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Abstract: Standard cosmology has long been plagued by a number of persistent problems. The origin
of the apparent acceleration of the cosmic expansion remains enigmatic. The cosmological constant
has been reintroduced as a free parameter with a value in energy density units that “happens”
to be of the same order as the present matter energy density. There is an internal inconsistency
with regards to the Hubble constant, the so-called H0 tension. The derived value of H0 depends
on the type of data that is used. With supernovae as standard candles, one gets a H0 that is 4–5 σ

larger than the value that one gets from CMB (Cosmic Microwave Background) data for the early
universe. Here we show that these problems are related and can be solved if the cosmological constant
represents a covariant integration constant that arises from a spatial boundary condition, instead
of being a new type of hypothetical physical field, “dark energy”, as assumed by standard cosmology.
The boundary condition only applies to the bounded 3D subspace that represents the observable
universe, the hypersurface of the past light cone.
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1. Introduction

While the standard model of cosmology, which is often referred to as the concordance
model or the ΛCDM model, has been highly successful in the modeling of a wealth of cos-
mological observations, it has not been able to provide resolutions to several fundamental
problems. The cosmological constant Λ had to be introduced as a free fitting parameter
to allow modeling of the apparently accelerated cosmic expansion, which had been discov-
ered unexpectedly from the observed redshift—brightness relation for standard candles
in the form of supernovae type Ia [1,2]. Explanations have been sought in terms of some
new field, referred to as “dark energy”, a source of repulsive gravity with an equation
of state, such as the vacuum energy of quantum fields [3–8]. A problem with this interpreta-
tion is that quantum field theory predicts a value of Λ that is about 54 orders of magnitude
larger than the observed value (not the often quoted 122 orders of magnitude, cf. [9]). This
is considered as one of the worst predictions in the history of physics. Although a variety
of alternative explanations have been explored, e.g., [10,11], the cosmological constant has
remained enigmatic.

In the absence of any known constraint on the value of the cosmological constant,
it has been argued that any value of Λ may be physically permissible, that there may exist
parallel universes where its value is different, and that only universes where the value is
very small are conducive to the emergence of biological life [12]. If, however, a unique
constraint condition for Λ could be identified, this “anthropic argument” would become
obsolete and the multiverse option would be ruled out.

Standard cosmology has persistently stuck to the interpretation that the cosmological
constant is some kind of unspecified physical field that is yet to be discovered, in spite
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of unsuccessful decades in search of such a hypothetical field. Internal inconsistencies also
plague standard cosmology, the most prominent of which—generally referred to as the “H0
tension”—is related to the Hubble constant, a parameter that establishes the fundamental
scale for cosmological distances and for the age of the universe. While the use of supernovae
type Ia as standard candles gives H0, SN = 73.2 ± 1.3 km s−1 Mpc−1 [13,14], the CMB
analysis gives H0, CMB = 67.4± 0.5 km s−1 Mpc−1 [15]. It is a disagreement that exceeds 4σ.

There is a similar tension in another fundamental distance scale—the radius of the sound
horizon rd at the “drag epoch,” when the baryons decouple from the photons. If we allow
rd to be a free fitting parameter, then BAO (Baryon Acoustic Oscillations) observations
for small redshifts give rd ≈ 136± 3 Mpc, much smaller than the CMB-derived value
of rd = 147.2± 0.3 Mpc [16].

The tensions in H0 and rd are, however, anti-correlated. There is no significant tension
in the H0 rd product [16]. Late-time modifications of the standard model, e.g., by allowing
the cosmological constant to vary, would only affect H0 but not rd. Early-time modifications
would require new physics to be postulated beyond the standard model of particle physics,
but this would still fail to resolve the problem, because a reduction of rd would exacerbate
a tension in the S8 parameter [17]. S8 is a measure of the matter clustering amplitude
on a scale of 8/h Mpc (where h is the Hubble constant in units of 100 km s−1 Mpc−1).

The present paper aims to show that these enigmas and inconsistencies can be resolved
if one abandons the standard dark-energy interpretation of the cosmological constant and
instead treats it as a covariant integration constant that arises from a spatial boundary
condition that only applies to the bounded hypersurface of the past light cone, the 3D
subspace that represents the observable universe. With this interpretational framework,
which keeps the formalism within the realm of general relativity (in contrast to many other
more or less ad hoc alternative cosmologies that have been put forward), it is possible
to resolve the outstanding enigmas and to predict the numerical values of the cosmological
constant and the H0 tension, while remaining consistent with CMB data and Big Bang
nucleosynthesis. Without the use of adjustable parameters, the predictions are found
to agree with the observationally determined values within the observational uncertainties.

Section 2 clarifies why the Einstein field equation for gravity and cosmology must
contain a covariant integration constant. Section 3 discusses the fundamental distinction
between the case when the scale factor a is a function of proper time t that can be measured
by comoving clocks in 4D spacetime, and when it is a function of cosmological distance r
along light rays in a finite 3D subspace. Section 4 is devoted to the derivation of the expres-
sion and numerical value for the cosmological constant. Section 5 deals with two further
implications beyond the standard model: the age of the universe, and a resolution of the H0
tension. The conclusions are summarized in Section 6.

2. Why the Metric Needs to Be Constrained by a Boundary Condition

Einstein’s equation for gravity is generally written with the expression for the space-
time metric on the left-hand side and the sources of matter and energy in the form
of the stress-energy tensor Tµν on the right-hand side. While mass–energy governs how
spacetime should curve, the geometry determines how matter and radiation should move.

The metric is constrained by the requirement of mass–energy conservation: the co-
variant divergence of the stress–energy tensor must be zero. This implies that the Bianchi
identities for the metric must be satisfied. The solution of such differential constraints
generally requires the introduction of integration constants that need to be fixed with bound-
ary conditions.

Integration of the Bianchi identities leads to the left-hand side of the Einstein field
equation plus an integration constant that must be given in covariant form, a constant
multiplied by the metric tensor gµν, because the covariant divergence of such a term is
zero. This is the form of the cosmological constant Λ term, which Einstein [18] introduced
in 1917 for the mistaken purpose of obtaining a static cosmological solution.
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The gµνΛ term can be placed on either the left or the right-hand side of the equation,
to be considered as a degree of freedom for either the metric field or for the stress–energy
tensor. Standard cosmology interprets the Λ term as a component of the stress–energy
tensor Tµν and refers to it as “dark energy.” Instead of being an integration constant it is
treated as a new kind of field, although there is no known physical basis for the existence
of such a peculiar field (which needs to be repulsive with an equation of state w ≈ −1).

The choice between the two interpretations of the Λ term, integration constant or phys-
ical field, is not just a matter of viewpoint but has profound consequences for both
the conceptual and quantitative understanding and modeling of observational data. This
makes it possible to use observations to unambiguously discriminate between the two
possible choices.

3. Scale Factor as a Function of Distance
3.1. Measures of Time and Distance

Although space and time are tied together as 4D spacetime, which is the general arena
where physical processes play out, there are fundamental differences between the temporal
and spatial aspects in the cosmological context. Observers move in time but not in space,
while light rays move in space but not in time. Cosmological observers are defined to be
comoving, at rest with respect to the spatial grid. The observable universe represents
the static 3D subspace along light rays that can be seen by the observer at a given proper
time (which defines the tip of the past light cone).

The time scale that governs all dynamics is the proper time t that can be measured
by comoving clocks. It is the time scale of stellar evolution, structure formation, and
the density and temperature fluctuations of the CMB.

All information that we receive from cosmological objects comes to us in the form
of radiation, electromagnetic or gravitational. While the universe may be infinite in both
space and time, the part of it that is accessible to observation represents a time-frozen 3D
subspace of finite volume, the 3D hypersurface of the past light cone. The distance scale r
along the light cone is bounded by the Big Bang, where r equals the radius rc of the causal
or particle horizon. It is the distance where the scale factor a goes to zero and the redshift
z goes to infinity. At the other end the distance scale is bounded where r = 0 (location
of the observer), because negative distances r < 0 have no defined meaning.

3.2. Interpretation of Redshift Observations

A basic assumption of cosmological modeling is that the universe is spatially ho-
mogeneous and isotropic (on large scales), and that the expansion of space can be spec-
ified in terms of a scale factor a(t), which only depends on the proper time t that can
be measured by comoving clocks (at rest with respect to the spatial grid). The FLRW
(Friedmann–Lemaître–Robertson–Walker) models represent solutions of the Einstein equa-
tion in the form of scale factor a vs. proper time t. The function a(t) depends on the (spa-
tially homogeneous) mass densities ρM of matter, ρR of radiation, and ρΛ (the cosmological
constant when expressed in mass density units).

The function a(t) is however not an observable. When we observe objects at different
cosmological distances, like standard candles in the form of SN (supernovae) type Ia, we
measure their redshifts z and apparent brightnesses or received energy fluxes F , to obtain
the function z vs. F . To interpret this function in terms of the model parameters ρM,R,Λ, we
need to relate the observational z(F ) function to the theoretical a(t) function.

Redshift z is directly related to scale factor a via

a = 1/(1 + z) . (1)
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Because the energy flux F that is received from an object decreases with the square
of the distance, it is related to the luminosity L of the source through

F ≡ L
4 π d 2

L
, (2)

which defines the so-called luminosity distance dL. L can be assumed to be known for stan-
dard candles through applications of the distance ladder with its intricate calibrations,
based on parallaxes for relatively nearby objects and Cepheid variable stars for intermediate
distances. Equation (2) then gives us dL from the observed brightness F . If the universe
were not expanding, dL would equal the coordinate distance r. Because of the expansion,
the relation between dL and r depends on the scale factor a:

r = a(r) dL . (3)

Note that in Equation (3), the scale factor a has been written as a function of distance r
instead of proper time t because t is not an observable and it does not flow along r. While time
dependence with dynamical evolution can be observed for astrophysical structures on small
or intermediate scales, they are unobservable on the cosmic time scale that governs the evolution
of the scale factor, because the human time scale is negligible in comparison with cosmic time.
Therefore, the observable universe in terms of the observed z(F ) function is a time-frozen
representation of the universe at the present epoch t0 of human observers.

Since the evolutionary cosmic time scale t is not an observable, we need a mapping
of the a(t) evolution (which is unbounded in the future direction) onto the bounded
(0 < r < rc) distance scale to obtain the a(r) function that is part of Equation (3). The prob-
lem is that the distance scale is not simply obtained with mathematical projection onto
the light cone. Distances in space and time are only given a meaning in terms of a metric
field, which represents a solution of the Einstein field equation for the given spacetime
domain. The scale factor a is a component of the metric tensor that is obtained by solving
the field equation. In the finite and static 3D subspace that represents the observable
universe, the metric field can be subject to a boundary constraint that may be satisfied
by a non-zero covariant integration constant, which would appear in the form of the Λ term
in the equation for a(r). In contrast, because 4D spacetime is unbounded, no integration
constant can be induced in the equation for a(t).

3.3. Meaning of the Hubble Constant

The a(t) function is needed to model cosmological evolution, in particular, for numerical
simulations of structure formation or for calculations of the evolution of the density and
temperature fluctuations in the early universe. The most important observational signatures
of this evolution are the acoustic peaks in the CMB (Cosmic Microwave Background) spectrum,
which represent the anisotropies of the cosmic radiation “bath” in which we are immersed.

While the a(t) function should be used for interpretations of the CMB spectrum,
the a(r) function is to be used for the redshift observations of supernovae. An inconsistency
of standard cosmology, the so-called H0 tension, arises when the different roles of the a(t)
and a(r) functions are not accounted for (cf. Section 5.2).

The H0 tension has to do with the assumption of standard cosmology that the Hubble
constant H can be expressed as ȧ/a, where ȧ ≡ da/dt and t represents proper time.
When the a(r) function is affected by a boundary-induced cosmological constant, but
the a(t) function is not, the representation of the Hubble constant as ȧ/a becomes invalid.

Historically, the Hubble constant was introduced to describe the observed linear
relation between the velocity v of a galaxy that moves away from us and its distance r
using the equation v = Hr. The measured quantity was, however, redshift z and not v.
Since v = cz for v � c according to the Doppler effect, Hubble’s law should be written
z = Hr/c, or, in differential form,

dz
dr

= H/c . (4)
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Since redshift z is directly related to scale factor a via Equation (1), one can define
the Hubble constant in terms of the scale factor as

H ≡ − c
a2

da
dr
6= ȧ

a
. (5)

The last expression, to the right of the 6= sign, is the expression that standard cosmology
uses for the Hubble constant. It is obtained from our definition in terms of da/dr if one
does the substitution dr → −c dt/a (with the minus sign because t decreases when r
increases). It is conceptually incorrect because ȧ represents a time derivative with respect
to proper time and depends on the a(t) function, while the relevant spatial derivative
depends on the a(r) function. The inequality happens when Λ is different for the a(t) and
a(r) functions.

4. Derivation of the Value for Λ

Standard FLRW cosmology is based on the assumption that there is spatial homo-
geneity of the universe on large scales, not only for the matter and radiation densities
ρM and ρR, but also for the scale factor a. All spatial gradients are prescribed to be zero;
there is only evolution. The large-scale metric is assumed to be diagonal and isotropic.
In the following, we will add the assumption of spatial flatness, which makes the expres-
sions simpler and more transparent. As observations show that the spatial curvature is zero
within the observational uncertainties [15], there is no need to complicate the expressions
by including the curvature term.

With these assumptions gtt = −1 and gxx = gyy = gzz = a2(t) in terms of Cartesian
coordinates that are orthogonal to the time axis. The scale factor is thus prescribed to be
independent of the spatial coordinates and depends exclusively on proper time t. The same
metric can also be expressed in terms of spherical coordinates r, θ, and φ, as is common
in FLRW cosmological modeling. Then, with spatial flatness, grr = a(t)2, gθθ = a(t)2 r2,
and gφφ = a(t)2 r2 sin2 θ.

4.1. Spatial Perturbations of the FLRW Metric

In the FLRW formulation, the 4D problem is, by assumption, reduced to a 1D problem:
The large-scale evolution is fully described by a scale factor a(t) that only varies with
the proper time t that can be recorded by local, comoving clocks. Because there is no
dependence on distance in the direction orthogonal to the time axis, the a(t) function can
be readily obtained as a 1D solution of the Einstein equation while accounting for energy
conservation for matter and radiation.

Our aim now is to determine the scale factor as a function of distance r in the observ-
able universe (along the past light cone). The a(r) function relates the scale factor between
the positions of non-local objects, which are separated from the comoving observer by dif-
ferent distances within a bounded r domain. The FLRW prescription for a metric of 4D
spacetime that only depends on local, unbounded proper time is too restrictive and lim-
ited to be of use to account for the bounded distance scale. It becomes necessary to relax
the FLRW requirement of zero spatial gradients by allowing for small-amplitude vacuum
perturbations of the metric in the form of a “probe” field h(r).

The metric of our minimally extended, perturbed version of FLRW has the following
form (in units where c = 1):

ds2 = −dt2 + a(t)2 [1 + h(r)] [dr2 + r2 (dθ2 + sin2 θ dφ2 ) ] , (6)

where h(r) � 1 represents the small-amplitude probe field needed to define consistent
boundary conditions, which relate to the static 3D subspace that constitutes the observable
universe. h is, by design, isotropic with respect to the observer. The size of the 3D subspace
in which the probe field is confined determines the scale of the fluctuations. The a(t)
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function, which governs the evolution of the CMB spectrum and is not constrained by any
boundaries, is not affected.

4.2. Solution of the Einstein Equation in the Presence of Spatial Perturbations

It is convenient to express the Einstein equation in the form

Rµν − gµνΛ = 8π G Sµν (7)

in units where c = 1.
Sµν = Tµν − 1

2 gµνT (8)

contains the energy–momentum sources. The metric is represented by the Ricci tensor
Rµν and the cosmological Λ term. For the signature of the metric we use the convention
(−+++).

For our purpose of exploring the relation between Λ and the spatial boundary condi-
tions, it is sufficient to focus our attention on the Rθθ component of the Ricci tensor, because
the expression for the other components is analogous. In first order in the perturbation h
one finds

Rθθ − gθθ Λ ≈ gθθ

[
ä
a
+ 2

(
ȧ
a

)2 ]
− 1

2 r2 ∇2 h − gθθ Λ = 4π G(ρ− p) gθθ . (9)

The expression for Sθθ = 1
2 (ρ− p) gθθ has been used, where ρ is the mass density and

p the pressure.
Because the spatial and temporal coordinates in this 4D spacetime representation

are orthogonal to each other, the t-dependent terms assume their values independent
of the spatial ∇2 h term. There is no boundary-induced integration constant that could be
the source of Λ, because the t and r coordinates in infinite 4D spacetime are unbounded.
If one refrains from postulating the existence of some “dark energy” field, then Λ in
Equation (9) is zero. The time-dependent terms decouple to form an equation that is
independent of the spatial perturbation:

ä
a
+ 2

(
ȧ
a

)2
=

1
a3

d2a
dη2 +

1
a4

(
da
dη

)2
= 4π G(ρ− p) . (10)

It represents the evolutionary equation for the unperturbed background—a standard
Friedmann universe without a cosmological constant. The time dependence of the scale
factor has been expressed in two equivalent forms, one with respect to proper time t,
the other with respect to conformal time η, which is defined using dη ≡ dt/a.

Let us now rewrite Equation (9) by rearranging the terms and expanding the expression
for gθθ:

(1 + h)
[ 1

a3
d2a
dη2 +

1
a4

(
da
dη

)2
− 4π G(ρ− p)

]
=

1
2a(t)2 (∇2 h + 2a(t)2Λ h ) + Λ . (11)

The left-hand side vanishes because of Equation (10). While this implies that the right-hand
side must also vanish, it does not lead to any constraint on the magnitude of Λ. Since the 4D
representation is unbounded, it does not offer the possibility of useful boundary conditions.

The situation changes when we impose the restriction to the light cone and thereby
reduce the domain from infinite 4D spacetime to the bounded 3D subspace that represents
the observable universe.

4.3. Restriction to the Light Cone

The observer is by definition located at the spacetime tip of the past light cone. The ob-
servable universe represents the static and bounded 3D hypersurface of this null cone.
It is bounded between r = 0 (where the redshift z = 0) and r = rc (where the redshift z
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becomes infinite). The distance rc to the causal horizon increases with time, which makes
rc a function of scale factor a. For any given value of a, the coordinate distance r along
a hypersurface of constant a has a limiting value rc(a) that defines the causally connected
domain. Any disturbance that originates in the Big Bang can spread to a maximal distance
rc(a) by the time t when the scale factor has reached the value a(t).

On the light cone, all spacetime intervals ds vanish (which can be seen as an expression
of the property that proper time does not flow along light rays). This implies a differential
relation between the r and η coordinates. According to Equation (6), the ds2 = 0 restriction
implies that

dη2 = (1 + h)dr2 (12)

in the radial direction. Implementing this in Equation (11) gives

1
a3

d2a
dr2 +

1
a4

(
da
dr

)2
− 4π G(ρ− p) −Λ =

1
2a(t)2

[
∇2 h(r) + 2a(t)Λ h(r)

]
. (13)

We have not included the term − 4π G(ρ− p) h(r), because h is treated as a probe
field that represents vacuum fluctuations of the metric and therefore does not couple to the
material sources.

Note that because ds2 = 0 is a differential constraint, it only transforms the differential
expressions on the left-hand side, but not the proper time t in a(t) on the right-hand side.
Since proper time and distance are independent coordinates, the zero points of their scales
are unrelated to each other. Only when we introduce an observer (by definition at r = 0),
who exists when the age of the universe is t = t0 and the scale factor is a(t0), the equation
becomes physically well-defined. Distances r only have a meaning relative to an observer.

Proper time does not vary with r in contrast to the formal “look-back time,” which
does not represent a dynamically relevant time scale. Therefore the scale factor a is allowed
to vary with distance r on the left-hand side of the equation, while a(t) on the right-
hand side remains constant because t is kept fixed to represent the proper time of the tip
of the light cone, which defines the r scale that is used for the left-hand side.

In the limit of vanishing spatial perturbations, h, the right-hand side of Equation (13), is zero,
and we are left with an equation for the unperturbed background. It shows how the scale factor
a varies with distance r from the perspective of the observer, who is located at r = 0 at proper
time t0. From this vantage point in spacetime, the observable universe represents a time-frozen
“snapshot,” a bounded 3D subspace that is embedded in the unbounded 4D universe.

The right-hand side of Equation (13) serves both to define the light cone to which
the left-hand side refers and to constrain the value of Λ. The proper time t there defines
the temporal location for the tip of the light cone (while the spatial location of the tip
and the observer is arbitrary). For time t = t0 (the present age of the universe, when
human observers exist), the scale factor has the value a0 = a(t0). The standard convention
in cosmological modeling is to normalize the scale factors so that a(t0) ≡ 1.

For this particular value of a, which represents our time in cosmic history, the pertur-
bation h is confined within the bounded distance interval 0 ≤ r ≤ rc(a0). Equation (13) is
only satisfied if the right-hand side of the equation with a = a0 is zero, i.e., when

∇2 h(r) + 2Λ h(r) = 0 . (14)

This equation is subject to a boundary condition, which constrains the value of Λ.
Equation (9) did not admit such a possibility, because it represents unbounded 4D space-
time. It is the light cone restriction that generates a bounded 3D subspace in which a non-zero
Λ can get induced. This is the reason why Equation (13) for the a(r) function can contain
a non-zero cosmological constant, while Equation (10) for the a(t) function cannot.

Equation (14) is a 3D equation for a spherical coordinate system, but since there is
only dependence on the r coordinate because of isotropy, it is more convenient to express
it in a 1D form that eliminates the coordinate singularity at r = 0 and makes the perturbation
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symmetric with respect to the two boundaries (0 and rc). This is accomplished if we replace
h with ψ, where

ψ ≡ r h . (15)

Inserting this in Equation (14) we get

d2ψ

dr2 + 2Λ ψ = 0 . (16)

4.4. Implementation of the Spatial Boundary Condition to Obtain the Value for Λ

Equation (16) is satisfied for Fourier modes with wave number kΛ and wavelength rΛ,
which are related to the cosmological constant through

√
2Λ = kΛ ≡

2π

rΛ
. (17)

The wavelength rΛ defines a length scale, which can be expected to be related to the
only available cosmological length scale, the size rc of the bounded 3D subspace that
represents the observable universe. We may therefore expect rΛ to be proportional to rc
with a value for the proportionality constant that gets fixed by a boundary condition.

At present the choice of boundary condition needs to be based on rather general sym-
metry arguments, because it does not follow from any yet identified equation.
Regardless of its plausibility, a given choice will only be acceptable if it can be validated
using observational data. An obvious choice is that the perturbation ψ vanishes at both
boundaries. It vanishes by definition at the location of the observer (r = 0) because of Equa-
tion (15). A symmetric condition would then require that ψ vanishes at the other boundary
as well, at r = rc, the beginning of time.

The modes with the longest wavelengths (and lowest energies) that satisfy this condi-
tion are the ones for which the size rc of the bounded r domain equals either half or a single
wavelength. As shown in the next subsection, only the single-wavelength mode satis-
fies the observational constraints, but it does so with high precision (within 2 % or 2σ).
This implies that

rΛ = rc . (18)

In contrast, the half-wavelength choice would give a value for Λ that is four times
smaller than the observed value. Other half-integer multiples would similarly be rejected
using the observations by a huge margin. The observational data unambiguously direct us
to the single-wavelength choice of Equation (18).

When the boundary condition that is defined by Equation (18) is inserted in Equation (17),
it gives a definite, predicted value for the cosmological constant:

Λ = Λ0/r2
c , (19)

where
Λ0 = 2 π2 . (20)

The value of Λ is constant throughout the observable universe, for the entire domain
0 < r < rc, and therefore corresponds to an equation of state w = −1 if interpreted as an energy
density. Λ varies with epoch of the observer (but not with look-back time), because rc is
a function of proper time t. This variation is, however, unobservable (because human time
scales are insignificant compared to the age of the universe). If we use dimensionless spatial
coordinates by expressing r in units of rc, then Λ becomes equal to Λ0 and remains constant,
not only for all of observable space but also throughout all of cosmic history.

4.5. Observational Validation

Equation (19) represents a definite theoretical prediction for the magnitude of the cos-
mological constant Λ, which needs to be validated through comparison with the observa-
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tionally determined value. To make this comparison explicit we first need to convert Λ
to the more convenient dimensionless form ΩΛ that is used for model fits of cosmologi-
cal data and provide an explicit expression for the limiting distance scale rc (the radius
of the particle horizon).

Mathematically, the solution a(r) for the r dependence of the scale factor is obtained
in the same way as the solution for a(t), and is

H(r)2 =

(
8π G
3 c2

)
[ ρM/a(r)3 + ρR/a(r)4 ] +

c2Λ
3

. (21)

The difference is that the Hubble constant is not represented by ȧ/a, but by c dz/dr
as in Equation (4) or in terms of a as in Equation (5). Further, the Λ term only appears
in the expression that governs a(r), not in the expression for a(t), because the proper time
scale is not bounded, in contrast to the r scale in Equation (21).

The next step is to introduce dimensionless parameters ΩM,R,Λ through the definitions

ΩM,R ≡
8π G

3 c2H2
0

ρM,R (22)

and

ΩΛ ≡
c2Λ
3 H2

0
. (23)

This gives us
H = H0 E(z) , (24)

where
E(z) ≡

√
ΩM(1 + z)3 + ΩR(1 + z)4 + ΩΛ . (25)

Equations (24) and (25) imply the normalization of the ΩM,R,Λ coefficients

ΩM + ΩR + ΩΛ = 1 . (26)

The definition of the Hubble constant as c dz/dr (cf. Equation (4)) then allows us
to calculate the distance r to an object at a given redshift z:

r(z) =
∫

dr =
c

H0

∫ z

0

dz′

E(z′)
. (27)

The limiting distance rc, the causal horizon radius, is where the redshift z becomes infinite:

rc = r(∞) . (28)

It is convenient to express rc in dimensionless form xc, in units of the Hubble radius c/H0:

xc ≡ rc H0/c . (29)

From Equation (27) we see that

xc =
∫ ∞

0

dz
E(z)

. (30)

Inserting the expression for Λ from Equation (19) into the defining Equation (23)
for ΩΛ and using the definition for xc from Equation (29), we get

ΩΛ =
2
3

(
π

xc

)2
. (31)
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The identical expression has been obtained previously via more heuristic derivations [19,20],
which are nevertheless based on the same kind of boundary condition that is being used as
the source of an integration constant in the form of the Λ term.

Since xc depends on ΩΛ according to Equation (30), the solution cannot be expressed
in closed algebraic form but needs to be obtained numerically. The apparent dependence
on the density parameters ΩM and ΩR is not a real dependence, because the value of ΩR is
fixed by the observed temperature of the CMB radiation. The value of ΩM then follows
from the spatial flatness condition of Equation (26) for a given choice of ΩΛ:

ΩM = 1−ΩR −ΩΛ . (32)

These relations imply that the E(z) function in Equation (30) only depends on ΩΛ but
not on ΩM,R.

Equation (31), therefore, defines a unique value for Λ, a predicted value that is obtained
without any adjustable parameters. The solution that follows from our boundary condition
is xc ≈ 3.13 and ΩΛ ≈ 0.671. This is to be compared with the observationally based values
of ΩΛ = 0.685± 0.007 according to Planck Collaboration et al. [15] and 0.669± 0.038
from analysis of supernovae data by the Dark Energy Survey project [21]. We note that
the theoretical prediction agrees with the Planck value within 2 % or 2σ and is in even
closer agreement with the DES value.

5. Implications beyond the Standard Model

The nearly perfect agreement between the observed and predicted values for the cos-
mological constant can be seen as a validation of the theory and a resolution of the long-
standing problem of the origin of the Λ term. At the same time the cosmological coincidence
problem is made irrelevant. Our epoch in cosmic history is not special because of the par-
ticular value that the cosmological constant is observed to have. There is no violation
of the Copernican principle.

The theory has further implications beyond the standard model. Here we highlight
two of them: the age of the universe and a resolution of the H0 tension.

5.1. Age of the Universe

It is commonly believed that the age of the Universe that is given by standard cosmol-
ogy, 13.8 Gyr, is known with high accuracy and is not in doubt. However, this bypasses
the fundamental fact that this age value is model dependent, and that the few direct
measurements that are currently available actually slightly favor a larger value.

The age of the universe is readily obtained from the solution of the scale factor a
as a function of proper time t that can be measured by a comoving clock. If one uses
the notations and concepts of standard cosmology, then the equation that governs this a(t)
function looks the same as Equation (21) that governs a(r). In our case, however, the cosmo-
logical constant is only relevant for the a(r) function that represents our bounded and static
observable 3D subspace, not for a(t), which represents the evolution of a comoving region
in the 4D universe. Furthermore, it is conceptually incorrect to use notation H to represent
ȧ/a, because the Hubble constant depends on a(r) for our observable universe but not
on proper time t, as explained in Section 3.3.

With these conceptual differences the equation that governs a(t) can be expressed as

ȧ(t)2 = a(t)2
(

8π G
3 c2

)
[ ρM/a(t)3 + ρR/a(t)4 ] . (33)

The density parameters ρM,R have the same meanings and identical magnitudes
as the corresponding parameters in Equation (21) for the a(r) function. They represent
the mass densities of matter and radiation at the present epoch t0. As before, the scale
factor is assumed to be normalized to the value that it has at present: a(t0) ≡ 1.
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The present age of the universe, t0, is then obtained through straightforward integra-
tion of Equation (33):

t0 =
∫ t0

0
dt =

(
3 c2

8π G

)1/2∫ 1

0

da
a (ρM/a3 + ρR/a4)1/2 . (34)

The solution of this integral expression can be obtained more conveniently after
the ρ parameters have been converted into the dimensionless Ω forms via the defining
Equation (22). The result is

t0 =
1

H0

∫ 1

0

da
a (ΩM/a3 + ΩR/a4)1/2 ≈

1
H0
√

1−ΩΛ

∫ 1

0

√
a da =

2
3H0
√

1−ΩΛ
. (35)

Note that the present Hubble constant H0 appears in this expression, but not because
the Hubble constant has any conceptual relation to t0. It is exclusively because H0 is used
in Equation (22) as a mathematical parameter that defines the conversion relation between
the ρM,R and ΩM,R parameters.

The second, approximate equality in Equation (35) has been obtained by disregarding
the contribution ΩR due to radiation, which is� ΩM. The factor

√
1−ΩΛ then appears as

a consequence of Equation (32). The approximation allows us to obtain a simple algebraic
expression for the age t0 in terms of the Hubble time 1/H0 and the cosmological constant.
Without a cosmological constant, one recovers the standard result that the age is 2/3
of the Hubble time when the universe is matter dominated. The presence of the Λ term
changes this result by the factor 1/

√
1−ΩΛ.

In our actual numerical evaluation, we have not made use of this approximation but
retained the ΩR term with its observed magnitude (obtained from the measured CMB
temperature). However, the effect of ΩR on the value of t0 turns out to be smaller than one
per mille and is thus insignificant.

The numerical solution gives t0 = 15.52 Gyr. The theoretical value ΩΛ = 0.671 that
comes from the solution of Equation (31) has been used together with the supernovae value
for H0, 73.2 km s−1 Mpc−1 [13,14], because it has been derived in a way that is consistent with
the present cosmological framework (within which Λ is an integration constant), in contrast
to the value that has been obtained through CMB parameter fitting with the standard model.
This is clarified in the next subsection that deals with the resolution of the H0 tension.

The new age value is to be compared with the age 13.80 Gyr that has been derived
using Planck Collaboration et al. [15]. It is based on using the Planck values ΩΛ = 0.685
and H0 = 67.4± 0.5 km s−1 Mpc−1 together with the dark-energy assumption of standard
cosmology that the a(t) and a(r) functions are governed by the same ΩΛ term. Includ-
ing the ΩΛ term in the solution for a(t) adds an exponential contribution to the cosmic
expansion that takes effect when one comes close to the present epoch. This accelerated
expansion shortens the time scale and leads to a (formal) age value that is 1.7 Gyr shorter
than the proper, dynamically relevant age.

The larger age relieves some existing tension between the age of the universe and
the ages of the oldest stars. For a careful age comparison, one needs to account for the time
that it took to form the first stars after the Big Bang. First-generation stars, so-called
pop. III stars with essentially zero metallicity, have not yet been identified. The oldest,
low-metallicity stars that have been observed are second-generation pop. II stars in the halo
of our galaxy. Numerical simulations indicate that the rate of GC (globular cluster) forma-
tion may have peaked about 0.4–0.6 Gyr after the Big Bang [22,23].

A reasonable estimate for the upper stellar age limit is, therefore, t0 − 0.4 Gyr instead
of t0 by itself. It is 13.4 Gyr in the case of standard cosmology. The existence of a single star
with a significantly larger reliable age would prove standard cosmology to be inconsistent.

The most prominent stellar case that seems to violate the age limit of standard cos-
mology is represented by the so-called “Methuselah” star HD 140283. It is classified as
a pop. II halo subgiant at a distance of 202 ly with a metallicity that is 250 times less than that
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of the Sun. Stellar evolution modeling with isochrones gives the age 14.46± 0.8 Gyr [24].
It violates the mentioned age limit by 1.1 Gyr, but in terms of the error bars this is little
more than one σ.

It has been claimed that the ages of globular clusters (GC) support the conventional
age value for the universe. A GC age of 13.32± 0.5 Gyr has been reported [25], which
represents an average over 38 clusters that have metallicity [Fe/H] < −1.5, but it was
obtained after applying an ad hoc prior that excludes values larger than 15 Gyr [25]. Be-
cause there is an age distribution within the used subset, which exceeds what may be
expected from the quoted measurement uncertainties, the ad hoc exclusion of values above
15 Gyr artificially truncates the intrinsic distribution. The average value that is extracted
from such a distribution is therefore not representative of the upper age limit of the clusters.
This gives reason to expect that the upper GC age limit lies significantly higher than
the quoted value. Depending on the school of thought with respect to GC formation [26,27]
the GC age limit may indeed be consistent with a significantly larger age of the universe.

These examples demonstrate that the current uncertainties in stellar age values are not
yet small enough to conclusively discriminate between the two cosmological frameworks.
The error bars are, however, expected to come down in the future.

A new and independent avenue for the determination of the ages of individual stars is
that of asteroseismology. The detections by the CoRoT and Kepler satellite missions of os-
cillating modes for many thousands of stars across the HRD have provided a rich database
for surveys of the age structure of the Milky Way [28]. It has been used to determine
the vertical age gradient for the red giant stars in the Galactic disk [29]. While the majority
of stars in the sample have ages in the range 1–6 Gyr, the tail of the age distribution extends
well beyond 14 Gyr, although the sample is believed to be representative of the Galactic
disk and not of the halo. We do not yet know whether the extended tail is exclusively
an artefact of the uncertainties.

Fortunately, there is another testing ground, the enigmatic H0 tension, which already
allows an unambiguous discrimination between the two cosmological frameworks. The H0
tension represents an inconsistency of standard cosmology, which disappears within our
alternative framework, as explained in the next subsection.

5.2. H0 Tension

While the tension in the Hubble constant has received much attention in recent years,
it has been pointed out [16] that the H0 tension should not be considered in isolation,
because there is an anti-correlated tension in the parameter rd. This parameter represents
the radius of the sound horizon at the epoch when the baryons decouple from the photon
drag force and become free to cluster and form galactic structures. There is an imprint of the
rd scale on the observed galaxy distribution because of the Baryon Acoustic Oscillations
(BAO). As rd ≈ 1.02 r? it is closely linked to the radius r? of the sound horizon at the
epoch of hydrogen recombination, which governs the angular scale of the acoustic peaks
in the CMB spectrum.

The value of r? (as well as that of rd) depends only on the physics of the early universe,
which is almost independent of the cosmological model, because all effects of Λ and spatial
curvature were insignificant before the rd and r? epochs. The value of r? is therefore pre-
dominantly constrained by the standard model of particle physics and is found to be r? ≈
144.4± 0.3 Mpc, while the closely related scale rd ≈ 147.2± 0.3 Mpc [15]. With these values
the Planck CMB modeling results in a Hubble constant H0 = 67.4± 0.5 km s−1 Mpc−1,
significantly smaller than H0 = 73.2± 1.3 km s−1 Mpc−1 that is obtained from direct dis-
tance measurements in the nearby universe [13,14]. It is this discrepancy between H0 as
determined from the near and distant universe that is referred to as the H0 tension.

There is, however, no significant tension for the product H0 rd [16]. If one allows
rd to be a free parameter rather than being fixed by known physics, the product H0 rd is
constrained by the observed angular scale in the CMB or the BAO, but the individual
factors H0 and rd are not. This degeneracy can be broken by combining BAO with su-
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pernovae (SN) observations. The result is a low value for rd, typically rd ≈ 136± 3 Mpc
(depending somewhat on the choice of joint data sets), together with the high supernovae
value for H0. The same kind of conclusion would be obtained from analysis of CMB data,
if one would allow r? to be treated as a free parameter.

Attempts to find the origin for such a low value of rd in terms of new physics have
been unsuccessful. It has been pointed out [16] that late-time modifications (like dark
energy with a varying equation of state) only affects H0 but not rd and therefore only makes
things worse. All proposed early-time modifications (before the CMB epoch) through the
introduction of new kinds of fields or modifications of general relativity can be shown
to be insufficient for a resolution of the tension [16,17]. The H0 tension may be slightly
reduced by raising the value of the ΩM h2 parameter, but the potential of this change
is limited, because it would exacerbate the tension in the S8 parameter that has been
revealed by the weak lensing surveys [30,31]. S8 ≡ σ8 (ΩM/0.3)1/2, where σ8 is the matter
clustering amplitude on the scale 8h−1 Mpc (where h is the Hubble constant in units
of 100 km s−1 Mpc−1).

The main CMB observable that has been used to constrain the value of the Hubble
constant H0 is the angular scale of the acoustic peaks in the observed CMB spectrum.
This scale can be characterized in terms of an angle parameter θ? that has been determined
from observations with an accuracy of about 0.03 % [15]. It is one of the best known
parameters in cosmology.

θ? is an angular measure of the anisotropy of the CMB radiation field, in which
the observer is immersed. It is a local property of the radiation field in a comoving region.
The angular scale is governed by basic physics that is directly related to the radius r?
of the sound horizon at the epoch t? of hydrogen recombination.

Parameters θ? and r? do not contain information on the present value H0 of the Hubble
constant. The H0 dependence enters when θ? and r? are brought in relation with the so-
called angular diameter distance D? between the observer and the surface of last scattering
via the defining equation

θ? ≡
r?
D?

, (36)

where

D? = c
∫ t0

t?

dt
a(t)

. (37)

So far there is no difference between our treatment and that of standard cosmology.
The difference enters in the explicit expression for the a(t) function, which determines how
D? is calculated.

The anisotropy of the ambient radiation field in a comoving region depends on the evo-
lution and dynamics of the local region. The a(t) function in Equation (37) is therefore
the scale factor in its dependence on the proper time that can be measured with a co-
moving clock. It does not contain any contribution from a Λ term, because such a term
only enters as an integration constant when we enforce the light-cone restriction to trans-
form the unbounded 4D problem to a problem for a bounded and static 3D subspace.
When the dynamics and evolution of a comoving region are calculated, the light-cone
restriction is not applied or relevant. The H0 tension arises when Λ is not treated as an inte-
gration constant that is only relevant for the static 3D subspace but is instead treated as
a new field (dark energy) that also contributes to the scale factor evolution a(t) of a comov-
ing region.

The explicit evaluation of the D? integral is done in the same way as in Section 5.1
for the calculation of age t0. The starting point is Equation (33), which defines the solution
for the a(t) function that is used in Equation (37). The explicit expression for D? then becomes

D? =
c

H0

∫ 1

a?

da
a2 (ΩM/a3 + ΩR/a4)1/2 , (38)
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which is similar to that of t0 in Equation (35) except for the extra factor a in the denominator,
the factor c, and the lower integration limit a? (at the epoch of last scattering) instead of zero
(Big Bang). Note also (as in the t0 case) that the appearance of the Hubble constant in this
expression is not because H0 has any conceptual relation to D?, but because it comes from
Equation (22), where it is used to define the conversion between the ρ and Ω parameters.

If we disregard ΩR, because it is� ΩM, then we get a simple approximate algebraic
expression for D? (similar to Equation (35)):

D? ≈
c

H0
√

1−ΩΛ

∫ 1

a?

da√
a
≈ 2c

H0
√

1−ΩΛ
. (39)

Our numerical evaluation, however, does not make use of this approximation but
retains the ΩR contribution and uses the full expression of Equation (38).

It is convenient to introduce the dimensionless parameter x?, which represents D?

in units of the Hubble radius c/H0:

D? ≡ x?
c

H0
. (40)

Converting for mathematical convenience the a scale into a z scale via Equation (1),
we get

x? =
∫ z?

0

dz
[ΩM(1 + z)3 + ΩR(1 + z)4 ]1/2 . (41)

Note that this is a purely formal conversion, because no redshift observations are
involved in the CMB analysis, and z? is not an observable. z is here a mathematical
parameter that does not represent redshift.

With Equations (36), (40) and (41) it is possible to derive the value of H0 from the observed
anisotropies θ? in the CMB radiation field and the radius r? of the sound horizon through

H0 = c x? θ?/r? . (42)

This results in a value for H0 from CMB data that agrees with the value that has
been derived from the redshift—brightness relation of supernovae observations (as shown
explicitly below). Thus, with the current formalism, there is no H0 tension.

Equation (42) also makes it clear why there must be an anti-correlation between the ten-
sions in H0 and the radius of the sound horizon r? (or rd), as noticed in [16]. Since θ? is fixed
by the observations, the model dependence of the H0 r? product is contained in the dimension-
less x? factor, which only depends on ΩΛ if we assume spatial flatness. For a given value of Λ,
the variations in the H0 and r? parameters are, therefore, anti-correlated.

The reason why CMB analysis with standard cosmology gives a different answer that
is at odds with the supernovae results is that a different expression xst. cosm. for the dimen-
sionless parameter x? is used. It is based on the implicit assumption of standard cosmology
that the cosmological constant Λ is a physical field that governs the behavior of both
the a(t) and a(r) functions, rather than being a boundary condition that only affects the a(r)
function that represents the bounded 3D subspace.

The θ? and r? parameters are governed by the local evolution of the sound waves and
the anisotropy of the electromagnetic radiation field, not by a distance-related function that
depends on the location of an observer. The physics is therefore determined by the a(t)
function as in Equation (37), not by the a(r) function. For this reason, x?, as given by
Equation (41), does not contain any ΩΛ contribution. In contrast standard cosmology uses

xst. cosm. =
∫ z?

0

dz
[ΩM(1 + z)3 + ΩR(1 + z)4 + ΩΛ ]1/2 . (43)
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When this expression is inserted in Equation (42) instead of the expression (41) for x?,
one obtains a different value for the Hubble constant:

H0, st. cosm. = c xst. cosm. θ?/r? . (44)

The interpretation of the redshift—brightness relation for supernovae (SN) as standard
candles must, on the other hand, be based on the a(r) function for scale factor vs. distance
along light rays rather than on the a(t) function for comoving regions. It will therefore
be affected by a boundary-induced integration constant that appears in the form of a Λ
term. As the existence of such a non-zero term is demanded by the observed SN relation
between redshift and apparent brightness and is, in fact, being used for the interpretation
of the observed relation, it is the supernovae value H0, SN that represents the correctly
determined present Hubble constant. This allows us to make the identification

H0, SN ≡ H0 , (45)

where H0 is the correct value that appears in expression (42).
Because ΩR is known from the observed temperature of the CMB radiation field, and

ΩM and ΩΛ are related via Equation (26), both x? and xst. cosm. are effectively functions
of only ΩΛ (if we disregard the minor model dependence on z?, the integration limit that
represents the surface of last scattering). Dividing Equations (42) and (44) with each other
and using the identification of Equation (45), we obtain an expression for the H0 tension:

H0, SN

H0, st. cosm.
=

x?(ΩΛ)

xst. cosm.(ΩΛ)
. (46)

With the theoretical value ΩΛ ≈ 0.671, which was obtained through numerical solution
of expression (31) for ΩΛ, the evaluation of the full integral expressions (41) and (43) for x?
and xst. cosm. gives (

H0, SN

H0, st. cosm.

)
theory

≈ 1.099 . (47)

This is to be compared with the observed value for the tension. According to the
supernovae observations, H0, SN = 73.2± 1.3 km s−1 Mpc−1 [13,14] , while CMB analysis
in the framework of standard cosmology gives H0, st. cosm. = 67.4± 0.5 km s−1 Mpc−1 [15].
The ratio between these two values represents the observed H0 tension:(

H0, SN

H0, st. cosm.

)
obs
≈ 1.086± 0.021 . (48)

The theoretical prediction is thus well within 1σ of the observed value.

6. Conclusions

Standard cosmology assumes that the cosmological constant represents some un-
known form of physical field, commonly referred to as “dark energy.” To explain the
redshift—brightness observations of standard candles such a hypothetical field needs
to have an equation of state that is nearly the same as the vacuum energy of quantum fields
and a value, which in energy density units “happens” to be of the same order as the current
matter energy density. This would suggest that our epoch in cosmic history is very special,
a “cosmic coincidence.” Another problem is that standard cosmology is inconsistent with
respect to the Hubble constant H0. The derived value for H0 depends on the type of data
that are being used, standard candles in the form of supernovae for the nearby universe,
or CMB data for the early universe.

Here we show that these stubborn enigmas and inconsistencies go away if one aban-
dons the assumption that Λ represents a physical field, and instead treats it as a covari-
ant integration constant. This constant comes from a boundary condition that applies
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to the a(r) function, the dependence of the scale factor a on distance r along light rays.
While the r scale is constrained to the bounded 3D hypersurface of the past light cone,
which represents the observable universe, the proper time scale t that can be measured
in 4D spacetime by comoving clocks is unrelated to light cones. Consequently the a(t)
function cannot contain any boundary-induced integration constant.

The integration constant has the dimension of the inverse square of a length scale.
The only available characteristic length scale of the system is the limiting size rc of the ob-
servable universe. It is therefore not surprising that the value of the cosmological constant
is linked to the rc scale that characterizes the universe now. This means that our epoch is
not special, there is no violation of the Copernican principle.

When the distinction between the a(r) and a(t) functions is accounted for, the H0
tension goes away. While the Hubble constant that has previously been determined
from the redshift—brightness observations of supernovae as standard candles remains
unaffected, our revised CMB analysis gives a value for H0 that now agrees with the su-
pernovae value, in contrast to the CMB value that is obtained within the interpretational
framework of standard cosmology.

Another consequence is that the proper age of the universe is increased by 1.7 Gy,
from the 13.8 Gyr of standard cosmology to 15.5 Gyr. This is consistent with other age
determinations, and, in fact, relieves some tension with ages that have been determined
for the oldest halo stars in the Milky Way. The error bars of stellar ages, however, need
to come down before they can be used reliably for the discrimination between the cosmo-
logical frameworks.

So is the universe accelerating or not, according to the observational data? Our
answer is no, it is decelerating, because the a(t) function does not contain any cosmological
constant. It is the Λ-free proper time scale t that is relevant for the dynamics. Standard
cosmology answers yes, because it interprets the a(r) function that contains a non-zero Λ
term in terms of dynamics. However, while distances r can formally be expressed in time
units as “look-back time,” this time scale is not relevant for dynamics and, therefore, not
for the question of an accelerated expansion.
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