Limit Q� 1
Using Equation (27), one can show that

T =

(
Z2(U′φ)

2Γ0

36CγH3

)1/3

(51)

From Equation (34), we have

ωk =
2πΓT
3H2 =

2πTQ
H

(52)

Thus, 1 + νk ≈ T
H � ωk, and one gets:

∆R = ∆Rw G : ∆Rw =
4TH

π
ε2 (53)

Thus, we get

ns − 1 =
1

H∆Rw

d∆Rw

dt
+

Q̇
H

G′Q
G

(54)

The first term will give, after lengthy calculations look at [5]:

1
H∆Rw

d∆Rw

dt
= 1− 6ε + 2η +

ωk
1 + ωk

(
15ε− 2η − 9β

4

)
(55)
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which gives, under the condition:

ωk =
2πTQ

H
� 1, (56)

the answer

1
H∆Rw

d∆Rw

dt
= 1− 6ε + 2η +

2πΓ0T2

3H2

(
15ε− 2η − 9β

4

)
(57)

As to the second term, we get using Equation (47)

Q̇
H

G′Q
G

= 0.456Q1.364(ε− β) (58)

Thus, we get:

ns − 1 = 1− 6ε + 2η +
2πΓ0T2

12H2 (15ε− 2η − 9β) + 0.456Q1.364(ε− β) (59)

As for the tensor-to-scalar ratio, we get, using G ≈ 1, the following:

r =
16ε

(1 + Q)2F
−1 =

8Hε

T
=

8HZ2εφ

T
(60)

3. Natural Inflation

The potential in the NI is periodic of the form

V = V0

(
1 + cos(

φ

f
)

)
(61)

where V0 is a scale of an effective field theory generating this potential, and f is a symmetry
breaking scale. As mentioned in the introduction, we shall consider two well-motivated
forms of NMC to gravity:

• Quadratic NMC:

Ω2(φ) = 1 + ξφ2 (62)

which is considered a leading order of terms allowed in the action generated by loops
in the interacting theory. ξ is the free parameter coupling constant characterizing the
strength of the NMC to gravity.

• Periodic NMC

Ω2(φ) = 1 + λ

(
1 + cos(

φ

f
)

)
(63)

which is similar in form to the original potential, allowing it to be justified in some
microscopic models.

It is well known that cold natural inflation with NMC is not enough to accommodate
data. In [15], we showed that cold natural inflation with NMC and F(R)-modified gravity
was viable. Here, we are trying to dispense with the modification of the gravity ingredient,
while assuming, instead, the warm scenario. We shall see that two constraints out of three
can be met for the warm NI with NMC.

The strategy would amount to carrying out an exhaustive scan of the free-parameters
space (that of φ∗, Γ0, f , V0, ξ or λ) and computing for each “benchmark” the corresponding
ns, r and φ f , the latter making one of the slow parameters equal to (1 + Q), which would
allow us to compute the e-folding number Ne, which with (ns, r) would constitute the
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observational constraints to be accommodated. As to the number of relativistic degrees
of freedom of radiation, we use g∗(T) = 228.75, i.e., Cγ = 75.2557, corresponding to the
number of relativistic degrees of freedom in the minimal supersymmetric standard model
at temperatures greater than the electroweak phase transition.

4. Comparison to Data: Strong Case

We carried out an extensive scan over the free-parameters space, and for each point
we computed (ns, r) and Ne. We could not find benchmarks meeting the constraints of
(ns, r) at the 95% confidence level according to the 2018 Planck (TT, EE, TE), BK18, and
other experiments (lowE, lensing) separately or combined, which would allow also for
acceptable Ne ≥ 40 in order to solve the flatness and horizon problems. Accommodating
(Ne = 40, r) was possible, but at the expense of getting a somewhat large (ns).

• Quadratic NMC
Figure 1 shows the results of scanning the parameters space in the case of strong-limit
warm NI with quadratic NMC to gravity. One could accommodate (ns, r) but with too
little Ne. In the figures, the two colors dots correspond to two choices of the coupling
ξ = −20,−40.
Looking to meet the e-folds constraint, we imposed (Ne = 40) with (ξ = −20), and
fixed the values of (Γ0, f , V0) as before, while scanning over φ∗. We found the “bench
mark”: (φ∗ = 0.0029) giving the required e-folds with r = 1.03× 10−14 and Q in the
order of 1.3× 103. However, the scalar spectral index ns was large (ns = 0.98) outside
the acceptable contours.

Figure 1. Predictions of warm natural inflation with quadratic NMC to gravity in the strong limit.
We took the values in units where Planck mass is unity (Γ0 = 7000, f = 5, V0 = 5× 10−6). For the
black (red) dots, we have ξ = −20(−40), φ∗ ∈ [3× 10−4, 0.0015] (∈ [3× 10−4, 0.0029]) corresponding
to Ne ∈ [14.8, 30.4](∈ [9.3, 26.4]). Q in both cases is in the order of 103.

• Periodic NMC
Figure 2 shows the results of scanning the parameters space in the case of strong-
limit warm NI with periodic NMC to gravity. As in the case of quadratic NMC, one
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could accommodate (ns, r) but with too little Ne. In the figures, the three colors dots
correspond to three choices of the coupling λ(×10−6) = 5, 6, 8.
Again, one could meet the acceptable value (Ne = 40) with (λ = 5× 10−6) and the
values of (Γ0, f , V0) as before, through scanning over φ∗, and finding a “bench mark”:
(φ∗ = 5× 10−4) giving the required e-folds (Ne = 40.14) with r = 4.2× 10−20 and
Q in the order of 1.3× 104. However, the scalar spectral index ns was again large
(ns = 0.98) outside the acceptable contours.

Figure 2. Predictions of warm natural inflation with periodic NMC to gravity in the strong limit.
We took the values in units where Planck mass is unity (Γ0 = 1000, f = 100, V0 = 1 × 10−6).
For the red (black, pink) dots, we have λ = 5× 106(6× 106, 8× 106), φ∗ ∈ [1× 10−4, 1.5× 10−4]

(∈ [1× 10−4, 1.8× 10−4],∈ [1× 10−4, 2× 10−4]) corresponding to Ne ∈ [24.5, 29.3](∈ [22.6, 29.3],∈
[19.9, 21.6]). Q in all cases is in the order of 6× 103.

5. Comparison to Data: Weak Case

As in the case of the strong limit, we performed an exhaustive scan over the free
parameters, and for each point we computed (ns, r) and Ne. Again, the search was negative
for benchmarks meeting the constraints of (ns, r) at 95% confidence levels of the Planck
2018 data, with acceptable Ne ≥ 40. Unlike the strong limit, we could not accommodate
(Ne = 40) even with out-of-range (ns, r).

Figure 3 shows some results of our scan. In both cases of quadratic and periodic NMC
to gravity, we took Γ0 = 7.14× 10−7, f = 2, V0 = 2.25× 10−15. The dots correspond to
fixing the horizon crossing field and scanning over the NMC (ξ, λ). As the figure shows,
even though one could accommodate the observables (ns, r), the e-folds number was always
too small to be acceptable, which means the ingredient of “warm scenario” was not enough
to solve the problems of the NI with NMC.
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Figure 3. Predictions of warm natural inflation with NMC to gravity in the weak limit. For the
quadratic (periodic) NMC in red (black) dots, we took (the values are given in units where Planck mass
is unity): Γ0 = 7.14× 10−7, f = 2, V0 = 2.25× 10−15. We fixed φ∗ = 2(6.9) and scanned over ξ(λ)

∈ [1.99, 2.00]([1.04, 1.06]). We found ns ∈ [0.95, 0.97]([0.95, 0.97]), r ∈ [0.015, 0.016]([0.0385, 0.0386]),
and we got Ne ≈ 0.96(0.27). In both cases of NMC, we had Q in the order of 10−4.

6. Cubic Dissipative Term

In order to tackle the “insufficient Ne” problem, which is fatal for any plausible
inflationary model, we consider the case of cubic dissipation factor (Γ = Γ0T3).

As said earlier, some microscopic models may lead to the T-cubically dependent
dissipation factor describing a decay of φ into radiation fields through intermediate heavy
fields. However, we do not suppose this form in the original Jordan frame, but rather
assume it directly in the Einstein frame and investigate the results.

The analytical expressions of the resulting ns, r and Ne are too cumbersome to be stated
here. However, for the strong-limit, cubicly T-dependent dissipation, one can approximate
the CMB fluctuations’ amplitude As by [5]:

As =
1

8π

(
9

2π2Cγ

)1/4(Q3U
εk

)3/4

G(Q) (64)

where, in contrast to the linearly T-dependent dissipation case (Equation (36)), the modifi-
cation function G is given now by [26]:

G(Q) = 1 + 4.981Q1.946 + 0.127Q4.330. (65)

We scanned numerically for five free parameters ( f , V0, Γ0, φ∗) and ξ(λ) in the quadratic
(periodic) NMC scenario, and for each point in the parameter space we computed φend,
corresponding to one of the slow-rolling parameters being equal to unity, then obtained
(ns, r, As), to check they meet the experimental observations, with a suitable computable Ne.
We finally evaluated (Q, T, H) to check that the conditions of strong limit regime (Q� 1)
and warm inflation scenario (T/H > 1) are satisfied. We found the following benchmark
intervals:
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• Non-periodic NMC:
Scanning over (ξ ∈ [19, 22]) with

φ∗ = 0.063, f = 5, Γ0 = 3× 10−9, V0 = 2× 10−21, (66)

we found acceptable points with the following ranges:

φend ∈ [8.10, 8.34], As ∈ [2.085, 2.128]× 10−9,

ns ∈ [0.9433, 0.9864], r ∈ [1.86, 1.93]× 10−13,

Ne ∈ [73.47, 73.50], Q ∈ [28.48, 28.73],

T ∈ [9.8818, 9.8895]× 10−7, H ∈ [3.3582, 3.3954]× 10−11 (67)

with Ne, As, Q (φend, ns, r, T, H) increasing (decreasing) with ξ.
• Periodic NMC: Scanning over (λ ∈ [25, 73]) with

φ∗ = 9, f = 5, Γ0 = 1010, V0 = 1× 10−18, (68)

we found acceptable points with the following ranges:

φend ∈ [0.1267, 0.3601], As ∈ [0.095, 1.5]× 10−9,

ns ∈ [0.9519, 0.9691], r ∈ [1.4, 2.86]× 10−13,

Ne ∈ [41, 77], Q ∈ [20.47, 23.72],

T ∈ [3.7, 5.6]× 10−7, H ∈ [0.884, 2.49]× 10−11 (69)

with φend, r (ns, Ne, As, Q, T, H) increasing (decreasing) with λ.

Note also that only “mild” constraints on Hubble parameter values ∈ [10−24, 1014]
GeV (or ∈[10−43, 10−5] in natural units) exist in the literature [37], which are respected in
the above values for both quadratic and periodic NMC cases.

Figure 4 shows the mentioned benchmark acceptable points, and also shows the allure
of As with respect to the number of e-foldings (Ne) in the cases of quadratic (a) and periodic
(b) NMC. The As-values are acceptable in the quadratic case. However, for the periodic
case, we see that the order of magnitude (10−9) for As is reproduced, albeit with prefactors
not reaching the constraints of Equation (37), unless at the expense of a large number of
e-foldings. We do not consider large Ne > 80 as an exclusionary sign, since there are
many inflationary models arguing for such high values of “total” Ne not contradicting
“observable” constaints of Ne [38].
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(a) (b)

Figure 4. Above: Cubic dissipation case for both quadratic and periodic NMC, showing consistency
with observational data regarding (ns, r). Bottom: The quadratic NMC (a) accommodates (As, Ne),
whereas the periodic (b) NMC accommodates Ne and the magnitude order of As.

7. Summary and Conclusions

We discussed in this paper the scenario of warm NI with NMC to gravity. It is well
known that NI with NMC and modified gravity is viable considering the Planck 2018
data. We kept the GR Einstein–Hilbert action and examined the possibility of whether
assuming the “warm” paradigm could make the NI with NMC viable. Within the warm
paradigm, we introduced the “phenomenological” damping factor in Jordan frame and
examined the approximation which would put it in the same form in the Einstein frame.
We restricted first our study to the case where the damping constant is linearly proportional
to temperature.
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We found that in the strong limit, the model is able to accommodate the spectral
observables (ns, r) but with a small e-fold number reaching Ne ∼ 30. However, the points
allowing for larger Ne ≥ 40 would lead to spectral observables slightly out of range.

In the weak limit, the allowed parameter space for (ns, r) is far narrower than in the
strong limit, but the corresponding Ne is too small (Ne ≤ 1) to be remedied, even at the
price of pushing (ns, r) considerably out of range.

We secondly treated briefly the case of the damping constant being proportional to
the temperature raised to the power three. We, upon scanning the free parameters, found
some benchmark points, in the limit of strong Q, satisfying the four constraints on (ns, r, As
and Ne).

We conclude that the “warm” ingredient may be enough to solve the problems of
NI, provided one explores different forms of Γ-dependence on T. Alternatively, a possible
combination of the “warm” paradigm plus another mechanism, such as assuming Palatini
formalism rather than the metric one, may be fruitful if one wants to make a warm NI with
NMC viable.
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