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Abstract: In this work, we study the neutrino mixing sum rules arising from discrete symmetries
and the class of Littlest Seesaw (LS) neutrino models. These symmetry-based approaches all offer
predictions for the cosine of the leptonic CP phase cos δ in terms of the mixing angles, θ13, θ12, θ23,
while the LS models also predict the sine of the leptonic CP phase sin δ, as well as making other
predictions. In particular, we study the solar neutrino mixing sum rules, arising from charged lepton
corrections to tri-bimaximal (TB), bimaximal (BM), golden ratio (GR) and hexagonal (HEX) neutrino
mixing, and the atmospheric neutrino mixing sum rules, arising from preserving one of the columns
of these types of mixing—for example, the first or second column of the TB mixing matrix (TM1 or
TM2)—and we confront them with an up-to-date global fit of the neutrino oscillation data. We show
that some mixing sum rules, such as an atmospheric neutrino mixing sum rule arising from a version
of neutrino golden ratio mixing (GRa1), are already excluded at 3σ, and we determine the remaining
models allowed by the data. We also consider the more predictive LS models (which obey the TM1
sum rules and offer further predictions) based on constrained sequential dominance CSD(n) with
n ≈ 3. We compare for the first time the three cases n = 2.5, n = 3 and n = 1 +

√
6 ≈ 3.45, which are

favored by theoretical models, using a new type of analysis to accurately predict the observables θ12,
θ23 and δ. We study all the above approaches, solar and atmospheric mixing sum rules and LS models,
together so that they may be compared and to give an up-to-date analysis of the predictions of all of
these possibilities, when confronted with the most recent global fits.

Keywords: neutrino physics; Littlest Seesaw; leptonic CP phase; mixing sum rules

1. Introduction

Neutrino mass and mixing represents the first and, so far, the only new physics beyond
the standard model (SM) of particle physics. We know that it must be new physics because
its origin is unknown and it is not predicted by the SM. Independently of whatever the
new (or nu) SM is, we do know that the minimal paradigm involves three active neutrinos,
the weak eigenstates νe, νµ, ντ (the SU(2)L partners to the left-handed charged lepton mass
eigenstates), which are related to the three mass eigenstates m1,2,3 by a unitary PMNS
mixing matrix [1].

The PMNS matrix is similar to the CKM matrix, which describes quark mixing, but
involves three independent leptonic mixing angles θ23, θ13, θ12 (or s23 = sin θ23, s13 = sin θ13,
s12 = sin θ12); one leptonic CP violating Dirac phase δ, which affects neutrino oscillations;
and possibly two Majorana phases, which do not enter into neutrino oscillation formulas.
Furthermore, neutrino oscillations only depend on the two mass squared differences
∆m2

21 = m2
2 −m2

1, which is constrained by data to be positive, and ∆m2
31 = m2

3 −m2
1, which

current data allow to take a positive (normal) or negative (inverted) value. In 1998, the
angle θ23 was first measured to be roughly 45◦ [2] (consistent with equal bimaximal νµ − ντ

mixing) by atmospheric neutrino oscillations, while θ12 was determined to be roughly 35◦

(consistent with equal trimaximal νe − νµ − ντ mixing) in 2002 by solar neutrino oscillation
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experiments [3], while θ13 was first accurately found to be 8.5◦ in 2012 by reactor oscillation
experiments [4,5].

Various simple ansatzes for the PMNS matrix have been proposed, the most simple
ones involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and
s23 = c23 = 1/

√
2, leading to a PMNS matrix of the form

U0 =

 c12 s12 0
− s12√

2
c12√

2
1√
2

s12√
2
− c12√

2
1√
2

, (1)

where the zero subscript reminds us that this form has θ13 = 0 (and θ23 = 45◦).
For golden ratio (GRa) mixing [6], the solar angle is given by tan θ12 = 1/φ, where

φ = (1 +
√

5)/2 is the golden ratio, which implies θ12 = 31.7◦. There are two alternative
versions where cos θ12 = φ/2 and θ12 = 36◦ [7], which we refer to as GRb mixing and GRc,
where cos θ12 = φ/

√
3 and θ12 ≈ 20.9◦.

For bimaximal (BM) mixing (see, e.g., [8–10] and references therein), we insert
s12 = c12 = 1/

√
2 (θ12 = 45◦) into Equation (1),

UBM =


1√
2

1√
2

0

− 1
2

1
2

1√
2

1
2 − 1

2
1√
2

. (2)

For tri-bimaximal (TB) mixing [11], alternatively, we use s12 = 1/
√

3, c12 =
√

2/3
(θ12 = 35.26◦) in Equation (1),

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

. (3)

Finally, another pattern studied in the literature with θ13 = 0 (and θ23 = 45◦) is the
hexagonal mixing (HEX), where θ12 = π/6.

These proposals are typically enforced by finite discrete symmetries such as A4, S4, S5
(for a review, see, e.g., [12]). After the reactor angle was measured, which excluded all
these ansatzes, there were various proposals to rescue them and to maintain the notion
of the predictivity of the leptonic mixing parameters. Indeed, the measurement of the
reactor angle opens up the possibility to predict the CP phase δ, which has not been directly
measured so far and remains poorly determined even indirectly. Two approaches have
been developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can
enforce a particular structure of the PMNS matrix consistent with a non-zero reactor angle,
leading to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns
of mixing still apply to the neutrino sector but receive charged lepton mixing corrections due
to the PMNS matrix being the product of two unitary matrices, which, in our convention,
is written as VeLV†

νL
, where V†

νL
is assumed to take the BM, TB or GR form, while VeL differs

from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it is possible
to generate a non-zero 13 PMNS mixing angle, while leading to correlations amongst the
physical PMNS parameters, known as solar mixing sum rules [13–16]. This scenario may be
enforced by a subgroup of A4, S4, S5, which enforces the Vν structure [12] while allowing
charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that
the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or
second column, while the third column necessarily departs from these structures due to



Universe 2023, 9, 472 3 of 25

the non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS
parameters, known as atmospheric mixing sum rules. This scenario may be enforced by a
subgroup of A4, S4, S5, which enforces the one column Vν structure [12] while forbidding
charged lepton corrections.

Apart from the large lepton mixing angles, another puzzle is the extreme lightness
of neutrino masses. Although the type I seesaw mechanism can qualitatively explain the
smallness of neutrino masses through the heavy right-handed neutrinos (RHNs), if one
does not make other assumptions, it contains too many parameters to make any particular
predictions for neutrino mass and mixing. The sequential dominance (SD) [17,18] of
right-handed neutrinos proposes that the mass spectrum of heavy Majorana neutrinos
is strongly hierarchical, i.e., Matm � Msol � Mdec, where the lightest RHN with mass
Matm is responsible for the atmospheric neutrino mass that, with mass Msol, gives the solar
neutrino mass, and a third largely decoupled RHN gives a suppressed lightest neutrino
mass. It leads to an effective two right-handed neutrino (2RHN) model [19,20] with a
natural explanation for the physical neutrino mass hierarchy, with normal ordering and the
lightest neutrino being approximately massless, m1 = 0.

A very predictive minimal seesaw model with two right-handed neutrinos and one
texture zero is the so-called constrained sequential dominance (CSD) model [13,21–29]. The
CSD(n) scheme, also known as the Littlest Seesaw, assumes that the two columns of the
Dirac neutrino mass matrix are proportional to (0, 1,−1) and (1, n, 2− n) or (1, 2− n, n), re-
spectively, in the RHN diagonal basis (or equivalently (0, 1, 1) and (1, n, n− 2) or (1, n− 2, n)),
where the parameter n was initially assumed to be a positive integer but, in general, may
be a real number. For example, the CSD(3) (also called the Littlest Seesaw model) [22–26],
CSD(4) models [27,28] and CSD(2.5) [30] can give rise to phenomenologically viable predic-
tions for lepton mixing parameters and the two neutrino mass squared differences ∆m2

21
and ∆m2

31, corresponding to special constrained cases of lepton mixing that preserve the
first column of the TB mixing matrix, namely TM1, and hence satisfy the atmospheric mixing
sum rules. As has been observed, modular symmetry remarkably suggests CSD(1 +

√
6) ≈

CSD(3.45) [31–34].
In this paper, we study neutrino solar and atmospheric mixing sum rules arising from

discrete symmetries and also discuss the class of Littlest Seesaw (LS) models corresponding
to CSD(n) with n ≈ 3. The motivation is to study all the above symmetry-based approaches,
namely solar and atmospheric mixing sum rules and LS models, together in one place so
that they may be compared, and to give an up-to-date analysis of the predictions of all of
these possibilities, when confronted with the most recent global fits. All these approaches
offer predictions for the cosine of the leptonic CP phase cos δ in terms of the mixing angles,
θ13, θ12, θ23, which can be tested in forthcoming high-precision neutrino experiments. In
particular, we study the solar neutrino mixing sum rules, arising from charged lepton
corrections to TB, BM and GR neutrino mixing, and atmospheric neutrino mixing sum rules,
arising from preserving one of the columns of these types of mixing—for example, the first
or second column of the TB mixing matrix (TM1 or TM2)—and we confront them with an
up-to-date global fit of the neutrino oscillation data. We show that some mixing sum rules,
e.g., all the atmospheric neutrino mixing sum rules arising from a golden ratio mixing, are
already excluded at 3σ apart from GRa2, and we determine the remaining models allowed
by the data. We also give detailed comparative results for the highly predictive LS models
(which are special cases of TM1). These models are highly predictive, with only two free
real parameters fixing all the neutrino oscillation observables, making them candidates for
being the most minimal predictive seesaw models of leptons still compatible with data.
This is the first time that the three LS cases corresponding to CSD(n) with n = 2.5, n = 3
and n = 1 +

√
6 ≈ 3.45 have been studied together in one place, using the most up-to-date

global fits. These three cases are predicted by theoretical models. In particular, n = 3
is studied in a flavon model based on S4 [22–26], n = 2.5 is introduced in the tri-direct
CP approach based on the flavor symmetry S4 × Z5 × Z8 [30] and n = 1 +

√
6 ≈ 3.45

is derived in the modular symmetry framework with three S4 groups [31–34]. We also
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propose a new means of analyzing these models, which allows accurate predictions for the
least well-determined oscillation parameters θ12, θ23 and δ to be extracted.

The layout of the remainder of the paper is as follows. In Section 2, we introduce
the notation for the PMNS matrix and discuss the symmetries of the leptonic Lagrangian.
In Sections 3 and 4, we introduce the atmospheric and solar sum rules for the different
models that we study and confront them with the up-to-date neutrino data global fit. We
proceed in Section 5 by discussing the CDS and the Littlest Seesaw model, showing its high
predictivity and the viable parameter space given the experimental data and its fit. Finally,
we conclude in Section 6.

2. Lepton Mixing and Symmetries

The mixing matrix in the lepton sector, the PMNS matrix UPMNS, is defined as the
matrix that appears in the electroweak coupling to the W bosons expressed in terms of
lepton mass eigenstates. With the mass matrices of charged leptons Me and neutrinos Mν

LL
written as1

L = −eL MeeR −
1
2

νL Mννc
L + H.c. , (4)

and performing the transformation from flavor to mass basis by

VeL Me V†
eR

= diag(me, mµ, mτ), VνL Mν VT
νL

= diag(m1, m2, m3), (5)

the PMNS matrix is given by

UPMNS = VeL V†
νL

. (6)

Here, it is assumed implicitly that unphysical phases are removed by field redefinitions,
and UPMNS contains one Dirac phase and two Majorana phases. The latter are physical
only in the case of Majorana neutrinos; for Dirac neutrinos, the two Majorana phases can
be absorbed as well.

According to the above discussion, the neutrino mass and flavor bases are misaligned
by the PMNS matrix as follows, νe

νµ

ντ

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3

 ≡ UPMNS

 ν1
ν2
ν3

, (7)

where νe, νµ, ντ are the SU(2)L partners to the left-handed charged lepton mass eigenstates
and ν1,2,3 are the neutrinos in their mass basis. Following the standard convention, we can
describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases,

UPMNS =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

P, (8)

=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

P, (9)

where P contains the Majorana phases

P = diag
(

1, eiα21/2, eiα31/2
)

, (10)
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The current 3σ parameter intervals coming from the global fit of the neutrino oscillation
data by the (nuFIT) http://www.nu-fit.org/ (accessed on 14 September 2023) collaboration
[35] are

θ12 = [31.31◦, 35.74◦], θ23 = [39.6◦, 51.9◦], θ13 = [8.19◦, 8.89◦], (11)

δ = [0◦, 44◦] & [108◦, 360◦], ∆2
21

10−5eV2 = [6.82, 8.03],
∆2

3l
10−3eV2 = [2.428, 2.597].

(12)

The PMNS matrix reads

|U|w/o SK-atm
3σ =

 0.803→ 0.845 0.514→ 0.578 0.142→ 0.155
0.233→ 0.505 0.460→ 0.693 0.630→ 0.779
0.262→ 0.525 0.473→ 0.702 0.610→ 0.762

. (13)

These results are obtained considering normal ordering, which is the current best fit, and
without including the Super-Kamiokande (SK) data.

Simple mixing patterns such TB, BM or GR could explain the first neutrino oscillation
data. These patterns can be enforced via symmetries of the mass matrices. Let us take
a basis where the charged lepton Me mass matrix is diagonal, and we notice that, for
three generations, we have that ZT

3 is a symmetry of the Lagrangian

T†
(

M†
e Me

)
T = M†

e Me, (14)

where T = diag
(
1, ω2, ω

)
and ω = ei2π/3. The light Majorana neutrino mass matrix

is invariant under the Klein symmetry: ZU
2 × ZS

2 . This can be seen taking the diagonal
neutrino mass matrix and performing the transformations

Mν = ST MνS, Mν = UT MνU, (15)

and Mν is left invariant with

S = U∗PMNS diag(+1,−1,−1)UT
PMNS

U = U∗PMNS diag(−1,+1,−1)UT
PMNS,

(16)

where this result follows from the fact that, in the charged lepton mass eigenstate basis, the
neutrino mass matrix is diagonalized by UPMNS as in Equation (5), where any two diagonal
matrices commute. Then, Equation (16) shows that the matrices S, U are both diagonalized
by the same matrix UPMNS that also diagonalizes the neutrino mass matrix. Given this
result, we can always find the two matrices S, U for any PMNS mixing matrix, and hence
the Klein symmetry is present for any choice of the PMNS mixing. However, not all Klein
symmetries may be identified with finite groups of low order.

This description is meaningful if the charged leptons are diagonal (T is conserved) or
approximately diagonal (T is softly broken). We are therefore interested in finite groups
that are supersets of ZU

2 × ZS
2 and ZT

3 and have a triplet representation. Groups of low
order that satisfy these constraints are given in Figure 1.

One simple example is the group G = S4, of order 24, which is the group of permuta-
tion of four objects. The generators follow the presentation rules [12]

S2 = T3 = (ST)3 = U2 = (TU)2 = (SU)2 = (STU)4 = 1. (17)

http://www.nu-fit.org/
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The two possible S4 triplet irreducible representations with a standard choice of basis [36]
give the generators’ explicit expression

S =
1
3

 −1 2 2
2 −1 2
2 2 −1

, T =

 1 0 0
0 ω2 0
0 0 ω

, U = ∓

 1 0 0
0 0 1
0 1 0

, (18)

where, again, ω = ei2π/3, and the sign of the U matrix corresponds to the two different
triplet representations. The group S4 predicts TB mixing [11]; see Figure 2. This can be
checked by the fact that S and U are diagonalized by UTB; see Equation (16). Another
commonly used group is A4, which has two generators S and U that follow the same
presentation rules as in Equation (17), and, in a standard basis [37], the generators have the
same form as in Equation (18).

PSL2(7) SO(3)∆(96)

∆(27)

SU(3)

A4

S4 A5T7

Figure 1. Subgroups of SU(3) with triplet representations. The smaller of the two groups connected
in the graph is a subset of the other. Figure from [12].

Figure 2. A schematic diagram that illustrates the way in which the two subgroups ZU
2 × ZS

2 and
ZT

3 of a finite group work in the charged lepton and neutrino sectors in order to enforce a particular
pattern of PMNS mixing. In this example, the group S4 leads to TB mixing.
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In order to explain the experimental results, G needs to be broken down to generate
a non-zero (13) PMNS element. This will lead to corrections to the leading order PMNS
predictions from the discrete group G. In Figure 3, we illustrate two possible directions by
which we can proceed. The first one is to break the T generator while the Klein symmetry
in the neutrino sector is exact (left-hand side). This means that the charged lepton matrix is
approximately diagonal. In the mass basis, we will have then a correction to the neutrino
mixing matrix by a unitary matrix Ve and the PMNS is now UPMNS = V†

e Vν. Applying
this to a group G will lead to solar sum rules. The second direction is to preserve ZT

3
but break ZU

2 while keeping either ZSU
2 or ZS

2 unbroken (right-hand side). This leads to
corrections to the prediction of G within the neutrino mixing and to atmospheric sum rules.
It is convenient to introduce small parameters that can simplify the sum rule expressions
and help us to understand their physical behavior since, both in solar and atmospheric
sum rules, we implement a small deviation from the prediction of the exact finite discrete
symmetries. We can consider the deviation parameters s, r, a [38]

sin θ12 ≡
1 + s√

3
, sin θ13 ≡

r√
2

, sin θ23 ≡
1 + a√

2
, (19)

that highlight the differences from TB mixing. Given the latest fit, the 3σ allowed range for
the solar, reactor and atmospheric deviation is, respectively,

−0.0999 < s < 0.0117,

0.20146 < r < 0.21855,

−0.0985 < a < 0.1129.

(20)

This shows that the reactor angle differs from zero significantly (r 6= 0), but the solar
and atmospheric angles remain consistent with TB mixing (s = a = 0) at 3σ. From a
theoretical point of view, one of the goals of neutrino experiments would be to exclude the
TB prediction s = a = 0 [39], which is so far still allowed at 3σ.

Figure 3. In order to generate a non-zero (13) PMNS element, one or more of the generators S, T, U
must be broken. In the left panel, we depict T breaking, leading to charged lepton mixing corrections
and possible solar sum rules. In the right panel, U is broken, while either S or SU is preserved, leading
to neutrino mixing corrections and atmospheric sum rules.

3. Solar Mixing Sum Rules

The first possibility to generate a non-zero reactor angle, whilst maintaining some of
the predictivity of the original mixing patterns, is to allow the the charged lepton sector
to give a mixing correction to the leading order mixing matrix Uν. This will lead to the
so-called solar sum rules, which are relations between the parameters that can be tested.
This operation is equivalent to considering the T generator of the S4 symmetry, which
enforces the charged lepton mass matrix to be diagonal (in our basis) to be broken.
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When the T generator is broken, the charged lepton matrix is not exactly diagonal
and it will give a correction to the PMNS matrix predicted by the symmetry group G.
For example, for the S4, UPMNS is not exactly UTB but it receives a correction that we will
compute. The fact that S and U are preserved leads to a set of correlations among the
physical parameters, the solar sum rules, which are the predictions of the model. For the
solar sum rules, we can obtain a prediction for cos δ, as we shall now show.

For example, consider the case of TB neutrino mixing with the charged lepton mixing
corrections involving only (1,2) mixing, so that the PMNS matrix in Equation (6) is given
by

UPMNS =

 ce
12 se

12e−iδe
12 0

−se
12eiδe

12 ce
12 0

0 0 1




√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2



=


· · · · · · se

12√
2

e−iδe
12

· · · · · · ce
12√
2

1√
6
− 1√

3
1√
2


(21)

The elements of the PMNS matrix are clearly related by [16,40]

|Uτ1|
|Uτ2|

=
sν

12
cν

12
= tν

12 =
1√
2

. (22)

This relation is easy to understand if we consider only one charged lepton angle to be
non-zero, θe

12, and the third row of the PMS matrix in Equation (21) is unchanged, so the
elements Uτi may be identified with the corresponding elements in the uncorrected mixing
matrix in Equation (1). Interestingly, the above relation still holds even if both θe

12 and θe
23

are non-zero. However, it fails if θe
13 6= 0 [41].

The above relation in Equation (22) can be translated into a prediction for cos δ as [40]2

cos δ =
tan θ23 sin θ2

12+sin θ2
13 cos θ2

12/ tan θ23−(sin θν
12)

2(tan θ23+sin θ2
13/ tan θ23)

sin 2θ12 sin θ13
,

(23)

where only the parameter sin θν
12 is model-dependent, and we have, respectively, sin θν

12 =

1/
√

3, sin θν
12 = 1/

√
2, tan θν

12 = 1/ϕ and θν
12 = π/5, cos θν

12 = ϕ/
√

3 and θν
12 = π/6 for

mixing based on TB, BM, GRa, GRb, GRc and HEX, where ϕ = (1 +
√

5)/2.
Let us discuss an approximation of the sum rules for the TB mixing as an example,

where sin θν
12 = 1/

√
3. We can re-write Equation (23) using the parameters s, a and r

defined in Equation (19) and then expand them. The linearized sum rule reads [38]

cos δ =
s
r

, (24)

but it does not describe adequately the exact sum rules as shown in the left panel of Figure 4.
Therefore, we can proceed to the second-order expansion, which is

cos δ =
s
r
+

r2 + 8as
4r

, (25)

and it matches the exact sum rule behavior as seen in the right panel in Figure 4. Similarly,
we can obtain higher-order expansion for the other cases and check them against the data,
as for the BM case shown in Figure 5. In this case, we did not choose the best fit value for a
because it would fall outside of the physical range of cos δ, since BM is almost excluded
by the data. The approximated expression for the sum rules can help us to understand
its behavior and the dependence of cos δ on the other parameters that are, in general,
non-linear and assess the deviation from the non-corrected PMNS mixing. We then expect,
for the exact sum rules, a first-order linear dependence on s.
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Figure 4. Solar mixing sum rule predictions for TB neutrino mixing. In both panels, the red band is
the allowed region of the exact TB solar sum rules using the 3σ range of r (i.e., the deviation of sin θ13

from the TB value). It is plotted in the 3σ range of s (i.e., the deviation of sin θ12 from the TB value)
and using the best fit value a = 0.071. The exact sum rules correspond to Equation (23). Similarly,
the blue band is the linearized sum rule allowed region, which is given in Equation (24). In the right
panel, the blue band is the second-order expansion sum rule prediction (Equation (25)) and it matches
the exact sum rule.
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Figure 5. Solar sum rule predictions for BM neutrino mixing. In both panels, the red band is the
allowed region of the exact BM solar sum rules using the 3σ range of r (i.e., the deviation of sin θ13

from the TB value). It is plotted in the 3σ range of s (i.e., the deviation of sin θ12 from the TB value)
and using the value a = −0.1. The exact sum rules correspond to Equation (23). Similarly, the blue
band is the linearized sum rule allowed region, which is given in Equation (24). In the right panel,
the blue band is the second-order expansion sum rule prediction (Equation (25)) and it matches the
exact sum rule.

In Figure 6, we present the exact sum rule prediction from Equation (23) for TB, BM,
GRa, GRb, GRc and HEX and the constraints from the fit of the neutrino oscillation data [35].
We require cos δ to fall within the physical range −1 < cos δ < 1 and we present it in the
y-axis. In all panels, the x-axis is sin2 θ12 and the different color bands are sampled in the
allowed sin θ23 region. The width of the band is given by allowing sin θ13 to vary in its 3σ
range. We notice that the θν

12 = 45◦ BM mixing (top-right panel) is closed to be excluded at
3σ and only low values of sin2 θ12 and high values of sin2 θ12 are still viable. Similarly, for
GRc mixing (bottom-left panel), with cos θν

12 = ϕ/3, the viable parameter space is very tight;
only for maximal values of sin θ13 and minimal values of sin θ12 and sin θ23 can we obtain
physical results for the CP phase. For TB mixing (top-left panel) with sin θν

12 = 1/
√

3 in the
neutrino sector with charged lepton correction, we obtain consistent results in the whole
parameter space, with a prediction for cos δ that shows an approximately linear dependence
on sin2 θ12, as understood by the leading order term in the sum rules in Equation (24). The
prediction for the CP phase lies in the 0.52 . cos δ . 0.12 range. The yellow and green
bands are the 1σ ranges, respectively, of sin2 θ12 and cos δ, and we notice how these ranges
favor GRa and GRb mixing. For both these models, we see that the predictions of cos δ are
in the negative plane. For GRa (center-left panel), with tan θν

12 = 1/ϕ, the whole parameter
space leads to a physical prediction of cos δ. For GRb (center-right panel), with θν

12 = π/5
mixing, larger values sin θ23 are excluded for small values of sin2 θ12. We finally notice that
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TM and HEX are the only models predicting positive values of cos δ and HEX (bottom-right
panel), with θν

12 = π/6 in particular being the only predicting values of cos δ & 0.2. Of the
mixing patterns studied, GRa and GRb are favored by the current 1σ ranges and BM and
GRc are much disfavored and only consistent with the far corners of the parameter space,
with a prediction of | cos δ | ≈ 1.
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Figure 6. Summary of exact solar sum rule predictions for different types of neutrino mixing. In the
top left-hand panel, we present, with the different colored bands, the sum rule predictions for TB for
cos δ, allowing sin θ12 to vary in its 3σ range; the different colors denote different choices of sin θ23

given in the legend, in its 3σ range, and the width of the band is given by the 3σ range in sin θ13.
The green and yellow bands are the 1σ ranges for, respectively, cos δ and sin θ23. Similar plots for
BM, GRa, GRb, GRc and HEX are presented, respectively, in the top-right, center-right, center-left,
bottom-left and bottom-right panels. The exact sum rules for the different models are derived from
Equation (23).

4. Atmospheric Mixing Sum Rules

In this section, we discuss the second possibility, which is to have the T generator
unbroken; therefore, the charged lepton mixing matrix is exactly diagonal. In this case, the
correction to the PMNS matrix predicted from the group G comes from the neutrino sector
and it provides a non-zero reactor angle. For each group, there are two possible corrections
achieved by either breaking U and preserving S or with S and U broken and SU preserved.
Therefore, for each discrete symmetry, we study two mixing patterns [43–45].

Let us consider again G = S4 and the TB mixing in Equation (3) as an example. If we
break S and U but preserve SU, the first column of the TB matrix is preserved and we have
the so-called TM1 mixing pattern [46,47]:
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UTM1 ≈


√

2
3 − −

− 1√
6
− −

1√
6
− −

. (26)

If instead S is unbroken the second column is preserved, we have the second mixing pattern
TM2:

UTM2 ≈


−

√
1
3 −

−
√

1
3 −

− −
√

1
3 −

. (27)

We can explicitly check this noticing that

S


√

1
3√
1
3√
1
3

 =


√

1
3√
1
3√
1
3

, (28)

meaning that the second column of the TB mixing matrix is an eigenvector of the S matrix.
This is similar for the first column with the SU matrix.

In this second case, where the second column of the TB matrix is conserved, we have

|Ue2| =
∣∣Uµ2

∣∣ = |Uτ2| =
1√
3

, (29)

and, given the parametrization in Equation (9), we have

|Ue2| = |s12c13|,
∣∣Uµ2

∣∣ = |c12c23 − s12s13s23eiδ|, (30)

|Uτ2| = | − c12s23 − s12s13c23eiδ|. (31)

Using the first equation |Ue2| = |s12c13|, we have the first atmospheric sum rule

s2
12 =

1
3 c2

13
, (32)

which allows us to write θ12 in terms of θ13, and removing a parameter in our description
gives a prediction that can be tested. Using Equation (32) and |c12c23 − s12s13s23eiδ|2 = 1

3 ,
we obtain the second atmospheric sum rule [46,47]:

cos δ =
2c13 cot 2θ23 cot 2θ13√

2− 3s2
13

. (33)

For the other models, the discussion is similar, where we call X1 and X2 the atmospheric sum
rules, respectively, derived by preserving the first and second columns of the unbroken
group with mixing X. In terms of the deviation parameters for TM2, we have the sum rule

cos δ =
2a(2 + a)

(
−1 + r2)

(1 + a)
√

1− 2a− a2r
√

4− 3r2
. (34)

We can expand this expression for small deviation parameters and, at the zero-th order, we
have [43]

cos δ = −2a
r

(35)
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In Figure 7, we test this approximation against the exact sum rules using the experimental
constraint in (12). We can see that, given the updated data, the linear approximation is now
insufficient to describe the exact expression as it was instead in previous studies [43]. This
is similar for TM1, as seen in Figure 8. This is also true for the other model that we discuss
later, and, therefore, we provide the higher-order expansions that agree with the exact sum
rule in Equation (34) given the current data:

cos δ = −2a
r
− a2

r
(36)

For the TM2 example, we see in Figure 7 that the second-order expansion is a good
description of the exact sum rule. For TM1, instead, as shown in Figure 8, the third-order
expansion is needed.
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Figure 7. The red band is the allowed region of the exact TM2 sum rules using the 3σ range of r and a
(i.e., the deviation of sin θ13 and sin θ23 from the TB value), and it corresponds to Equation (33). The
blue band is given by the linearized sum rule that is given in Equation (35). On the right, we zoom in
on the region −0.1 < a < 0.
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Figure 8. The red band is the allowed region of the exact TM2 sum rules using the 3σ range of r and a
(i.e., the deviation of sin θ13 and sin θ23 from the TB value), and it corresponds to Equation (33). The
blue band is given by the second-order sum rule that is given in Equation (36). On the right, we zoom
in on the region −0.1 < a < 0.

Since the second exact sum rules are quite involved, having an approximated expres-
sion is of help to understand the physical meaning of it and to understand the difference
with respect to the TB model. We present in Table 1 the exact and approximated second
sum rules for TM1, TM2 and GRa2, which, as we will see later, are the viable atmospheric
mixing. Note that the approximated expression leads to simple results for TM1 and TM2
because the parameters a, r and s are built as deviation parameters from the TB mixing
and, beyond the first-order expansion, they may not bring new insights for other types of
mixing. We present in Table 2 the first atmospheric sum rules used in Figure 9. These results
were derived using the normal ordered data without SK atmospheric results; the discussion
regarding linearization is the same including SK or considering the inverted ordering since
sin θ13 is very constrained and it does not change much in the different cases considered.
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In Figures 9 and 10, we study the exact atmospheric sum rules for models obtained
modifying TB, BM, GRa, GRb, GRc and HEX. In Figure 9, we present the first atmospheric
sum rule in Table 2, where the green band is the 3σ range for sin2 θ12. The models that do
not appear are already excluded and far from the 3σ region. Therefore, BM1, BM2, GRa1,
GRb2, GRc1, GRc2, HEX1 and HEX2 are already excluded. In red, we show GRa1, which
is excluded at 3σ; in blue, we show TM2, which is still not excluded but only in a narrow
parameter space, for high values of the solar and atmospheric angle. TM1 is shown in
purple, GRa2 in orange and GRb1 in black.

Table 1. Exact and approximated sum rules for the experimentally viable models, where θ = arctan 1
φ

and φ = 1+
√

5
2 .

Exact Sum Rule Approximated Sum Rule

TM1 cos δ = − cot 2θ23(1−5 sin θ2
13)

2
√

2 sin θ13
√

1−3 sin θ2
13

cos δ = a
r +

a2

2r +
2a3

r −
7ar
4

TM2 cos δ = 2 cos θ13 cot 2θ23 cot 2θ13√
2−3 sin θ2

13

cos δ = − 2a
r −

a2

r

GRa2 cos δ = (1−tan2 θ23) csc θ(1−3 sin2 θ13+(1+sin2 θ13) cos 2θ)

8 sin θ13 cos θ23

√
cos2 θ13−sin2 θ

cos δ = a
√

1+cos 2θ csc θ
r

(
1 + a

2
)

Table 2. Exact sum rules plotted in Figure 9, where θ = arctan 1
φ and φ = 1+

√
5

2 .

TM1 cos θ12 =
√

2
3

1
cos θ13

TM2 sin θ12 = 1√
3 cos θ13

BM1 cos θ12 = 1√
2 cos θ13

BM2 cos θ12 = 1√
2 cos θ13

GRa1 cos θ12 = cos θ
cos θ13

GRa2 cos θ12 = sin θ
cos θ13

GRb1 cos θ12 = 1+
√

5
4 cos θ13

GRb2 sin θ12 =

√
5+
√

5
4 cos θ13

GRc1 cos θ12 = 1+
√

5
2
√

3 cos θ13
GRc2 sin θ12 = 1+

√
5

2
√

3 cos θ13

HEX1 cos θ12 =
√

3
2 cos θ13

HEX2 sin θ12 = 1
2
√

2 cos θ13

In Figure 10, we show the exact atmospheric sum rules (Table 1) and the corresponding
equations for other models that are still allowed from Figure 9. We plot cos δ against sin θ23
and, letting sin θ13 vary in its 3σ range, this gives the width of the different bands. In yellow
and gray, respectively, are the 1σ bands for sin2 θ23 and cos δ. The GRb1 mixing does not
appear in the plot because it lies within unphysical values of cos δ. In purple, blue and
orange, we present TM1, TM2 and GR12. We can see that, given the 1σ bands, the GRa2
mixing is favored when considering normal ordering and without the SK data, since TM2
is allowed only in a small portion of the parameter space, as shown in Figure 9.
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Figure 9. Summary of exact atmospheric sum rule predictions that predict the solar angle for different
types of lepton mixing corresponding to a preserved column of the PMNS matrix, with only a mild
dependence on the reactor angle. The corresponding Equations are collected in Table 2. The pink,
blue, red, orange and black curves are, respectively, the predictions for TM1, TM2, GRa1, GRa2 and
GRb1 mixing patterns. The 3σ allowed region is in green.
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Figure 10. Summary of exact atmospheric sum rule predictions that predict cos δ in terms of the other
mixing angles for different types of lepton mixing corresponding to a preserved column of the PMNS
matrix. The corresponding Equations are collected in Table 1. We present with the blue band the
exact sum rule prediction for TM2 for cos δ, letting sin θ13 vary in its 3σ range. In orange and purple,
we present the exact the sum rule predictions for GRa2 and TM1. The yellow and gray regions are,
respectively, the 1σ ranges of sin θ23 and cos δ, while the plot covers the whole 3σ range.

5. Littlest Seesaw

There are many mechanisms proposed to explain the smallness of the neutrino masses
and that remain consistent with the data. For example, the type I seesaw mechanism can ad-
dress the problem through the introduction of heavy right-handed neutrinos. However, in
general, it contains too many parameters to make any predictions for the neutrino mass and
mixing. The constrained sequential dominance (CSD) model is a very predictive minimal
seesaw model with two right-handed neutrinos and one texture zero [13,21–29]. As dis-
cussed in the Introduction, the CSD(n) scheme assumes that the two columns of the Dirac
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neutrino mass matrix are proportional to (0, 1,−1) and (1, n, 2− n) or (1, 2− n, n), respec-
tively, in the RHN diagonal basis (or equivalently (0, 1, 1) and (1, n, n− 2) or (1, n− 2, n)),
where the parameter n was initially assumed to be a positive integer but, in general, may
be a real number. For example, the CSD(3) (also called the Littlest Seesaw model) [22–26]
can give rise to phenomenologically viable predictions for lepton mixing parameters and
the two neutrino mass squared differences ∆m2

21 and ∆m2
31, corresponding to special con-

strained cases of lepton mixing that preserve the first column of the TB mixing matrix,
namely TM1, and hence satisfy the atmospheric mixing sum rules.

The Littlest Seesaw (LS) mechanism is one of the most economic neutrino mass
generation mechanisms that is still consistent with the experimental neutrino data [22–24].
We will show that after the choice of a specific n value, all the neutrino observables are
fixed by two free parameters. Different values of n can be realized by different discrete
symmetry groups. The LS introduces two new Majorana right-handed (RH) neutrinos Natm

R
and Nsol

R that will be mostly responsible for providing the atmospheric and solar neutrino
mass, respectively, and the lightest SM neutrino is approximately massless; this is the idea
of the sequential dominance (SD) of RH neutrinos combined with the requirement for the
Natm

R -νe interaction to be zero [48]. The Majorana neutrino mass matrix is given by the
standard type I seesaw equation

Mν = −mD M−1
R mDT

, (37)

where the RH neutrino mass matrix MR is a 2× 2 diagonal matrix,

MR =

(
Matm 0

0 Msol

)
, M−1

R =

(
M−1

atm 0
0 M−1

sol

)
, (38)

where the convention for the heavy Majorana neutrino mass matrix corresponds to the La-
grangian term − 1

2 νc
R MRνR (which is equivalent to − 1

2 νT
R MRνR) and the convention for the

light Majorana neutrino mass matrix corresponds to the Lagrangian term − 1
2 νL Mννc

L as in
Equation (5), which follows after performing the seesaw mechanism in Equation (37) [12]3.

The Dirac mass matrix in left-right (LR) convention is a 3× 2 matrix with arbitrary
entries

mD =

 d a
e b
f c

,
(

mD
)T

=

(
d e f
a b c

)
, (39)

where the entries are the coupling between the Majorana RH neutrinos and the SM neutri-
nos. The first column describes the interaction of the neutrinos in the flavor basis with the
atmospheric RH neutrino and the second with the solar RH neutrino. The SD assumptions
are that d = 0, d� e, f and

(e, f )2

Matm
� (a, b, c)2

Msol
. (40)

These, together with the choice of the almost massless neutrino to be the first mass eigenstate
m1, leads to m3 � m2 and therefore a normal mass hierarchy. This description can be
further constrained choosing exactly e = f , b = na and c = (n− 2)a, giving a simplified
Dirac matrix

mD =

 0 a
e na
e (n− 2)a

, (41)
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which is called the constrained dominance sequence (CSD) for the real number n [13,21,22].
It has been shown that the reactor angle is [23]

θ13 ∼ (n− 1)

√
2

3
m2

m3
. (42)

Therefore, this can provide a non-zero and positive angle for n > 1 and also excludes
already models with n ≥ 5 since they do not fit the experimental value. The choice n ≈ 3
provides good fits to the data, as we shall discuss. Following the literature, we will refer to
CSD(n) models with n ≈ 3 as Littlest Seesaw (LS) models [23].

The LS Lagrangian unifies in one triplet of flavor symmetry the three families of
electroweak lepton doublets, while the two extra right-handed neutrinos, Natm

R and Nsol
R ,

are singlets and read [23]

L = −yatm L̄ · φatmNatm
R − ysol L̄ · φsolNsol

R −
1
2 MatmNatm

R Natm
R − 1

2 MsolNsol
R Nsol

R + h.c. ,
(43)

which can be enforced by a Z3 symmetry and where φatm and φsol can be either Higgs-like
triplets under the flavor symmetry or a combination of Higgs electroweak doublets and
flavons depending on the specific choice of symmetry to use. In both cases, the alignment
should follow

φT
atm ∝ (0, 1, 1), φT

sol ∝ (1, n, n− 2), (44)

or

φT
atm ∝ (0, 1, 1), φT

sol ∝ (1, n− 2, n). (45)

We will refer to the first possibility in Equation (44) as the normal case [22,23] and the
second in Equation (45) as the flipped case [24]. The predictions for n in the flipped case
are related to the normal one by

tan θ23 → cot θ23 (θ23 → π − θ23) & δ→ δ + π. (46)

Therefore, we will discuss them together as one single n case.
There is an equivalent convention that can be found in the literature [33], where the

alignment is chosen to be

φT
atm ∝ (0, 1,−1), φT

sol ∝ (1, n, 2− n). (47)

or

φT
atm ∝ (0, 1,−1), φT

sol ∝ (1, 2− n, n). (48)

which leads to the same results as the previous two cases, respectively. In the neutrino
mass matrix, there will appear a (−1) factor that is only a non-physical phase, which can
therefore be neglected. In particular, the case n = 1+

√
6 that can be obtained with modular

symmetry in [33]4 is still n = 1 +
√

6 in our convention using Equation (44). This means
that the case n = 1−

√
6 is merely the flipped version of n = 1 +

√
6 and not a new LS

model. We will follow the derivation in [23] and, using Equation (44), derive the flipped
result with Equation (46). We will consider LS models corresponding to CSD(n) models
with n ≈ 3, particularly n = 2.5, 3 and 1 +

√
6 ≈ 3.45, together with their flipped cases.
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For the normal cases of CSD(n), the mass matrix in the diagonal charged lepton basis
is given by

mν = ma

 0 0 0
0 1 1
0 1 1

+ mbeiη

 1 n n− 2
n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2

, (49)

where we used Equations (37), (38) and (41)

ma =
|e|2

Matm
mb =

|a|2
Msol

, (50)

and the only relevant phase is η = arg(a/e). At this point, we notice that, in the diagonal
charged lepton mass basis that we are using, the PMNS mixing matrix is fully specified
by the choice of n and the parameters mb/ma and η. Indeed, it is possible to derive exact
analytic results for the masses and mixing angles [23] and hence obtain the LS prediction
for the neutrino oscillation observables.

We first observe that

mν


√

2
3

−
√

1
6√

1
6

 =

 0
0
0

, (51)

where the vector (
√

2
3 ,−

√
1
6 ,
√

1
6 )

T is the first column of the TB matrix in Equation (3) and
is then an eigenvector of the neutrino mass matrix with eigenvalue 0, and it corresponds
to the massless neutrino eigenstate. This means that for a generic n, we obtain a TM1
mixing, as in Equation (26), where the first column of the TB matrix is preserved and the
other two can change. Therefore, we can think of the LS as a special case of the atmospheric
sum rules for TB mixing. Since the atmospheric sum rules were derived only using the fact
that the first column of the TB matrix is preserved, all LS implementations also follow
the TM1 sum rules in Equation (26). Once we have noticed this, it is clear that mν can be
block-diagonalized using the TB matrix

mν
block = UT

TBmνUTB =

 0 0 0
0 x y
0 y z

, (52)

with

x = 3mbeiη , y =
√

6mbeiη(n− 1), z = |z|eiφz = 2
[
ma + mbeiη(n− 1)2

]
. (53)

Finally, we diagonalize mν
block to obtain a matrix of the form diag(0, m2, m3)

UT
block mν

block Ublock = P∗3νRT
23νP∗2νmν

block P∗2νR23νP∗3ν = mν
diag = diag(0, m2, m3), (54)

where the matrix including the phases is

P2ν =

 1 0 0
0 eiφν

2 0
0 0 eiφν

3

,

P3ν =

 eiων
1 0 0

0 eiων
2 0

0 0 eiων
3

,

(55)
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and the angle that we use to diagonalize is

R23ν =

 1 0 0
0 cos θν

23 sin θν
23

0 − sin θν
23 cos θν

23

 ≡
 1 0 0

0 cν
23 sν

23
0 −sν

23 cν
23

, (56)

with the angle being fully specified by the free parameters mb/ma and η, given by

t ≡ tan 2θν
23 =

2|y|
|z| cos(A− B)− |x| cos B

, (57)

where

tan B = tan(φν
3 − φν

2) =
|z| sin A

|x|+ |z| cos A
, (58)

and

A = φz − η = arg
[
ma + mbeiη(n− 1)2

]
− η. (59)

Recall that the PMNS matrix is the combination of the charged lepton and neutrino mixing
matrices

UPMNS = UEL U†
νL

, (60)

where the neutrino mixing matrix, as we have shown, is the product of the TB matrix and
the Ublock matrices

UνL = UT
blockUT

TB. (61)

Now we can compare the PMNS matrix for the LS model with the standard parametrization
in Equation (9) to extract the mixing angles

sin θ13 =
1√
3

sν
23 =

1√
6

(
1−

√
1

1 + t2

)1/2

,

tan θ12 =
1√
2

cν
23 =

1√
2

(
1− 3 sin2 θ13

)1/2
,

tan θ23 =

∣∣∣ eiB
√

2
cν

23 +
1√
3

sν
23

∣∣∣∣∣∣ eiB√
2

cν
23 −

1√
3

sν
23

∣∣∣ =
∣∣1 + εν

23

∣∣∣∣1− εν
23

∣∣ ,
(62)

with

εν
23 ≡

√
2
3

tan θν
23e−iB =

√
2
3

t−1
[√

1 + t2 − 1
]
e−iB. (63)

The neutrino masses can be computed from mν
block and they are

Hν
block = mν

block mν†
block =

 0 0 0
0 |x|2 + |y|2 |x||y|+ |y|eiηz∗

0 |x||y|+ |y|e−iηz |y|2 + |z|2

, (64)
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and, after diagonalization, we can extract the eigenvalues as a function of the LS model
parameters

m2
2 + m2

3 = T ≡ |x|2 + 2|y|2 + |z|2,

m2
2m2

3 = D ≡ |x|2|z|2 + |y|4 − 2|x||y|2|z| cos A,
(65)

and finally

m2
3 =

1
2

T +
1
2

√
T2 − 4D,

m2
2 = D/m2

3,

m2
1 = 0,

(66)

For the CP phase δ, we have the cosine sum rule

cos δ = −
cot 2θ23

(
1− 5 sin θ2

13
)

2
√

2 sin θ13

√
1− 3 sin θ2

13

, (67)

which is the same as for the TM1 mixing in Table 1. This can be understood since the
LS is a subset of TM1, as noticed before when we showed that the first column of the TB
matrix is an eigenvector of the LS neutrino’s mass matrix. Notice that, for the flipped case,
cos δ changes sign (because θ23 → π − θ23). Further information on the CP phase can be
extracted from the Jarlskog invariant, which has been computed for the LS models [23,24],

J = s12c12s13c2
13s23c23 sin δ = ∓

24m3
am3

b(n− 1) sin η

m2
3m2

2∆m2
32

, (68)

where the negative sign corresponds to the normal case and the positive sign to the flipped.
This leads to the sum rules for sin δ for the respective cases

sin δ = ∓
24m3

am3
b(n− 1) sin η

m2
3m2

2∆m2
32s12c12s13c2

13s23c23
. (69)

Notice that, in this case, the model is more predictive than the discrete symmetries and it
predicts both sine and cosine fixing unambiguously the CP phase δ. Both sin δ and cos δ
change sign when moving from the normal to the flipped cases, meaning that δ→ π + δ,
as anticipated before.

The above analytic results emphasize the high predictivity of these models, which,
for a given choice of n, successfully predict all nine neutrino oscillation observables (three
angles, three masses, three phases) in terms of three input parameters, namely the effective
real masses ma, mb and the phase η, which are sufficient to determine the neutrino mass
matrix in Equation (49), where these parameters appear in the above analytic formulas.
However, one neutrino mass is predicted to be zero (m1 = 0), corresponding to a predicted
normal hierarchy, so one Majorana phase is irrelevant. For the remaining seven observables
(three angles, two masses, two phases), the overall neutrino mass scale may be factored out,
and the Majorana phase is difficult to measure, so that, in practice, we shall focus on the
five observables, namely the three angles θ13, θ12, θ23, the mass squared ratio ∆m2

21/∆m2
31 =

m2
2/m2

3 and the CP violating Dirac phase δ, which are fixed by the two input parameters,
the phase η and the ratio of the masses r = mb/ma, In practice, we shall take the two most
accurately determined observables, ∆m2

21/∆m2
31 and θ13, to fix the input parameters η and

r = mb/ma within a narrow range, resulting in accurate predictions for the remaining
observables, θ12, θ23 and the Dirac phase δ. In addition, we could add the input parameter
n as a free parameter, but this, together with the constrained form of the mass matrices, will
eventually be determined by the flavor model. In particular, a successful LS model structure
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corresponding to CSD(n) can emerge from a theory of flavor, as has been discussed in the
literature for n = 3 [24], n = 2.5 [50] and more recently n = 1 +

√
6 ≈ 3.45 [30–34].

In Figure 11, we consider the LS results for the above three cases with n ≈ 3 and
the corresponding flipped cases, which are all realized successfully via S4 symmetry [23].
When we plot the experimental ranges of θ13 and the mass squared ratio m2

2/m2
3 in the r− η

plane, it is clear that only two small parameter regions are allowed, which determine the
maximal and minimal values of r and η as the intersection of the blue and orange bands.
Once we have the ranges of r and η for each value of n, thanks to the high predictivity
of the model, we can derive all the physical parameters and we can test them against the
observed values. We do this for each value of n = 3, 1 +

√
6 ≈ 3.45 and 2.5 in Tables 3–5.

We do not present the plot for the flipped cases since they are exactly the same. In fact, they
involve only the mass ratio and θ13.

In Table 3, we focus on the originally studied n = 3 and its flipped case. We present
the theoretical prediction and its uncertainty coming from the allowed region in Figure 11
(center panel) and the experimental bound. Since the theoretical prediction is exact given η
and r, we are allowing two significant figures for the theoretical errors. We notice that θ12
and θ23 fall well within the experimental range for all the cases and that, even if δ is still
not measured very precisely, it allows us to exclude one of the two possible η both in the
normal and flipped case. In fact, only the η = 2.11 normal case and η = 4.17 flipped case
are within the 3σ experimental range.

In Table 4, we focus on n = 1 +
√

6 ≈ 3.45, which can be realized with a modular
symmetry [33]. We notice that for the normal case, both η values are still allowed but with
the δ prediction for η = 3.87 that lies at the edge of the allowed experimental range. For
the flipped case, instead, η = 2.42 is excluded, thanks again to the bound on δ. As before,
moving from n = 1+

√
6 to the flipped case only changes the sign of t in Equation (57). The

predictions for the mass ratio, θ13 and θ12, are independent of this sign, while θ23 and δ are
affected by it, as we can see in Equations (62) and as discussed above for δ. The predictions
are thus related by tan θ23 → cot θ23 (or θ23 → π − θ23) and δ→ δ + π.

n=3n=2.5 n=1+√6

Figure 11. The results for the LS models with n ≈ 3. The input parameters η and r = mb/ma are
constrained to a good degree of accuracy by only two experimental observables, namely θ13 and the
mass ratio m2

2/m2
3. The 3σ allowed region for θ13 and the mass ratio are, respectively, the blue and

orange bands. The area of intersection is the allowed parameter space for η and r. From the left to the
right, we assume n = 2.5, 3 and 1 +

√
6 ≈ 3.45.
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Table 3. The LS predictions for n = 3 where the two most accurately measured observables, θ13

and the mass squared ratio m2
2/m2

3, are used to accurately determine the two input parameters
r = mb/ma = 0.100± 0.008 for two η ranges, as shown above, corresponding to the center panel
of Figure 11. This then leads to highly constrained predictions for the less accurately determined
observables θ12, θ23 and δ, which may be compared to the current experimental ranges as shown in
the table. All results are given to 3σ accuracy.

n = 3 η = 2.11± 0.15 η = 4.17± 0.15 Exp. Range

θ12 [◦] 34.32+0.20
−0.24 34.32+0.20

−0.25 31.31–35.74

normal θ23 [◦] 45.5+2.3
−2.4 45.5+2.3

−2.4 39.6–51.9

normal δ [◦] 272.2+9.6
−11.0 87.9+11.0

−9.6 0–44 and 108–360

flipped θ23 [◦] 44.5+2.3
−2.4 44.5+2.3

−2.4 39.6–51.9

flipped δ [◦] 92.2+9.6
−11.0 267.9+11.0

−9.6 0–44 and 108–360

In Table 5, we focus on n = 2.5 and notice that, given the δ values, η = 4.7 is excluded
for the normal case, while, for the flipped, both η values are allowed. Finally, θ23 lies in the
higher and lower end of the experimental range, respectively, for the normal and flipped
case, making the n = 2.5 disfavored given the current data. This case is also known in
the literature as n = −1/2 using the convention in Equation (48). However, it is more
consistent to refer to it as n = 2.5 in our notation.

Table 4. The LS predictions for n = 1 +
√

6 ≈ 3.45 where the two most accurately measured
observables, θ13 and the mass squared ratio m2

2/m2
3, are used to accurately determine the two input

parameters r = mb/ma = 0.072± 0.004 for two η ranges, as shown above, corresponding to the
right panel of Figure 11. This then leads to highly constrained predictions for the less accurately
determined observables θ12, θ23 and δ, which may be compared to the current experimental ranges as
shown in the table. All results are given to 3σ accuracy.

n = 1 +
√

6 η = 2.42± 0.16 η = 3.87± 0.16 Exp. Range

θ12 [◦] 34.36+0.18
−0.21 34.36+0.18

−0.21 31.31–35.74

normal θ23 [◦] 41.4+2.6
−2.6 41.5+2.6

−2.6 39.6–51.9

normal δ [◦] 253.8+11.7
−13.8 105.7+13.7

−11.6 0–44 and 108–360

flipped θ23 [◦] 48.6+2.6
−2.6 48.5+2.6

−2.6 39.6–51.9

flipped δ [◦] 74.8+11.7
−13.8 285.8+13.7

−11.6 0–44 and 108–360

Table 5. The LS predictions for n = 2.5 where the two most accurately measured observables, θ13

and the mass squared ratio m2
2/m2

3, are used to accurately determine the two input parameters
r = mb/ma = 0.15± 0.01 for two η ranges, as shown above, corresponding to the left panel of
Figure 11. This then leads to highly constrained predictions for the less accurately determined
observables θ12, θ23 and δ, which may be compared to the current experimental ranges as shown in
the table. All results are given to 3σ accuracy.

n = 2.5 η = 1.5± 0.2 η = 4.7± 0.2 Exp. Range without SK

θ12 [◦] 34.31+0.16
−0.20 34.28+0.17

−0.21 31.31–35.74

normal θ23 [◦] 51.5+1.9
−2.2 51.0+2.0

−2.3 39.6–51.9

normal δ [◦] 299.9+9.2
−9.9 63.6+10.1

−9.3 0–44 and 108–360

flipped θ23 [◦] 38.5+1.9
−2.2 39.0+2.0

−2.3 39.6–51.9

flipped δ [◦] 119.9+9.2
−9.9 243.6+10.1

−9.3 0–44 and 108–360
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In summary, we see that most of the LS models with n ≈ 3 are still allowed by
the current data. We have considered the cases n = 2.5 and n = 1 +

√
6 ≈ 3.45 and

compared the results to n = 3, which was the originally proposed CSD(3). We emphasize
the high predictivity of the LS models, which have three input parameters describing
nine neutrino observables. We have presented a new method here to present the results,
namely to use the two most accurately measured observables, θ13 and the mass squared
ratio ∆m2

2/∆m2
3 = m2

2/m2
3, to accurately constrain the two input parameters r = mb/ma

and η. This then leads to highly constrained predictions for the less accurately determined
observables θ12, θ23 and δ, which can be tested by future neutrino oscillation experiments.
Indeed, some of the possible LS cases are already excluded by the current data. In addition,
all these LS cases predict the zero lightest neutrino mass m1 = 0, with a normal neutrino
mass hierarchy, and the neutrinoless double beta decay parameter mββ equal to mb, which
is merely the first element of the neutrino mass matrix in Equation (49). Indeed, mββ = mb
can be readily determined from ∆m2

2 = m2
2, but its value is too small to be measured in the

near future, so we have not considered it here. On the other hand, a non-zero measurement
of m1 or mββ in the inverted mass squared ordering region would immediately exclude the
LS models.

6. Conclusions

In the past few decades, many attempts have been made to explain the flavor structure
of the PMNS matrix by imposing symmetry on the leptonic Lagrangian. These symmetries
imply correlations among the parameters that are called sum rules. We have studied two
types of sum rules: solar and atmospheric mixing sum rules. Then, we have studied the
Littlest Seesaw (LS) models that obey the TM1 atmospheric mixing sum rule but are much
more predictive. The goal of this paper has been to study all these approaches together
in one place so that they may be compared, and to give an up-to-date analysis of the
predictions of all of these possibilities, when confronted with the most recent global fits.

In the case of solar mixing sum rules, the T generator of a given symmetry group
is broken in the charged lepton sector in order to generate a non-zero reactor angle θ13.
This leads to a prediction for cos δ that can be tested against the experimental data. These
in turn show a preference for GRa and GRb mixing, while BM and GRc are constrained
to lie in a very small window of the parameter space of the current data. Future high-
precision neutrino oscillation experiments will constrain the solar mixing sum rules, further
as discussed elsewhere [40].

The atmospheric mixing sum rules instead come from either the breaking of both S
and U in the neutrino sector while preserving SU, or from breaking S and preserving U.
In this case, we have two relations among the parameters that can be tested. We noticed
that only TM1, TM2 and GRa2 are still allowed by the neutrino oscillation data, with a
preference for GRa2 and with TM2 very close to being excluded. Future high-precision
neutrino oscillation experiments will constrain the atmospheric mixing sum rules further, as
discussed elsewhere [43].

We have also considered the class of LS models that follow the constrained sequential
dominance idea, CSD(n) with n ≈ 3. The LS models obey the TM1 atmospheric mixing sum
rule, but have other predictions as well. We have compared the cases n = 2.5, n = 3 and
n = 1 +

√
6 ≈ 3.45, which are predicted by theoretical models. These models are highly

predictive, with only two free real parameters fixing all the neutrino oscillation observables,
making them candidates for being the most minimal predictive seesaw models of leptons
still compatible with data. This is the first time that all three n values above, in both normal
and flipped cases, have been studied together in one place, using the most up-to-date global
fits. We have also proposed a new means of analyzing these models, which allows accurate
predictions for the least well-determined oscillation parameters θ12, θ23 and δ, which we
have shown to lie in relatively narrow 3σ ranges, much smaller than the current data ranges
but (largely) consistent with them, allowing these models to be decisively tested in future
neutrino oscillation experiments, as has been discussed elsewhere [25]. In our analysis, we
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have ignored the model-dependent renormalization group (RG) corrections to LS models,
which have been shown to be generally quite small [51].

In conclusion, we have shown that the recent global fits to experimental data have
provided significantly improved constraints on all these symmetry-based approaches, and
future neutrino oscillation data will be able to significantly restrict the pool of viable models.
In particular, improvements in the measurement of the leptonic CP violating Dirac phase δ
will strongly constrain all these cases. This is particularly true in LS models, which provide
very precise theoretical predictions for δ, as well as θ12 and θ23, consistent with current
global fits. Future high-precision neutrino experiments are of great importance to continue
to narrow down the choice of possible PMNS flavor models based on symmetry and lead
to a deeper understanding of the flavor puzzle of the SM.
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Notes
1 Although we have chosen to write a Majorana mass matrix, all relations in the following are independent of the Dirac or Majorana

nature of neutrino masses.
2 See also [42].
3 Note that our convention for Mν is the complex conjugate of the matrix used in the MPT package [49] and in other studies in the

literature [33,50]. As will become apparent, in the LS case, Mν contains only one complex phase η, meaning that moving from
one to convention to the other η changes the sign: η → −η.

4 Notice that [33] uses the MPT convention for Mν, which is related to our convention by a complex conjugation.
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