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Abstract: The binary neutron star merger observed and localized on 17 August 2017 by the LIGO and
Virgo gravitational interferometers and by numerous telescopes on the ground and in orbit linked
in an unambiguous way the coalescence of double neutron stars with the formation of a relativistic
outflow (short gamma-ray burst GRB170817A) and of a thermal radioactive source (kilonova). The
vicinity of the event (40 Mpc) made it possible to monitor the electromagnetic counterpart in detail at
all wavelengths and to map its close environment in the outskirts of the lenticular galaxy NGC 4993.
Radio VLBI images of GRB170817A allowed the first direct detection of superluminal motion in a
GRB afterglow, pointing to a collimated ultra-relativistic jet rather than to a quasi-isotropically, mildly
relativistically expanding source. The accurate spectroscopy of the kilonova at ultraviolet-to-infrared
wavelengths with the X-Shooter spectrograph of the ESO Very Large Telescope showed the long-
sought-after signature of rapid neutron capture process (in short: r-process) nucleosynthesis. Kilonova
detection makes gravitational wave sources optimal tracers of heavy element formation sites.
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1. Mergers of Binary Compact Star Systems

Binary systems of neutron stars and black holes, including hybrid systems composed of
a neutron star and a black hole, form in the universe in various ways. One of these predicts
that both members of a binary massive star system undergo core-collapse supernova
explosion, each leaving behind a degenerate remnant: a neutron star or black hole. Stellar
cores larger than about 100 M� may implode directly to a black hole without undergoing
supernova. If the binary compact star system thus formed is not disrupted by the second
collapse, it survives some hundreds of millions of years, during which the orbital motion of
the members causes the system to loose energy via gravitational radiation and eventually
to coalesce. If one member is a black hole, the remnant of the merger is naturally always a
black hole, while if both members are neutron stars, the final stable black hole configuration
may be preceded by a brief (tens to hundreds of milliseconds) metastable supra-massive
neutron star remnant phase. The regime of strong gravity (large masses confined in a small
volume and in tight orbits) and the precise orbital behavior that characterize these sources
make them among the loudest and best identifiable sources of gravitational radiation for
state-of-the-art laser interferometers in the 100–1000 Hz range, where the detectors have
maximum sensitivity [1].

The formation rates of these systems are poorly constrained, as they depend on star
formation and evolution in a way that makes them rather uncertain [2–4]. The most
illustrious example of these binary collapsed star systems in our galaxy is PSR1913+16, a
pulsar that orbits around an unseen companion with a period of about 8 h, that decreases
secularly according to gravitational radiation loss prediction [5,6]. The 1974 report of this
system and of its shrinking orbit, which earned the Nobel Prize in 1993 for its authors
Russell Hulse and Joseph Taylor, was followed by many other similar detections. To date,
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about 20 binary neutron star systems have been detected in the galaxy [7–9], but no binary
black hole system nor neutron star plus black hole system has been detected.

2. Aftermath of a Binary Merger Containing a Neutron Star

While it is unlikely, owing to relatively low rates, that a binary compact star merger
takes place in the galaxy in our lifetime, these events occur frequently in the universe.
Binary stellar-size black hole systems are thought to be electromagnetically silent, which
makes the identification of their host galaxies difficult, since the error areas provided by
current gravitational interferometers project up to several hundreds of square degrees
in the sky. These sky areas contain high numbers of galaxies, depending on limiting
brightness. As an example, at a distance of 200 Mpc, in an error box of ∼20 deg2, there
may be approximately two dozen galaxies that have a luminosity comparable to the Milky
Way [10].

On the other hand, the mergers of binary systems, where at least one member is a
neutron star, are accompanied by multi-wavelength transients. Therefore, these systems
can be detected through their multi-messenger variable signals from external galaxies, as
predicted long before the advent of the gravitational laser interferometers Advanced LIGO
and Virgo [11–13]. The expected electromagnetic signals include: a prompt short-duration
gamma-ray burst (GRB)—order of 2 s or less, see [14] for the classical distinction between
long and short GRBs, barring extended emission in short GRBs [15]—produced by a mildly
relativistic cocoon and/or highly relativistic outflow collimated by the strong magnetic
field of the merger compact remnant or anchored on its promptly developed accretion
disk; a GRB multi-wavelength afterglow of non-thermal origin (synchrotron radiation),
which rises hours to days after the merger, depending on the viewing angle; a thermal
source of radioactive nature due to the formation of heavy elements, the so-called kilonova,
which forms milliseconds after the merger, rises in days and fades rapidly (faster than a
supernova); low-level non-thermal radio and X-ray emissions resulting from the interaction
of the kilonova ejecta with the circum-binary medium, peaking years after the merger, a.k.a.
kilonova afterglow.

3. Kilonovae

As their name suggests, kilonovae are transient sources about three orders of magni-
tude more optically luminous than novae; that is, they are expected to reach a maximum
luminosity of ∼1040–1041 erg s−1. They have been predicted to exist as the aftermath of the
merger of binary systems of two neutron stars or of a neutron star and a black hole [16].
Upon merger, a fraction (∼10−3–10−2 M�) of neutron-rich material comes unbound and
decompresses rapidly. The results of hydrodynamic and full-network calculations [17]
and of 3D simulations [12] have shown that rapid neutron capture (a.k.a. “r-process”)
nucleosynthesis takes place in this environment and produces sufficient material to explain
most of the r-process nuclei in the galaxy. Binary neutron star mergers may in fact be
responsible for a large fraction, if not all, of the synthesis of r-process elements in the
universe, as the neutron and energy densities attained in supernovae may not be sufficient
to produce these elements [18–22]. An exception may be the energetic supernovae con-
nected with GRBs, where, in a collapsar scenario, the accretion disk could host r-process
nucleosynthesis [23–25].

Kilonovae, like novae and supernovae, are essentially thermal sources powered by
the radioactive decay of hundreds of unstable isotopes of neutron-rich elements with an
atomic weight greater than that of iron, formed via r-process after the two compact stars
coalescence. Unlike supernovae, whose light is almost entirely produced by the radioactive
element 56Ni, kilonova light curves are due to the convolution of the radioactive decay
of comparably abundant isotopes. This makes it difficult to disentangle the individual
radioactive species present in the ejecta solely based on the analysis of the light curves,
although their slopes may provide important constraints (see Section 6). More accurate
diagnostics on chemical composition should come from spectroscopy.
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Two components are thought to produce the kilonova spectral continuum: one is due
to the dynamical ejecta, consisting of the mostly neutron-rich material (i.e., with relatively
low ratio between electrons and nucleons, equal to the ratio between protons and nucleons,
symbolized by the Ye parameter) resulting from the tidal disruption of both neutron stars
and distributed in a thick accretion disk on the plane of the merger. The high opacity
of the elements in this material, thought to be dominated by lanthanides, suppresses
the continuum at the bluer wavelengths, thus making this spectral component appear
relatively “red” [26,27]. The other component forms occasionally in a post-merger phase,
along the polar direction, when a long-lived (tens of milliseconds) neutron star remnant
produces a neutrino wind that lowers the neutron fraction and favours the formation of
more neutron-poor elements (i.e., having high Ye). With their lower opacity, these elements
are less effective in suppressing the bluer wavelengths.

Kilonova continuum emissions have a spectral maximum in the wavelength range
3000–20,000 Å, where the neutral and ionized atoms of the freshly formed unstable isotopes
imprint absorption lines. Spectroscopy in this range thus offers a diagnostic of the nature
and abundance of these elements. No firm identification of a kilonova had occurred prior
to the gravitational event of 17 August 2017 (see Section 6). However, infrared excesses
had been detected superimposed on the light curve of the afterglow of short GRB130603B,
which would be consistent with kilonova emission models [28,29]. Similarly suggestive
reports were made for other nearby GRBs [30,31].

4. The Gravitational Event of 17 August 2017

On 17 August 2017, the two LIGO detectors revealed a signal, GW170817, that was
consistent with being generated by a binary neutron star inspiral and merger [32]. The
Virgo non-detection helped reduce the positional uncertainty of the source in the sky.
Simultaneously, the Gamma-ray Burst Monitor onboard Fermi and the INTEGRAL ACS
detected a 2-second-duration GRB from a sky area co-located with the error area associated
with the gravitational signal [33–35]. Interestingly, the start time of this GRB lags the merger
gravitational signal by 1.7 s, a time delay that may be related to the formation of the GRB
engine or the jet acceleration process, or to a simple geometric effect, i.e., due to the gamma
radiation emitted from the jet axis, thus delayed with respect to the gravitational wave [36].

A previously unknown point-like optical source—named AT2017gfo—was detected
11 h after the gravitational signal at a projected separation of about 10 arcseconds (i.e.,
∼2 kpc) from the center of galaxy NGC 4993, located in the LIGO error area, at the known
distance of 40 Mpc. This is compatible with the distance estimated with the gravitational
data based on the “standard siren” assumption [32,37,38]. The near-infrared/optical spec-
trum of this source identified it as a kilonova, as detailed in Section 3. It showed broad
absorption lines, the tell-tale sign of atoms heavier than iron present in the ejecta, formed
via rapid neutron capture nucleosynthesis in the expanding, neutron-rich plasma released
after the tidal disruption of the two neutron stars [39–41]. The next two sections contain an
account of the major results obtained with observations of the counterpart of GW170817
across the electromagnetic spectrum, with an emphasis on the kilonova. A detailed review
of the electromagnetic event observations can be found in [42–44].

5. The Non-Thermal Source Associated with GW170817

The short GRB detected simultaneously and co-spatially with GW170817 by the
INTEGRAL/SPI–ACS [35] and Fermi/GBM [34], GRB170817A, with a total isotropic energy
of ∼3 × 1046 erg, was under-energetic with respect to the rest of the short-GRB population,
whose isotropic energies average around 1051 erg [45,46]. The relatively large viewing an-
gle, suggested by the orientation of the gravitational wave source [32], may be responsible
for the lack of relativistic beaming of the gamma-rays, and for the intrinsic weakness of
the GRB signal, which would have indeed gone undetected were the source located at
the typical distance of the majority of GRBs (z∼1). No GRB afterglow at X-ray or radio
wavelengths was detected until about 10 days after explosion, which is again consistent
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with expectations for a significantly off-axis view to the GRB jet [47,48]. Radio VLBI inter-
ferometry led Mooley et al. [49] to detect superluminal motion of the source, pointing to a
jet blob moving relativistically. Ghirlanda et al. [50] then determined that the blob remains
unresolved at radio wavelengths, indicating that the jet has a structured profile, i.e., with
the Lorentz factor varying as a function of viewing angle, rather than a wide-angle, mildly
relativistic quasi-isotropic outflow (choked jet or cocoon). The estimate of the jet viewing
angle from the VLBI monitoring, ∼20 degrees, is consistent with that of the symmetry axis
of the gravitational source [32].

6. The Kilonova AT2017gfo Associated with GW170817

Analysis of the ultraviolet-to-infrared light curve of AT2017gfo shows that its slope is
consistent with the radioactive decay of neutron star ejecta with electron fraction Ye . 0.3,
which provides strong evidence for an r-process origin of the electromagnetic emissions in
this band [51].

Owing to solar constraints, spectroscopic observations of the kilonova AT2017gfo
started at the largest telescopes around the world many hours after detection of the optical
counterpart, except at the Magellan telescope, where spectra could be acquired less than
an hour after the optical detection; these showed a black body peaking shortward of the
detector wavelength range, i.e., with a temperature larger than 5000 K [52], indicating that
the source may have had its maximum emission in the ultraviolet range during its very
early phase.

Ten very high signal-to-noise ratio spectra of AT2017gfo, with excellent wavelength
coverage (3000–22,200 Å), were obtained with the ESO Very Large Telescope equipped with
the X-Shooter spectrograph [39,40]. The earliest of these, acquired 1.5 days after the merger,
describes a black body only weakly modified by absorption; the later spectra, as the ejecta
become transparent, deviate increasingly from a thermal law and show more absorption
lines, whose profiles are broadened by large photospheric velocities of the order of 0.1–0.2c.
This causes blending of the lines, which, together with their blueshift and potentially very
high number (large atomic number elements can have millions of transitions), makes their
identification arduous. Additional difficulty arises from our poor knowledge of the line
opacities, i.e., the probability of the transitions and their optical depth [53–55]. Examples
of the interplay of the more neutron-rich and more neutron-poor model components (see
Section 3) in reproducing the observed continuum at early epochs after merger can be
found in [39,56–58].

A preliminary attempt at Cs I and Te I absorption identification [40] was disputed by
Watson et al. [59], who proposed instead that the strong, broadened P-Cygni absorption
feature observed at 1.5 days around 8000 Å corresponds to a transition of once-ionized
strontium (Sr II), blue-shifted along the line of sight owing to the approaching photosphere.
Since the Sr element is close to the first peak of the r-process elemental abundance distri-
bution, which includes the neutron-poorest ones [60,61], its identification may imply that
low-neutron-content atoms prevail in the ejecta, i.e., the kilonova emission we observe may
be dominated by post-merger ejecta, favouring a long-lived neutron star as a remnant (see
also [62,63]). Upper limits on platinum and gold amounts indicate masses lower than
a few 10−3 and 10−2 M�, respectively [54]. The Spitzer mid-infrared spectra obtained in
nebular phase at 43 and 74 days after merger [64,65] suggest, depending on assumptions,
the presence of Se, W, Os, Rh and Ce atoms in low ionization states [66].

In the wake of the first kilonova detection, its ultraviolet-to-infrared light curves
were systematically compared to those of the counterparts of low-redshift short GRBs
to explore possible analogies and differences of this thermal component in the various
cases [67–69]. Considerable diversity is observed in the kilonova properties that cannot be
ascribed only to the viewing angle. It appears that, when evidence of a kilonova is found
in an afterglow, its red component may be similar in luminosity to that of AT2017gfo, while
the blue component may be substantially brighter.
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The predicted long-term aftermath of the kilonova, caused by the interaction of the
merger ejecta with the external medium (kilonova afterglow), may have been detected in
X-rays with Chandra about 3.5 years after binary merger [70].

7. The Host Galaxy of GW170817

The binary neutron star system that produced GW170817 was hosted by a lenticular
galaxy, NGC 4993, at z = 0.009783 (40 Mpc), that was accurately studied with, among
others, the Hubble Space Telescope, Chandra and the MUSE instrument on the ESO Very Large
Telescope [38]. Imaging of the continuum with the Hubble Space Telescope suggests evidence
for large, face-on spiral shells, while MUSE integral-field spectroscopy revealed edge-
on spiral features emerging from the distribution of nebular line emission. The Chandra
imaging points to the presence of mild nuclear activity. All this suggests that NGC 4993
has undergone a relatively recent merger (∼1 Gyr), which may have fueled the weak active
nucleus. The total stellar mass of the galaxy was estimated to be M∗ ∼ 1.4× 1011 M� based
on a fit to the integrated spectral energy distribution of the galaxy. This, together with little
or no ongoing star formation, is consistent with the properties of host galaxies of short
GRBs [46].

At the location of AT2017gfo, no globular or young stellar clusters more massive than
a few thousand solar masses is detected with the Hubble Space Telescope, which is many
standard deviations below the peak of the globular-cluster mass function of the host galaxy,
strongly suggesting that GW170817 did not form and merge in a globular cluster [71]. The
population in the vicinity of the merger is predominantly old, with .1% of the light due to
a population younger than about 500 Myr [38].

Statistical tools based on binary stellar evolution simulations and binary population
and spectral synthesis codes can prove effective in guiding a general estimate of the lifetime
of the merging binary system and of the basic properties of its members in the present and
future detected cases, provided due account is taken of the many involved assumptions
and uncertainties [72].

8. Conclusions and Future Prospects

The gravitational waves detected from GW170817 and the observation of its counter-
part over the electromagnetic spectrum represent a textbook astrophysical case of long-
standing multiple hypotheses confirmation. Direct detection of gravitational radiation from
a binary neutron star inspiral was anticipated after the indirect evidence of orbital shrinking
provided by long-term monitoring at radio wavelengths of PSR1913+16; short GRBs were
long suspected to be parented by binary neutron star mergers, based on their sub-second
duration. A thermal source powered by radioactive decay of unstable isotopes of heavy
elements, generated via r-process in the neutron-rich medium surrounding the merger, was
considered to be a virtually unavoidable aftermath of neutron-star binary coalescence.

The closeness of the GW170817 event limited the number of galaxies that could
potentially host its progenitor, facilitating the search with optical telescopes, and, together
with the orientation of its symmetry axis (about 30 degrees away from our line of sight),
largely favoured the detection of all three phenomena: GW signal, GRB, and kilonova. The
limits on the ejecta mass of the kilonova, few hundreths of a solar mass [39,73], together with
estimated rates of binary neutron star mergers, directly confirms earlier purely theoretical
or indirect observational conclusions that double neutron star mergers are indeed a major
site of cosmic nucleosynthesis [51,74].

Several candidates for binary neutron star mergers or neutron star and black hole
mergers were detected during the third observing run of the LIGO/Virgo/Kagra interfer-
ometers in 2019–2020 [1,75–77]. However, perhaps owing to the relatively large estimated
distance and size of the error areas in the sky, no electromagnetic counterpart could be
solidly detected, with the possible exception of a gamma-ray signal reported by the INTE-
GRAL SPI-ACS in connection with GW190425 [78]. The results of the third observing run
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constrained the cosmic rates of binary neutron star mergers and neutron star/black hole
mergers to be 10–1700 Gpc−3 yr−1 and 8–140 Gpc−3 yr−1, respectively [79].

With the fourth observing run, that will feature the simultaneous engagement of
the upgraded interferometers LIGO, Virgo, KAGRA, due to start in late May 2023, big
expectation rests in a firm new detection of a nearby binary neutron star merger and its
electromagnetic counterpart. For kilonova study purposes, this should clarify whether and
how the properties of the single known case, AT2017gfo, will differ from other cases, and
how they possibly depend on the gravitational parameters.

A caveat is in order on both the observational and the theoretical front. Firstly, kilo-
novae are extremely elusive sources, owing to their faintness and fastness. AT2017gfo
had a luminosity comparable to that of the least luminous supernovae. It reached peak
about one day after the binary neutron star merger, as opposed to supernovae, whose
maximum light occurs 10 to 20 days after explosion, and it decayed much faster than a
supernova [80]. Therefore, robust kilonova detection requires rapid reactions (seconds to
minutes) to transients that should ideally be located at small distances (z . 0.1).

Fast turnaround will be guaranteed by small (meter class) and flexible automatic
and robotic telescopes that are already operational or being lined up around the world.
Among these is the near-infrared and optical facility Rapid Eye Mount (60 cm) that will
continue the GRB-monitoring work it has started since its deployment at the ESO site of
La Silla [81,82]. Dedicated optical facilities covering large portions of the sky for optimal
GW optical counterpart search include the Gravitational-Wave Optical Transient Obser-
vatory, consisting of two arrays of eight telescopes, each with a 40 cm aperture, whose
combined field of view is 80 square degrees [83,84]; BlackGEM [85], comprised, in its final
configuration, of fifteen 65cm aperture telescopes, with a total field of view of 40 square
degrees1 (see [86] for a complete review of facilities devoted to GW search). Because of low
flux levels, spectroscopic identification and characterization requires measurements with
8–10 m class telescopes.

Particularly critical is the rapid search of ultraviolet transients associated with kilonova
in its very early phases, when contributions from an ephemeral blue-emission component
may be important. These will be efficiently detected by the Ultraviolet Transient Astronomy
Satellite thanks to its quick-reaction concept and 200-square-degree field of view [87].
During the later phases of kilonova (hours to days after merger) the James Webb Space
Telescope will provide the most sensitive spectroscopy at infrared wavelengths, potentially
also covering the as-yet-unexplored nebular epoch, when the rarefied ejecta allow forbidden
emission lines to form. While this phase is observed in supernovae months to years after
explosion [88–91], in kilonova it should occur significantly earlier, i.e., weeks after merger,
owing to the much smaller ejecta masses.

The future space mission Transient High Energy Sky and Early Universe Surveyor for time
domain astrophysics, optimized for the search of weak and high-redshift GRBs and cur-
rently undergoing a preparatory phase, will presumably have a direct impact on kilonova
studies, for it will carry, alongside wide-field X- and gamma-ray cameras, a 70 cm near-
infrared telescope to catch prompt kilonova signals associated with short GRBs. Coarse
resolution near-infrared spectroscopy will return initial reliable redshift estimates [92].

The source distance, an approximate notion of which can be derived from the gravi-
tational signal, could guide the optical transient searching technique. For nearby sources
(z < 0.1), it may be more effective to target galaxies selected in the uncertainty area and
within the predicted distance range with an algorithm that, based on their size and type,
weighs their probability to host a binary compact star system [10,37], rather than using
a uniform tiling of the error box, that may be more appropriate when distance is poorly
known or not known [93].

From an interpretative point of view, it will be necessary to continue the systematic
calculations of line strength for bound–bound transitions and radiative transfer simulations
in neutron star merger ejecta for identification of the atomic species. The line strengths
depend on the abundance distribution and temperature in the ejecta, which makes ele-
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mental identification the most direct diagnostic of the physical conditions of the ejecta.
Synthetic spectra, along with line lists, realistic atomic models, and experimentally derived
atomic opacities of r-process elements, must be compared with observed kilonova spectra
to increase the accuracy of atomic models [63,94]. While the observed spectra of AT2017gfo
remains a golden template for modelling work owing to their excellent signal-to-noise
ratio, spectroscopic observations of nearby kilonovae hopefully detected during future
gravitational observing runs will enable a better discernment of the relative importance of
neutron-rich and neutron-poor elements in shaping the kilonova spectrum.

Funding: This research was partially funded by the Italian Space Agency and Italian National
Institute of Astrophysics under agreement ASI-INAF 2017-14-H.0 High Energy Astrophysics and
Astroparticle Physics.

Data Availability Statement: The Very Large Telescope X-Shooter spectra of kilonova AT2017gfo are
archived in the repository at www.wiserep.org. They can also be obtained from the author on request.
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Note
1 https://astro.ru.nl/blackgem/, accessed on 16 February 2023.
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